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第1章 RETRACTION

1.1 図式の追跡

1.1.1 圏O1

1.1.1.1 射の合成

なんらかの圏 C において，

1. f ∈ hom(A,B) であることを

A
f // B , B A

foo

と表しても良いことにする．

2. 射 A
f // B が与えられたとき，A を f の domain, B を f の codomain と言い，それぞ

れ dom(f), cod(f) と表す．

3. 射の domain, codomain を特定する記号を必要としないときには，

· f // · , · ·foo , ·
f // ·
g

oo

といった表記を用いて良いことにする．

4. f ◦ g のように記号 ◦ を用いている場合には，特に断らなくても，f, g は射であり，f の
domain と g の codomain は共通であるとする；

· g // · f // ·
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1.1.1.2 O1 圏� �
定義 1. 圏 C が次の条件を満たすとき、C はO1 圏であると言う；
任意の対象A,B に対して hom(A,B)は順序関係⪯が定めらた順序集合（半順序集合，poset）
であり，次の条件（合成と不等号の両立）を満たす;

f1 ⪯ f2 =⇒ g ◦ f1 ⪯ g ◦ f2, f1, f2 ∈ hom(A,B), g ∈ hom(B,C),

f1 ⪯ f2 =⇒ f1 ◦ g ⪯ f2 ◦ g, g ∈ hom(A,B), f1, f2 ∈ hom(B,C).� �
この条件から，f1 ⪯ g1, f2 ⪯ g2 ならば

f1 ◦ f2 ⪯ g1 ◦ f2
⪯ g1 ◦ g2

が導かれ，さらに，一般に

f1 ⪯ g1, . . . , fn ⪯ gn =⇒ f1 ◦ · · · ◦ fn ⪯ g1 ◦ · · · ◦ gn (1.1)

となる．

1.1.2 不等号の図式の追跡

1.1.2.1 不等号の図式

図式が可換であることは記号 “⟲” を用いて，例えば

A

��

Boo

��
C // D

⟲

と表すのが普通なのだが，これを等号の記号 “=” を用いて

A

��

Boo

��
C // D

=

と書くことにすると，その類似で不等号の図式

A

f

��

B
poo

g

��
C

i
// D

⪯
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を考えることができる．これは，i ◦ f ◦ p ⪯ g であることを表す．

可換図式の場合と同様に，O1圏では不等式の図式を追跡することができる．例えば，「小さな四
角形での不等号の図式」

A0

f0
��

A1
p0oo

��

A2
p1oo

��

· · ·oo AN
pN−1oo

fN
��

B0 i1
// B1 i2

//

⪯

B2
//

⪯

· · ·
iN

//

⪯

BN

⪯

から，pN,0 = p0 ◦ p1 ◦ · · · ◦ pN−1, i0,N = iN ◦ · · · ◦ i2 ◦ i1 の作る「大きな四角形での不等号の図式」

A0

f0
��

AN
pN,0oo

fN
��

B0 i0,N
// BN

⪯

が得られる； 実際，

A0

f0
��

An
pn,0oo

fn
��

B0 i0,n
// Bn

⪯

を帰納法の仮定として，図式

A0

f0
��

An
pn,0oo

fn
��

An+1
pnoo

fn+1

��
B0 i0,n

// Bn

⪯

in+1

// Bn+1

⪯

から，

i0,n+1 ◦ f0 ◦ pn+1,0 = in+1 ◦ (i0,n ◦ f0 ◦ pn,0) ◦ pn （ 帰納法の仮定により ↓）
⪯ in+1 ◦ fn ◦ pn （ 小さな四角形での不等式により ↓）
⪯ fn+1

が導かれる．

1.1.2.2 用語

retraction，section という用語は，数学の色々な分野で用いられるが，ここでは順序関係の絡
んだ独自の用語として，ガロア対，レトラクト対といった用語を定義する．a ⪯ b を b ⪰ a と書い
ても良いことにする．
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� �
定義 2. O1 圏 C において， A

f
// B

goo が与えられているとする．

1. g ◦ f = idA であるとき，

• g を f のレトラクション (retraction)，

• f を g のセクション (section)

と言う．

2. g ◦ f = idA, f ◦ g ⪯ idB であるとき，g, f の対 ⟨g, f⟩ をレトラクト対と言う．

3. g ◦ f ⪰ idA, f ◦ g ⪯ idB であるとき，g, f の対 ⟨g, f⟩ をガロア対と言う．� �
レトラクト対を扱うことが目標なのだが，まず，一般にガロア対についての成り立つ結果を証

明しておく．

1.2 ガロア対

1.2.1 基本的な性質

まず， A
i

// B
poo がガロア対ならば，つまり，p ◦ i ⪰ idA, i ◦ p ⪯ idB ならば，

p ◦ i ◦ p = p ◦ (i ◦ p)
⪯ p ◦ idB = p

p ◦ i ◦ p = (p ◦ i) ◦ p
⪰ idA ◦ p = p

なので

p ◦ i ◦ p = p (1.2)

であり（これを導くために，前順序では不十分で poset であることが必要），また，

i ◦ p ◦ i = i ◦ (p ◦ i)
⪰ i ◦ idA = i

i ◦ p ◦ i = (i ◦ p) ◦ i
⪯ idB ◦ i = i
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なので

i ◦ p ◦ i = i (1.3)

が得られる．

1.2.1.1 一意性

補題 1. f ◦ g ⪯ idB, idA ⪯ g′ ◦ f ′ となる f, f ′ ∈ hom(A,B), g, g′ ∈ hom(B,A) に対して，以下
が成り立つ．

1. g′ ⪯ g =⇒ f ⪯ f ′.

2. f ′ ⪯ f =⇒ g ⪯ g′.

［証明］　

1. g′ ⪯ g ならば，

f = f ◦ idA ⪯ f ◦ (g′ ◦ f ′) （⇐ idA ⪯ g′ ◦ f ′）

⪯ f ◦ (g ◦ f ′) （⇐ g′ ⪯ g）

= (f ◦ g) ◦ f ′ （ f ◦ g ⪯ idB なので ↓）
⪯ idB ◦ f ′ = f ′.

2. f ′ ⪯ f ならば，

g = idA ◦ g ⪯ (g′ ◦ f ′) ◦ g （⇐ idA ⪯ g′ ◦ f ′）

⪯ (g′ ◦ f) ◦ g （⇐ f ′ ⪯ f）

= g′ ◦ (f ◦ g) （ f ◦ g ⪯ idB　なので ↓）
⪯ g′ ◦ idB = g′.

一時的に用いるだけだが， A
f

// B
goo が不等式 g ◦ f ≥ idA を満たすとき，

• g を f の left-up-term，

• f を g の right-up-term,

と言うことにする．

Remark. 　ついでに，f ◦ g ≤ idB の場合には，

7



• f を g の left-down-term，

• g を f の right-down-term

としておけば，⟨p, i⟩ がガロア対ならば，

1. i は，p の right-up-termであり left-down-term,

2. p は，i の left-up-termであり right-down-term

ということになる．

命題 1. A
i

// B
poo はガロア対であるとする．したがって，p ◦ i ⪰ idA, i ◦ p ⪯ idB.

1. (a) i は p の最小の right-up-term.

(b) p は i の最小の left-up-term.

2. (a) ⟨p, i′⟩ もガロア対ならば，i = i′.

(b) ⟨p′, i⟩ もガロア対ならば，p = p′.

3. A
i′

// B
p′oo もガロア対であるとする．このとき，

(a) p′ ⪯ p, =⇒ i ⪯ i′.

(b) i′ ⪯ i =⇒ p ⪯ p′.

［証明］　

1. ⟨p, i⟩ はガロア対なので，特に，i ◦ p ⪯ idB であり，f = i, g = p と置くと f ◦ g ⪯ idB．

(a) i′ が p の right-up-termならば，f ′ = i′, g′ = p と置くと g′ ◦ f ′ = p ◦ i′ ⪰ idA であり，
補題 1を用いることができる．g′ = g（したがって，g′ ⪯ g ）なので補題 1の 1.により
f ⪯ f ′ であり，i ⪯ i′．i は p の right-up-termなので，i は p の最小の right-up-term.

(b) p′ が i の left-up-termならば，f ′ = i, g′ = p′ と置くと g′ ◦ f ′ = p′ ◦ i ⪰ idA であり，
補題 1 を用いることができる．f ′ = f （したがって，f ′ ⪯ f）なので補題 1 の 2.によ
り g ⪯ g′ であり，p ⪯ p′．p は i の left-up-termなので，p は i の最小の left-up-term.

2. (a) ⟨p, i′⟩ もガロア対ならば，i′ も最小なので i′ ⪯ i でもあり，i ⪯ i′ と併せて，i = i′．

(b) ⟨p′, i⟩ もガロア対ならば，p′ も最小なので p′ ⪯ p でもあり，p ⪯ p′ と併せて，p = p′.

3. 補題 1 から明らか．

命題 1 の 2. により，ガロア対となる p, i 相互の一意性が証明されたので
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• p ∈ hom(B,A) に対して ⟨p, i⟩ がガロア対となる i が存在するとき，p は B から A への
left-Galois morphism,

• i ∈ hom(A,B) に対して ⟨p, i⟩ がガロア対となる p が存在するとき，i は A から B への
right-Galois morphism

であると言い，

• p が left-Galois morphism であるとき，⟨p, i⟩ がガロア対となる i を i(p)

• i が right-Galois morphism であるとき，⟨p, i⟩ がガロア対となる p を p(i)

と表すことにする．

この記号を用いると，命題 1 の 3. を

p′ ⪯ p =⇒ i(p) ⪯ i(p′) (1.4)

i′ ⪯ i =⇒ p(i) ⪯ p(i′) (1.5)

と書くことができる．

⟨p, i⟩ がガロア対であることは，色々な図式で表すことができる：

A

idA
��

B
poo

idB
��

A
i(p)

// B

⪯

A

idA
��

B

idB
��

p(i)oo

A
i

// B

⪯

A B
poo

A

idA

OO

i(p)
// B

idB

OO

⪯

A B
p(i)oo

A

idA

OO

i
// B

idB

OO

⪯

⟨p, i⟩ = ⟨p, i(p)⟩ = ⟨p(i), i⟩, i(p) = i, p(i) = p.

さらに，⟨p, i⟩ がレトラクト対ならば，右の図式の不等号は等号となる；

A

idA
��

B
poo

idB
��

A
i(p)

// B

⪯

A

idA
��

B

idB
��

p(i)oo

A
i

// B

⪯

A B
poo

A

idA

OO

i(p)
// B

idB

OO

=

A B
p(i)oo

A

idA

OO

i
// B

idB

OO

=
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⟨p, i⟩ = ⟨p, i(p)⟩ = ⟨p(i), i⟩, i(p) = i, p(i) = p.

ガロア対やレトラクト対を考えていることが明らかな場合には，等号，不等号を明記すること
なしに，また，idA, idB 等の恒等射矢印の向きを指定せずに，省略された形の図式

A

idA

B
poo

idB

A
i(p)

// B

A B
p(i)oo

A

idA

i
// B

idB

を用いても良いことにする．

1.2.1.2 ガロア対の圏

A B
p1oo , B C

p2oo が left-Galois morphism ならば，

(p1 ◦ p2) ◦ (i(p2) ◦ i(p1)) = p1 ◦ (p2 ◦ i(p2)) ◦ i(p1)
⪰ p1 ◦ idB ◦ i(p1) = p1 ◦ i(p1)
⪰ idA,

(1.6)

(i(p2) ◦ i(p1)) ◦ (p1 ◦ p2) = i(p2) ◦ (i(p1) ◦ p1) ◦ p2
⪯ i(p2) ◦ idB ◦ p2 = i(p2) ◦ p2
⪯ idC

なので，p1 ◦ p2 も left-Galois morphism であり，

i(p1 ◦ p2) = i(p2) ◦ i(p1)

となる．

A

idA

B

idB

p1oo C

idC

p2oo

A
i(p1)

// B
i(p2)

// C

A

idA

C

idC

p1◦p2oo

A
i(p2)◦i(p1)

// C

O1-圏 C において，

1. idA は left-Galois morphism,
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2. g ∈ hom(A,B), f ∈ hom(B,C) が left-Galois morphism ならば，f ◦ g も left-Galois

なので，

1. 対象は，C の対象

2. 射は，C の left-Galois morphism

として圏を定めることができる．この圏を，C から得られる left-Galois 圏と言い，Gal(C) と表す
ことにする．

ガロア対が特にレトラクト対である場合が，これから重要になるので，用語を準備しておく．� �
定義 3. ガロア対 ⟨p, i⟩ がレトラクト対であるとき，p をRETRACTION, i を SECTIONと言う．� �
レトラクト対の場合には，不等式 (1.6) は等式に変わり，p1 ◦ p2 もRETRACTIONとなる．

射をRETRACTIONのみに制限した圏を定めることもできる．この圏を，Cから得られるRETRACTION

の圏と言い，R(C) と表すことにする．

Remark. 　 left-Galois 圏（もしくは，RETRACTIONの圏）は，p に対して i(p) を定める函手を
考えることにより，right-Galois morphism （もしくは， SECTION） から成る逆圏と対応する．

関係式 i(p1 ◦ pn) = i(p1) ◦ i(p2) は帰納法を用いて

i(p1 ◦ (p2 ◦ · · · ◦ pn)) = i(p2 ◦ · · · ◦ pn) ◦ i(p1)
= (i(pn) ◦ · · · ◦ i(p2)) ◦ i(p1)

とすることができるので，一般的な関係式

i(p1 ◦ · · · ◦ pn) = i(pn) ◦ · · · ◦ i(p1)

が成立する．同じく，

p(in ◦ · · · ◦ i1) = p(i1) ◦ · · · ◦ p(in).

left-Galois morphism の図式（もしくは，RETRACTIONの図式）

B1p1
wwooo

ooo
· · · · · ·p2oo Bm−1

pm−1oo

A D

pmhhQQQQQQ

qnvvmmmm
mm

C1
q1

ggOOOOOO
· · · · · ·q2

oo Cn−1qn−1

oo

(1.7)
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において，不等式

p1 ◦ p2 ◦ · · · ◦ pm ⪯ q1 ◦ q2 ◦ · · · ◦ qn

が成立しているならば（両辺共に left-Galois morphism なので），命題 1 の 3. により

i(q1 ◦ q2 ◦ · · · ◦ qn) ⪯ i(p1 ◦ p2 ◦ · · · ◦ pm)

であり，したがって，right-Galois morphism の図式（もしくは，SECTIONの図式）

B1
i(p2) // · · · · · ·

i(pm−1)// Bm−1 i(pm)

((QQQ
QQQ

A

i(p1) 77oooooo

i(q1) ''OO
OOO

O D

C1
i(q2)

// · · · · · ·
i(qn−1)

// Cn−1
i(qn)

66mmmmmm

(1.8)

における逆向きの不等式

i(qn) ◦ · · · ◦ i(q2) ◦ i(q1) ⪯ i(pm) ◦ · · · ◦ i(p2) ◦ i(p1)

を得る．また，図式 (1.7) が可換ならば，図式 (1.8) も可換．

1.3 レトラクト列

1.3.1 RETRACTIONの圏

1.3.1.1 全射型と単射型

ここまで，レトラクト対の性質のうち，一般にガロア対に対して述べることのできるものを扱っ
てきたのだが，ここから，レトラクト対であることが必須の結果に移る．
記号 pr, in は，それぞれRETRACTION, SECTIONに対してのみ用いることにする．また，レトラ

クト対であることを明示したい場合，レトラクト対 ⟨g, f⟩ を [g, f ] と表す．

集合の要素を用いて定義されている全射 (surjective)・単射 (injective) に代わる用語として，全
射型 (epi)・単射型 (mono) を用いる；

1. g ∈ hom(A,B) は，任意の対象 C と f1, f2 ∈ hom(B,C) に対して

f1 ◦ g = f2 ◦ g =⇒ f1 = f2

となるときに全射型

2. f ∈ hom(B,C) は，任意の対象A と g1, g2 ∈ hom(A,B) に対して

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

となるときに単射型
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であると言う．(⇒ Appendix A 3.1.3)

[pr, in] がレトラクト対ならば，pr は全射型であり，in は単射型である；
pr が全射型であることは，

f1 ◦ pr = f2 ◦ pr =⇒ (f1 ◦ pr) ◦ in = (f2 ◦ pr) ◦ in
=⇒ f1 ◦ (pr ◦ in) = f2 ◦ (pr ◦ in)
=⇒ f1 ◦ idA = f2 ◦ idA
=⇒ f1 = f2

in が単射型であることは，

in ◦ g1 = in ◦ g2 =⇒ pr ◦ (in ◦ g1) = pr ◦ (in ◦ g2)
=⇒ (pr ◦ in) ◦ g1 = (pr ◦ in) ◦ g2
=⇒ g1 = g2

となることからわかる．これは，pr ◦ in = idA であることのみから導かれる．

逆に，ガロア対 A
i

// B
poo の i が単射型の場合，もしくは，p が全射型の場合，p ◦ i = idA で

あることが導かれ，⟨p, i⟩ はレトラクト対となる；

• p が全射型なら，

(p ◦ i) ◦ p = idA ◦ p （⇐ (1.2) 式）

から p ◦ i = idA が導かれ，

• i が単射型ならば，

i ◦ (p ◦ i) = i ◦ idA （⇐ (1.3) 式）

から p ◦ i = idA が導かれる．

したがって，レトラクト対は，

p が全射型，i が単射型となるガロア対 ⟨p, i⟩

として定義することもできる．

1.3.1.2 記号

O1 圏 C から 圏R(C) を以下のように定める；

1. 圏R(C) の対象は，圏 C の対象.
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2. 対象B から対象A への射は，B からA へのRETRACTION

圏R(C) でのB からA への射の集合（つまり，B からA へのRETRACTIONの集合）を，

homR(B,A)

と表すことにする．p ∈ homR(B,A) に対して，[p, i] がレトラクト対となる i が一意に定まるの
で，[p, i] を射と考えても良い．図式での記号として基本的には

A B,_?

po

を用いることにするが，「射の内訳」まで表したいときには，圏R(C) の図式でも

A B
po /
i

という「矢印」を用い，さらにその省略形などのバージョン

A B
po / A B_?

p/io A B
p/ioo

を（図式が煩雑にすることを避けるために，誤解が生じそうもない場合には）使うことにする．

Remark. 　RETRACTIONを射として圏を考えたが，SECTIONを射とした圏を考えることも可能．
「矢印」の向きは逆になり，したがって射の合成の順番も逆転するが，内容は完全に対応する（圏
論で言うところの逆圏となる）．

Remark. 　 RETRACTIONの圏とは言っても，実質的にはレトラクト対 [p, i] を考えていること
になるので，レトラクト対を射として圏を定義しても同じことになる．この場合，図式が可換と
いうことは，RETRACTIONと SECTIONの両方について可換と言うことを意味することになるが，
RETRACTIONについて可換ならば SECTIONについても可換になるので，可換性はRETRACTIONに
ついてのみ確かめるだけで十分．

1.3.2 射影列と射影極限

1.3.2.1 用語

なんらかの圏 C において，� �
• D0 D1

p0oo · · · · · ·p1oo Dn
pn−1oo · · · · · ·pnoo を射影列

• D0
i1 // D1

i2 // · · · · · · in // Dn
in+1 // · · · · · · を帰納列� �

と言う．
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なお，Dj からDk への写像であることを明示したい場合には，f j
k のような表記を用いること

にする．したがって，

pj = pj+1
j , ij = ij−1

j

ということになる．また，射影列や帰納列では，特に断らない限り，m ≤ n に対して射の合成に
より pnm, imn を定める；

pnm = pm+1
m ◦ pm+2

m+1 · · · ◦ p
n
n−1 = pm ◦ pm+1 ◦ · · · ◦ pn−1,

imn = in−1
n ◦ in−2

n−1 ◦ · · · ◦ i
m
m+1 = in ◦ in−1 ◦ · · · ◦ im+1.

Remark. 　 idDn については，idnn と書くまでもないので，ほとんどの場合，idn と表す．

射影列 D0 D1
p0oo · · · · · ·p1oo Dn

pn−1oo · · · · · ·pnoo が与えられているとする．このとき，� �
C の対象X からの射の族 fj : X −→ Dj , j = 0, 1, . . . が関係

fj = pj ◦ fj+1, j = 0, 1, . . .

を満たすとき，この射の族を射影列への射の族という．
X と射の族の対 ⟨X, {fj}j=0,1,2,...⟩ を，射影列の上界ということにする．� �
射影列の上界は，省略された形で ⟨X, fj⟩ と，もしくは，さらに射の族 fj を明示することを省

略して，X と表しても良いことにする．
D は C の対象であり，πj : D −→ Dj , j = 0, 1, . . . は射影列への射の族であるとする（したがっ

て，D はこの射影列の上界）．このとき，

15



� �
1. C の任意の対象X からの射影列への射の族 fj : X −→ Dj , j = 0, 1, . . . に対して（つ
まり，射影列の任意の上界X に対して），X からD への射 f であって

πj ◦ f = fj , j = 0, 1, 2, . . .

となるものが存在するならば，D は射影列の上限であると言うことにする．

2. C の任意の対象X からの射 X
f //
g

// D に対して

πj ◦ f = πj ◦ g ( ∀j = 0, 1, 2, . . . ) =⇒ f = g

となるとき，⟨D,πj⟩ は（等号についての）簡約性を持つという．

3. C の任意の対象X からの射 X
f //
g

// D に対して

πj ◦ f ⪯ πj ◦ g ( ∀j = 0, 1, 2, . . . ) =⇒ f ⪯ g

となるとき，⟨D,πj⟩ は不等式についての簡約性を持つという．

4. ⟨D,πj⟩ が射影列の上限であって，かつ，簡約性を持つとき，⟨D,πj⟩ は射影列の射影極
限であると言う．� �

Remark. 　

1. 射影極限では，πj ◦ f = fj となる f の一意性は，等号についての簡約性により保証される．

2. 射影極限は同型を除いて一意に定まる †．

3. D が不等式についての簡約性をもつならば等号についての簡約性も持つ．

4. 射影列についての上限や上界は，対象の間の射の存在を前順序と捉えての連想に過ぎない．
したがって，poset での最大，上界，上限などについての性質が成立することは期待できな
い．例えば，上限の一意性は保証されない（最小元の一意性が言えないため）．

5. C の対象が posetの場合，射影極限D を集合論的な操作で構成することができる．この場
合，Dの順序の定義は，不等式についての簡約性そのものとなる．

Remark.† 一応，証明をしておく；
⟨D,πj⟩, ⟨D′, π′

j⟩ は共に同じ射影列の射影極限であるとする．

1. f ∈ hom(D,D′), f ′ ∈ hom(D′, D) で
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• π′
j ◦ f = πj , j = 0, 1, 2, . . .,

• πj ◦ f ′ = π′
j , j = 0, 1, 2, . . .

となるものが存在する．

2. したがって，πj ◦ (f ′ ◦ f) を計算すると，

πj ◦ (f ′ ◦ f) = (πj ◦ f ′) ◦ f
= π′

j ◦ f = πj

= πj ◦ idD, j = 0, 1, 2, . . .

なので，πiの簡約性により f ′◦f = idD であり，また，π′
j◦(f◦f ′)を計算すると，f◦f ′ = idD′ .

3. よって，D,D′ は同型であり，f はD からD′ への同型射（のひとつ）となる．

圏の射の向きを逆転させた逆圏を考えれば同じ事なのだが，帰納列からの射の族，帰納極限も
定義しておこう；

帰納列 D0
i1 // D1

i2 // · · · · · · in // Dn
in+1 // · · · · · · が与えられているとする．このとき，

1. C の対象X への射の族 fj : Dj −→ X, j = 0, 1, . . . が関係

fj = fj+1 ◦ ij+1, j = 0, 1, . . .

を満たすとき，この射の族を帰納列からの射の族という．

2. D は C の対象であり，ιj : Dj −→ D, j = 0, 1, . . . は帰納列からの射の族であるとする．こ
のとき，C の任意の対象X への帰納列から射の族 fj : Dj −→ X, j = 0, 1, . . . に対して，D

からX への射 f であって

f ◦ ιj = fj , j = 0, 1, 2, . . .

となるものが一意に存在するならば，D は帰納列の帰納極限であると言う．

1.3.3 レトラクト列

O1 圏 C において，レトラクト列

D0 D1
pr0oo D2

pr1oo · · · · · ·pr2oo Dn−1
prn−2oo Dn

prn−1oo Dn+1
prnoo · · · · · ·

prn+1oo

D0

id

in1

// D1

id

in2

// D2

id

in3

// · · · · · ·
inn−1

// Dn−1

id

inn

// Dn

id

inn+1

// Dn+1

id

inn+2

// · · · · · ·

が与えられているとする．
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D0
in1

// D1

pr0oo
in2

// D2

pr1oo
in3

// · · · · · ·
pr2oo

inn−1

// Dn−1

prn−2oo
inn

// Dn

prn−1oo
inn+1

// Dn+1

prnoo
inn+2

// · · · · · ·
prn+1oo

と書いても同じことなのだが，⟨prn, inn+1⟩ がレトラクト対となっていることを強調し，また，

射影列 D0 · · ·pr0oo Dn
prn−1oo Dn+1

prnoo · · ·
prn+1oo

帰納列 D0 in1

// · · ·
inn

// Dn inn+1

// Dn+1 inn+2

// · · ·

を分離して考えたいので（特に射影列に注目して考えたいので），間に id を挟んだ形の図式とし
ている．

したがって，常に，以下の条件を仮定していることになる；� �
条件： n = 0, 1, 2, . . . に対して，

prn ◦ inn+1 = idn

inn+1 ◦ prn ⪯ idn+1.� �
レトラクト列を記号 (Dj , prj , inj) で表すことにする．また，レトラクト列 (Dj , prj , inj) の射影

列を (Dj , prj)，帰納列を (Dj , inj) で表すことにする．

O1-圏 C でのレトラクト列 (Dj , prj , inj) は，圏R(C) では射影列

D0 D1_?

pr0o · · · · · ·_?

pr1o Dn_?

prn−1o Dn+1_?

prno · · ·_?

prn+1o

として表されることになる．

1.3.4 圏R(C) での上界

1.3.4.1 ιn の構成

O1 圏 C において，レトラクト列の射影列 (Dj , prj)

D0 · · ·pr0oo Dn
prn−1oo Dn+1

prnoo · · ·
prn+1oo

が与えられているとして，次の命題を証明する；
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命題 2. 1. m = 0, 1, 2, . . . に対して，Dm からD0, D1, . . . への射 fm
j , j = 0, 1, 2, . . . を

fm
j =

prmj , j ≤ m

inm
j , m ≤ j

と定める（j = m のときは prmm = idm = inm
m）．各m に対して，射の族 {fm

j }j=0,1,... は射
影列 (Dj , prj) への射の族となる；

prjj−1 ◦ f
m
j = fm

j−1 j = 1, 2, . . . .

2. D が射影列 (Dj , prj) の上限ならば，各m = 0, 1, 2 . . . に対して，

πj ◦ im = fm
j , j = 0, 1, 2, . . .

となる射 Dm
im // D が存在する．

3. さらに ⟨D,πj⟩ が不等式についての簡約性をもつならば，⟨πm, ιm⟩ はレトラクト対となる．

［証明］　

1. j ≤ m と j ≥ m+ 1 で場合分けして考えると，

prjj−1◦f
m
j =

prjj−1 ◦ prmj = prmj−1, j = 1, 2, . . . ,m

prjj−1 ◦ inm
j = inm

j−1, j = m+ 1,m+ 2, . . . （⇐ inm
j = inj−1

j ◦ inm
j−1）

であり，{fm
j }j=0,1,... は射影列への射の族となる．

D がこの射影列の上限ならば，上限の定義によりDm からD への射 fm で

πj ◦ fm = fm
j , j = 0, 1, 2, . . .

となるものが存在する．この射 fm を ιm と表すと，

πj ◦ ιm = fm
j =

prmj , j = 0, 1, . . . ,m

inm
j , j = m,m+ 1, . . .

であり，ℓ ≤ m ≤ n として可換図式（pr, in の添え字は省略）

D
πℓ

}}zz
zz
zz
zz πn

""D
DD

DD
DD

D

Dℓ Dmpr
o o

ιm

OO

in
// Dn

を得る．
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2. ⟨πm, ιm⟩ がレトラクト対となることを確かめる．πm ◦ ιm = idm は定義から明らかなので，
ιm ◦ πm ⪯ idD となることを示す．

{πj}j=0,1,... は不等号についての簡約性をもつので，

πj ◦ (ιm ◦ πm) ⪯ πj ( ∀j = 0, 1, 2, . . . )

となることを示せば良いが，これも j の値で場合分けして評価すると，

(a) ℓ = 0, 1, . . . ,m に対して，

πℓ ◦ (ιm ◦ πm) = (πℓ ◦ ιm) ◦ πm
= prmℓ ◦ πm = πℓ

(b) n = m+ 1,m+ 2, . . . に対して，

πn ◦ (ιm ◦ πm) = (πn ◦ ιm) ◦ πm
= inm

n ◦ πm
= inm

n ◦ (prnm ◦ πn)
= (inm

n ◦ prnm) ◦ πn
⪯ idn ◦ πn = πn

であり，任意の j = 0, 1, 2, . . . に対して πj ◦ (ιm ◦ πm) ⪯ πj .

系 1. O1 圏 C において，⟨D,πj⟩ は レトラクト列の射影列 (Dj , prj) の射影極限であり，かつ，
不等号についての簡約性を持つとする †．このとき，各 πj は RETRACTIONであり，D は射影列
(Dj , prj) の圏R(C) における上界となる．

Remark.† 一般に，射影極限は（ここでの）定義により等号についての簡約性をもつのだが，不
等号についての簡約性を持つとは限らない．(⇒ Appendix A 3.2)．

1.3.4.2 R(C) における上界

逆に，⟨D,πj⟩ がR(C) における上界であるとする（圏 C において射影極限であることも，簡約
性を持つことも仮定しない）．したがって，⟨πj , ιj⟩ がレトラクト対となる ιj ∈ hom(Dj , D) が存
在し，{ιj} は帰納列からの射の族となる；

ιj = i(πj)

= i(prj+1
j ◦ πj+1)

= i(πj+1) ◦ i(prj+1
j )

= ιj+1 ◦ inj
j+1.
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D

πj

��

πj+1

""E
EE

EE
EE

EE

· · · Dj
oo Dj+1pr

oo · · ·oo

D

· · · // Dj

ιj

OO

in
// Dj+1

ιj+1
bbEEEEEEEEE

// · · ·

この場合にも，

πm ◦ ιj =

prjm m ≤ j

inj
m j ≤ m

となることを確かめておこう．まず，m ≤ j となる j に対して

πm ◦ ιj = (prjm ◦ πj) ◦ ιj

= prjm ◦ (πj ◦ ιj)
= prjm ◦ idj = prjm.

(1.9)

j ≤ m に対しては，

πm ◦ ιj = πm ◦ (ιm ◦ inj
m)

= (πm ◦ ιm) ◦ inj
m

= idm ◦ inj
m = inj

m.

また，ιj ◦ πj , j = 0, 1, 2, . . . は増加列となる；

ιj ◦ πj = ιj ◦ (prj+1
j ◦ πj+1)

= (ιj+1 ◦ inj
j+1) ◦ (pr

j+1
j ◦ πj+1)

= ιj+1 ◦ (inj
j+1 ◦ pr

j+1
j ) ◦ πj+1

⪯ ιj+1 ◦ idj ◦ πj+1 = ιj+1 ◦ πj+1

増加列になることの証明は，{πj} の代わりに，D とは別の対象X から射影列への射の族 {fj} に
ついても成立する；

ιj ◦ fj = ιj ◦ (prj+1
j ◦ fj+1) （⇐ {fj}は射影列への射の族）

= (ιj+1 ◦ inj
j+1) ◦ (pr

j+1
j ◦ fj+1)

= ιj+1 ◦ (inj
j+1 ◦ pr

j+1
j ) ◦ fj+1

⪯ ιj+1 ◦ idj ◦ fj+1 = ιj+1 ◦ fj+1

また，m ≤ j ならば，

πm ◦ (ιj ◦ fj) = (prjm ◦ πj) ◦ (ιj ◦ fj)
= prjm ◦ (πj ◦ ιj) ◦ fj
= prjm ◦ idj ◦ fj
= fm.

補題の形で，結果をまとめておく；
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補題 2. O1 圏 C において，レトラクト列の射影列 (Dj , prj)

D0 · · ·pr0oo Dn
prn−1oo Dn+1

prnoo · · ·
prn+1oo

が与えられているとする．⟨D,πj⟩ は圏R(C) における (Dj , prj) の上界であり，また，{fj} は圏
C における (Dj , prj) の上界であるとする．このとき，圏 C において ιj = i(πj) として ιj を定め
ると，

1. ιj ◦ fj , j = 0, 1, 2, . . . は増加列； ιj ◦ fj ⪯ ιj+1 ◦ fj+1.

2. πm ◦ (ιj ◦ fj) = fm, j = m,m+ 1,m+ 2, . . ..

こうなると，増加列 {ιj ◦ fj} の極限 limj→∞ (ιj ◦ fj) を考えたい状況なのだが，O1 圏という
条件だけでは極限を扱うには不十分である．射影極限という用語にも「極限」という言葉は含ま
れているのだが，射影極限は，言うならばDj の列をまとめて考えているだけで，普通の意味での
「極限」とは異なる．これから，対象D′ からD への射の集合 hom(D′, D) の中での（普通の感覚
での）極限を考えることになる．そのために，O1 に条件を追加してO2 圏を定義する．

1.3.5 O2 圏

1.3.5.1 定義

次の条件を満たす圏をO2 圏と言うことにする：

1. （O1 圏の条件）

(a) f1, f2 ∈ hom(A,B), g ∈ hom(B,C) に対して，f1 ⪯ f2 =⇒ g ◦ f1 ⪯ g ◦ f2.

(b) g ∈ hom(A,B), f1, f2 ∈ hom(B,C) に対して，f1 ⪯ f2 =⇒ f1 ◦ g ⪯ f2 ◦ g.

2. 対象A,B と，単調列 f1, f2, . . . ∈ hom(A,B) に対して，hom(A,B) の要素 lim
n→∞

fn を与え

る操作 lim
n→∞

が定められていて，以下の条件を満たす：

(a) {fn}n∈N が単調列ならば

i. lim
n→∞

(g ◦ fn) = g ◦ lim
n→∞

fn.

ii. lim
n→∞

(fn ◦ g) = ( lim
n→∞

fn) ◦ g.

(b) hom(A,B) の単調列 {fn}n∈N, {gn}n∈N に対して，

fn ⪯ gn (∀n ∈ N ) =⇒ lim
n→∞

fn ⪯ lim
n→∞

gn.
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(c) 単調列 {fn}n∈N がある番号から先で一定ならば，つまり，

fn = f, n = n0, n0 + 1, n0 + 2, . . .

となる n0 ∈ N と f が存在するならば，

lim
n→∞

fn = f.

1.3.5.2 O2 圏での射影列

命題 3. O2 圏 C において，レトラクト列の射影列 ⟨Dj , prj⟩ が与えられているとする．⟨D,πj⟩
は，圏R(C) におけるこの射影列の上界であるとする．

1. ⟨D,πj⟩ は，圏 C における上限となる．

2. ⟨D,πj⟩ が圏 C における射影極限ならば，

lim
n→∞

(ιn ◦ πn) = idD. (1.10)

3. 圏R(C) において ⟨D,πj⟩ と ⟨D′, π′
j⟩ が共にこの射影列の上界ならば，

πj ◦ φ = π′
j , π′

j ◦ φ′ = πj , j = 0, 1, 2, . . .

を満たす射 φ ∈ hom(D′, D), φ′ ∈ hom(D,D′) が存在する．等式 (1.10) が成立する場合に
は，φ ◦ φ′ = idD となるように φ を選ぶことができる．

4. 射影列 ⟨Dj , prj⟩ の射影極限が存在するならば，等式 (1.10) は ⟨D,πj⟩ が射影極限となるた
めの十分条件になる．また，不等式についての簡約性を満たす射影極限が存在するならば，
等式 (1.10) は，⟨D,πj⟩ が不等式についての簡約性を満たす射影極限となるための十分条件
になる．

D′

π′
m !!C

CC
CC

CC
C D

φ′
oo

πm

��
Dm

D′ φ //

π′
j ''PP

PPP
PPP

PPP
PPP

D
πj

  @
@@

@@
@@

@

Dj

［証明］　

1. ⟨X, fj⟩ は射影列 ⟨Dj , prj⟩ への射の族であるとする．このとき，補題 2 により ιn ◦ fn は増
加列であり，C がO2 圏であるという仮定により，limn→∞(ιn ◦ fn) が存在するので，

f = lim
n→∞

(ιn ◦ fn)
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とおく．f ∈ hom(X,D) であり，

πm ◦ f = πm ◦ lim
n→∞

(ιn ◦ fn)

= lim
n→∞

(πm ◦ (ιn ◦ fn))

となる．補題 2 により n = m,m+ 1,m+ 2, . . . に対して πm ◦ (ιn ◦ fn) = fm と一定になる
ので，O2 圏の条件により

πm ◦ f = lim
n→∞

(πm ◦ (ιn ◦ fn)) = fm.

よって，⟨D,πj⟩ は射影列の上限となる．

2. ⟨X, fj⟩ として ⟨D,πj⟩ 自身を選ぶと，

πm ◦ lim
n→∞

(ιn ◦ πn) = πm = πm ◦ idD

となるが，⟨D,πj⟩ が射影極限の場合には等号についての簡約性により，

lim
n→∞

(ιn ◦ πn) = idD

であることが導かれる．

3. ⟨D,πj⟩と ⟨D′, π′
j⟩は共に，圏R(C)におけるこの射影列の上界であるとする．⟨D,πj⟩, ⟨D′, π′

j⟩
は圏 C における上限となるので，上限の定義により，

πj ◦ φ = π′
j , π′

j ◦ φ′ = πj , j = 0, 1, 2, . . .

となる φ ∈ hom(D′, D), φ′ ∈ hom(D,D′) が存在する．等式 (1.10) が成立している場合，φ

として φ = limn→∞(ιn ◦ π′
n) を選ぶと，

φ ◦ φ′ =
(
lim
n→∞

ιn ◦ π′
n

)
◦ φ′

= lim
n→∞

(
ιn ◦ (π′

n ◦ φ′)
)

= lim
n→∞

(ιn ◦ πn)

= idD.

4. 射影列の射影極限が存在する場合には，D′ として射影極限（のひとつ）を選ぶ．

π′
m ◦ (φ′ ◦ φ) = (π′

m ◦ φ′) ◦ φ
= πm ◦ φ
= π′

m = π′
m ◦ idD′
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が任意のm = 0, 1, 2, . . . に対して成り立つので，{π′
n}n=0,1,... が等号についての簡約性を持

つことにより，等式

φ′ ◦ φ = idD′

が得られる．したがって，等式 (1.10) が成立するときにはφ′, φ は同型射であり，⟨D,πj⟩ も
射影極限になる．また，⟨D′, π′

j⟩ が不等式についての簡約性を持つならば，⟨D′, π′
j⟩ と同型

な ⟨D,πj⟩ も不等式についての簡約性を持つ．

Remark. 　最後の不等式についての簡約性の証明は，同型ということの一般論から導いたが，以
下のように直接確かめることもできる；f, g ∈ hom(X,D) が πj ◦ f ⪯ πj ◦ g, j = 0, 1, 2, . . . を満
たすとする．このとき，f ′ = φ′ ◦ f, g′ = φ′ ◦ g と置くと，

π′
j ◦ f ′ = (π′

j ◦ φ′) ◦ f = πj ◦ f, π′
j ◦ g′ = (π′

j ◦ φ′) ◦ g = πj ◦ g

なので，π′
j ◦ f ′ ⪯ π′

j ◦ g′, j = 0, 1, 2, . . . であり，⟨D′, π′
j⟩ が不等号のついての簡約性を持つ

という仮定により，f ′ ⪯ g′. したがって，φ ◦ f ′ ⪯ φ ◦ g となるが，φ ◦ φ′ = idD なので，
φ ◦ f ′ = φ ◦ (φ′ ◦ f) = f, φ ◦ g′ = φ ◦ (φ′ ◦ g) = g なので，f ⪯ g.

1.3.5.3 ここまでの流れ

以上，

O2 圏 C において，レトラクト列の射影列 ⟨Dj , prj⟩ が与えられているとする．⟨D,πj⟩
は，圏R(C) におけるこの射影列の上界（のひとつ）であるとする

という設定から始まって，⟨D,πj⟩ が圏 C における射影極限となるための条件を導いた．

命題 3 の 1. で示したように，⟨D,πj⟩ が（圏 C において）上限であることは，簡単に分かる．
しかし，ここで用いている「上限」という用語は，順序集合での上限と異なり射の存在を順序

関係に見立てて定義した用語に過ぎず，一意性を保証する効果は期待できない．実際，命題 3 の
証明で見たように，D,D′ が共に上限ならば，πj ◦φ′

j = π′
j , π

′
j ◦φj = πj を満たす φ,φ′ が存在し，

π′
m ◦ (φ′ ◦ φ) = π′

m ◦ idD′ , m = 0, 1, 2, . . .

を満たし，また，

πm ◦ (φ ◦ φ′) = πm ◦ idD, m = 0, 1, 2, . . .

を満たすことも導かれる．しかし，等号についての簡約性が保証されていないので，ここから

φ′ ◦ φ = idD′ , φ ◦ φ′ = idD

へと進むことができない．R(C) の上界というだけでは，⟨D,πj⟩ が射影極限になることは期待で
きそうもなく，なんらかの条件が必要になる．命題 3 では，
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1. 射影列 ⟨Dj , prj⟩ に射影極限 ⟨D′, π′
j⟩ が存在することを仮定する．{π′

j} は等号についての簡
約性をもつので，φ′ ◦φ = idD′ が得られる．なお，圏 C がposetを対象とする（普通の）圏
ならば，射影極限は常に集合論的手法で構成することができるので，これは，圏 C について
仮定してしまっても良い条件である．

2. φ ◦ φ′ = idD は，等式 (1.10) により保証される．D は射影極限と同型になり，したがって，
射影極限（のひとつ）となる．この等式が本質的であり，単なる上限から射影極限を特徴付
ける等式となる．
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1.4 Ej = hom(Dj, Dj) のレトラクト列

1.4.1 圏O1’

1.4.1.1 pF と iF

最初に，O1 圏の条件のみを仮定して考える．O1 圏 C において，p ∈ hom(B,A) と i ∈
hom(A,B)が対象A,B の間のレトラクト対 [p, i] となっているとする；

A

id

B
poo

id

A
i

// B

p ◦ i = idA, i ◦ p ⪯ idB

レトラクト対 [p, i] に対して，

pF : g ∈ hom(B,B) 7→ p ◦ g ◦ i
iF : f ∈ hom(A,A) 7→ i ◦ f ◦ p

と定める：

A B
poo hom(A,A) hom(B,B)

pFoo

A
i

//

pF (g)

OO

B

g

OO

A

f

��

B
poo

iF (f)
��

hom(A,A)
iF // hom(B,B)

A
i

// B

この ⟨pF , iF ⟩ は，個々の f, g に対してレトラクト対としての条件を満たす．まず，

(pF ◦ iF )(f) = pF (i ◦ f ◦ p)
= p ◦ (i ◦ f ◦ p) ◦ i
= (p ◦ i) ◦ f ◦ (p ◦ i)
= idA ◦ f ◦ idA = f

(1.11)

であり，また，

(iF ◦ pF )(g) = iF (p ◦ g ◦ i)
= i ◦ (p ◦ g ◦ i) ◦ p
= (i ◦ p) ◦ g ◦ (i ◦ p)
⪯ idB ◦ g ◦ idB = g

(1.12)
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となる．

RETRACTIONの合成 A B
p1o /
i1

C
p2o /
i2

についても， A C
p1◦p2o /
i2◦i1

は C からA へのレト

ラクト対であり，g ∈ hom(C,C) に対して

(p1 ◦ p2)F (g) = (p1 ◦ p2) ◦ g ◦ (i2 ◦ i1)
= p1 ◦ (p2 ◦ g ◦ i2) ◦ i1
= p1 ◦ pF2 (g) ◦ i1
= pF1 (p

F
2 (g)).

となる．したがって，(p1 ◦ p2)F = pF1 ◦ pF2 .

こうなると p 7→ pF は函手であると言いたくなるのだが，ここまでの設定では，hom(A,A)が圏C

の対象になるとは要求していない．また，各 g についての不等式 (1.12)から，iF ◦pF ⪯ idhom(B,B)

という結論を導くことができるわけではない．O1 圏では，hom(A,B) が順序集合であることは
仮定されているのだが，その順序が「各点的な順序」であると，つまり，

f ⪯ g ⇐⇒ f(a) ⪯ g(a) ( ∀a ∈ A )

と定められていると仮定されているわけではない．

これから，レトラクト列

D0 D1
pr0oo D2

pr1oo · · · · · ·pr2oo Dn−1
prn−2oo Dn

prn−1oo Dn+1
prnoo · · · · · ·

prn+1oo

D0

id

in1

// D1

id

in2

// D2

id

in3

// · · · · · ·
inn−1

// Dn−1

id

inn

// Dn

id

inn+1

// Dn+1

id

inn+2

// · · · · · ·

を基にして，hom(Dj , Dj) についてのレトラクト列を作りたい．そのためには，O1 圏に課した
条件では不足なので，まず，O1 に条件を補ったO1’ 圏を定める．その後で hom(Dj , Dj) の射影
極限を考えることになるが，その段階では，O1’ とO2 の両方の条件を要求したEA 圏で議論す
ることになる．
O1 圏では，hom(A,B) は単なる順序集合であり（それがO1 の対象だとは主張していない），

例えば，g ∈ hom(B,C) の定める写像

g∗ : f ∈ hom(A,B) 7→ g ◦ f ∈ hom(A,C)

は，順序集合 hom(A,B) から順序集合 hom(A,C) への単調な写像に過ぎない（射として認定し
ているわけではない）．一方，これから設定するO1’ 圏では，hom(A,B) の形の順序集合を対象
として考え，g∗, g

∗ を対象から対象への射として捉えることになる．
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1.4.1.2 定義

次の条件を満たす圏 C を考える；
任意の対象A,B に対して，hom(A,B) は順序関係⪯ が定められた順序集合であり，以下の条

件を満たす．

1. （O1 圏の条件）

(a) f1, f2 ∈ hom(A,B), g ∈ hom(B,C) に対して，f1 ⪯ f2 =⇒ g ◦ f1 ⪯ g ◦ f2.

(b) g ∈ hom(A,B), f1, f2 ∈ hom(B,C) に対して，f1 ⪯ f2 =⇒ f1 ◦ g ⪯ f2 ◦ g.

2. 任意の対象A,B に対して，hom(A,B) は C の対象のひとつとなる．

3. 任意の対象A,B,A′, B′ に対して，hom(A,B) から hom(A′, B′) への射は，集合 hom(A,B)

から集合 hom(A′, A′) への写像 F : hom(A,B) −→ hom(A′, B′) であり，

F1(f) ⪯ F2(f) ( ∀f ∈ hom(A,B) ) =⇒ F1 ⪯ F2.

4. (a) g ∈ hom(B,C) に対して，g∗ : f ∈ hom(A,B) 7→ g ◦ f ∈ hom(A,C) は射

(b) g ∈ hom(A,B) に対して，g∗ : f ∈ hom(B,C) 7→ f ◦ g ∈ hom(A,C) は射

このような圏 C をO1’ 圏ということにする．

Remark. 　 O1’ 圏も抽象的な圏なので，射（は単なる矢印のようなものであり，それ）が写像
を表しているとは限らない．したがって，A から B への射の集合 hom(A,B) がその圏の対象と
なることを要求しただけでは，この形の対象の間の射が常に写像を表しているとは，言い切れな
い．そのため，これが（集合から集合への）写像であることを，3. で明示的に宣言し，また，順
序が「各点的な順序」となっていることを要求している．

Remark. 　 O1 圏を定める最初の段階から，対象は集合であり写像の順序は各点での順序で定
められているという標準的設定にしておけば，このような宣言は不要であった．だがここでは，ど
の段階でどの仮定が必要になるかを明確にするために，条件が複雑になる代償を払ってでも，必
要な条件のみを要求することにした．

O1’ 圏 C では，次の補題が成立する．

補題 3. [pF , iF ] はレトラクト対.

［証明］　

1. まず，hom(A,A), hom(B,B) はO1’ 圏の条件 1. により圏 C の対象.
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2. pF (g) は

pF (g) = p ◦ g ◦ i = (p∗ ◦ i∗)(g)

と表され，O1’ 圏の条件 4. により p∗, i
∗ は射なので，pF は射の合成として射．同じく，iF

も射．したがって，

(a) pF は　 hom(B,B) から hom(A,A) への射．

(b) iF は　 hom(A,A) から hom(B,B) への射．

3. (1.11) 式，(1.12) 式により，

(pF ◦ iF )(f) = f

(iF ◦ pF )(g) ⪯ g
(1.13)

なので，O1’ 圏の条件 3. により，

pF ◦ iF = idhom(A,A), iF ◦ pF ⪯ idhom(B,B).

よって，⟨pF , iF ⟩ はレトラクト対．

O1 圏 C に対してR(C) を考えたのと同様に，O1’ 圏 C に対しても圏R(C) を考えることができ
る．これから，文脈から明らかな場合，これらの圏を特に区別せずに記号R で表すことにする．

以上の結果を圏R の言葉で述べると（３通りの「矢印」の表記を用いてみる），射

A B_?
po , A B_?

p/io , A B
po /
i

から射

hom(A,A) hom(B,B)_?

pFo , hom(A,A) hom(B,B)_?

pF /iFo , hom(A,A) hom(B,B)
pFo /
iF

が定められる，ということになる．

圏R の対象 A に圏R の対象 hom(A,A) を対応させ，圏R の射 p （したがって，圏 C での
RETRACTION）に圏R の射 pF （これも，圏 C でのRETRACTION）を対応させる写像は，圏R か
ら圏R への函手となる．これを踏まえて，この函手を記号DF で表すことにする（hom(D,D) を
DF と表し，これを函手の記号として流用している）．

Remark. 　写像 pF , iF は，hom(A,A), hom(B,B) のmonoid としての演算を保たない：
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1. (a) idB については，

pF (idB) = p ◦ idB ◦ i
= p ◦ i = idA

となるのだが，

(b) f, g ∈ hom(B,B) に対しての f ◦ g は，

pF (f) ◦ pF (g) = (p ◦ f ◦ i) ◦ (p ◦ g ◦ i)
= p ◦ (f ◦ (i ◦ p) ◦ g) ◦ i
⪯ p ◦ f ◦ idB ◦ g ◦ i
= pF (f ◦ g)

となり，pF での準同形とならない．

(a) f, g ∈ hom(A,A) に対しての f ◦ g は，

iF (f) ◦ iF (g) = (i ◦ f ◦ p) ◦ (i ◦ g ◦ p)
= i ◦ f ◦ (p ◦ i) ◦ g ◦ p
= i ◦ f ◦ idA ◦ g ◦ p
= iF (f ◦ g)

となるのだが，

(b) idA については，

iF (idA) = i ◦ idA ◦ p = i ◦ p
⪯ idB

であり，iF (idA) = idB とはならない．

1.4.1.3 レトラクト列 (Ej , pr
F
j , in

F
j ) の構成

レトラクト列 (Dj , prj , inj) が与えられているとする．En = hom(Dn, Dn) と置く．

このレトラクト列の各レトラクト対

Dn

id

Dn+1
prnoo

id

Dn inn+1

// Dn+1
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からレトラクト対 ⟨prFn , inF
n+1⟩

En

id

En+1
prFnoo

id

En
inF

n+1

// En+1

を作る操作を各 n = 0, 1, 2, . . . に対して行うことにより，レトラクト列 (Dj , prj , inj)

D0 D1
pr0oo D2

pr1oo · · · · · ·pr2oo Dn−1
prn−2oo Dn

prn−1oo Dn+1
prnoo · · · · · ·

prn+1oo

D0

id

in1

// D1

id

in2

// D2

id

in3

// · · · · · ·
inn−1

// Dn−1

id

inn

// Dn

id

inn+1

// Dn+1

id

inn+2

// · · · · · ·

から レトラクト列 (Ej , pr
F
j , in

F
j )

E0 E1
prF0oo E2

prF1oo · · · · · ·
prF2oo En−1

prFn−2oo En

prFn−1oo En+1
prFnoo · · · · · ·

prFn+1oo

E0

id

inF
1

// E1

id

inF
2

// E2

id

inF
3

// · · · · · ·
inF

n−1

// En−1

id

inF
n

// Dn

id

inF
n+1

// En+1

id

inF
n+2

// · · · · · ·

を構成することができる．

Remark. 　圏R の言葉で表現すると，

射影列

D0 D1_?

pr0o · · · · · ·_?

pr1o Dn_?

prn−1o Dn+1_?

prno · · · · · ·_?

prn+1o

に函手DF を作用させることにより，射影列

E0 E1_?

prF0o · · · · · ·_?

prF1o En_?

prFn−1o En+1_?

prFno · · · · · ·_?

prFn+1o

を得る

と言うことになる（記号 En は使わずに DF
n = hom(Dn, Dn) とした方が，函手らしい見かけに

なる）．

1.4.1.4 上界 (E, πF
j , ι

F
j ) の構成

(D,πj , ιj) が レトラクト列 (Dj , prj , inj) の（ひとつの）上界であるとする．なお，添え字を
上限に書き分けることは止めて，ιj は ιj と表す．このとき，レトラクト列 (Ej , pr

F
j , in

F
j ) の上界

(E, πF
j , ι

F
j ) を
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1. E = hom(D,D)

2. ιFn : fn ∈ hom(Dn, Dn)
� // ιn ◦ fn ◦ πn ∈ hom(D,D)

3. πF
n : f ∈ hom(D,D) � // πn ◦ f ◦ ιn ∈ hom(Dn, Dn)

として定めると，(E, πF
j , ι

F
j ) は レトラクト列 (E, πF

j , ι
F
j ) の上界となる．射の族 {πF

n }, {ιFn } につ
いての可換性

prn ◦ πF
n+1 = πF

n

inn+1 ◦ ιFn = ιFn+1

を確認する必要があるが，これは図式を追跡するだけで簡単に確認できる：

D

πn

��
πn+1

��-
--
--
--
--
--
--
--
--
--
--
--

D

f

33ffffffffffffffffffffffffffffff

Dn

Dn

ιn

OO

fn

33

inn+1 ""F
FF

FF
FF

F Dn+1

prn

bbFFFFFFFF

Dn+1

fn+1

33

ιn+1

VV-----------------------

この図式の中で，まず，図式

D

Dn

ιn

OO

inn+1

// Dn+1

ιn+1

ccFFFFFFFFF

D

πn

��

πn+1

##F
FF

FF
FF

FF

Dn Dn+1prn
oo

は，レトラクト列の上界という仮定により可換．
また，fn, fn+1 の定義により

D
f // D

πn

��
Dn

ιn

OO

fn
// Dn

D
f // D

πn+1

��
Dn+1

ιn+1

OO

fn+1

// Dn+1

も可換．
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したがって，

prn ◦ fn+1 ◦ inn+1 = prn ◦ (πn+1 ◦ f ◦ ιn+1) ◦ inn+1

= (prn ◦ πn+1) ◦ f ◦ (ιn+1 ◦ inn+1)

= πn ◦ f ◦ ιn
= fn

であり，

prFn ◦ πF
n+1 = πF

n , n = 0, 1, 2, . . . (1.14)

同様に，図式

D

πn

��
πn+1

��-
--
--
--
--
--
--
--
--
--
--
--

f
ssD

Dn

fn

ssggggg
ggggg

ggggg
ggggg

ggggg
gggg

Dn

ιn

OO

inn+1 ""F
FF

FF
FF

F Dn+1

fn+1

ssggggg
ggggg

ggggg
ggggg

ggggg
gg

prn

bbFFFFFFFF

Dn+1

ιn+1

VV-----------------------

を考えると，

ιFn (fn) = ιn ◦ fn ◦ πn
= (ιn+1 ◦ inn+1) ◦ fn ◦ (prn ◦ πn+1)

= ιn+1 ◦ (inn+1 ◦ fn ◦ prn) ◦ πn+1

= ιn+1 ◦ (inF
n+1(fn)) ◦ πn+1

= ιFn+1(in
F
n+1(fn)).

となるので，

ιFn = ιFn+1 ◦ inF
n+1.

Remark. 　つまり，函手DF はレトラクト列 (Dj , prj/inj) からレトラクト列 (DF
j , pr

F
j /in

F
j ) を

作るだけでなく，(Dj , prj/inj) への射の族 (D,πj/ιj) から射の族 (DF , πF
j /ι

F
j ) を作るということ．
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1.4.2 圏EA

次の条件を満たす圏 C をEA 圏と言うことにする．条件 1. はO1 圏の条件であり，条件 2. か
ら 4. まではO1’ 圏として追加された条件，条件 5. はO2 圏として追加された条件なので，条件
6. が新たに追加された条件となる．

1. (a) f1, f2 ∈ hom(A,B), g ∈ hom(B,C) に対して，f1 ⪯ f2 =⇒ g ◦ f1 ⪯ g ◦ f2.

(b) g ∈ hom(A,B), f1, f2 ∈ hom(B,C) に対して，f1 ⪯ f2 =⇒ f1 ◦ g ⪯ f2 ◦ g.

2. 任意の対象A,B に対して，hom(A,B) は C の対象のひとつとなる．

3. 任意の対象A,B,A′, B′ に対して，hom(A,B) から hom(A′, B′) への射は，集合 hom(A,B)

から集合 hom(A′, A′) への写像 F : hom(A,B) −→ hom(A′, B′) であり，

F1(f) ⪯ F2(f) ( ∀f ∈ hom(A,B) ) =⇒ F1 ⪯ F2.

4. (a) g ∈ hom(B,C) に対して，g∗ : f ∈ hom(A,B) 7→ g ◦ f ∈ hom(A,C) は射

(b) g ∈ hom(A,B) に対して，g∗ : f ∈ hom(B,C) 7→ f ◦ g ∈ hom(A,C) は射

5. 対象A,B と，単調列 f1, f2, . . . ∈ hom(A,B) に対して，hom(A,B) の要素 lim
n→∞

fn を与え

る操作 lim
n→∞

が定められていて，以下の条件を満たす：

(a) {fn}n∈N が単調列ならば

i. lim
n→∞

(g ◦ fn) = g ◦ lim
n→∞

fn.

ii. lim
n→∞

(fn ◦ g) = ( lim
n→∞

fn) ◦ g.

(b) hom(A,B) の単調列 {fn}n∈N, {gn}n∈N に対して，

fn ⪯ gn (∀n ∈ N ) =⇒ lim
n→∞

fn ⪯ lim
n→∞

gn.

(c) 単調列 {fn}n∈N がある番号から先で一定ならば，つまり，

fn = f, n = n0, n0 + 1, n0 + 2, . . .

となる n0 ∈ N と f が存在するならば，

lim
n→∞

fn = f.

6. （追加する条件）

(a) 添え字m,n に依存して決まる fmn ∈ hom(A,B) が

i. 任意のm ∈ N に対して，fm0, fm1, fm2, . . . は単調列

ii. 任意の n ∈ N に対して，f0n, f1n, f2n, . . . は単調列
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ならば，

lim
m→∞

fmm = lim
m→∞

(
lim
n→∞

fmn

)
.

(b) E1 = hom(A,B), E2 = hom(C,D) とする．F0, F1, F2, . . . ∈ hom(E1, E2) が単調列な
らば，任意の f ∈ E に対して(

lim
n→∞

Fn

)
(f) = lim

n→∞
Fn(f).

1.4.3 基本定理

次の定理は，Dn のレトラクト列から En = hom(Dn, Dn) の射影極限を作る基本的な定理で
ある．

定理 1. EA 圏 C においてレトラクト列 (Dj , prj , inj) が与えられているとする．また．射影列

D0 · · ·pr0oo Dn
prn−1oo Dn+1

prnoo · · ·
prn+1oo の射影極限D が与えられているとする．このとき，

En = hom(Dn, Dn), E = hom(D,D) と置くと，E は，射影列 E0 E1
prF0oo E2

prF1oo · · · · · ·
prF2oo

の射影極限となる．

［証明］　D は射影極限なので，レトラクト列 (Dj , prj , inj) のR(C) における上界 (D,πj , ιj) と
なり（命題 2），命題 3 により，

lim
n→∞

(ιn ◦ πn) = idD

である．
lim

m→∞
fmm = lim

m→∞

(
lim
n→∞

(fmn)
)
であること（圏EAでの条件6の (a)）を用いて， lim

m→∞
(ιFm ◦ πF

m)

を計算する；
任意の f ∈ E = hom(D,D) に対して，

(ιFm ◦ πF
m)(f) = ιm ◦ (πm ◦ f ◦ ιm) ◦ πm

= (ιm ◦ πm) ◦ f ◦ (ιm ◦ πm)

であり，補題 2 により ιn ◦ πn は n について単調増加なので，(
lim

m→∞
(ιFm ◦ πF

m)
)
(f) = lim

m→∞

(
(ιFm ◦ πF

m)(f)
)
（⇐圏EA の条件 6 の (b)）

= lim
m→∞

((ιm ◦ πm) ◦ f ◦ (ιm ◦ πm))
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一方，

f = f ◦ idD
= f ◦ lim

n→∞
(ιn ◦ πn)

= lim
n→∞

(f ◦ (ιn ◦ πn))

= idD ◦ lim
n→∞

(f ◦ (ιn ◦ πn))

=
(

lim
m→∞

(ιm ◦ πm)
)
◦
(
lim
n→∞

(f ◦ (ιn ◦ πn))
)

= lim
m→∞

(
(ιm ◦ πm) ◦ lim

n→∞
(f ◦ (ιn ◦ πn))

)
= lim

m→∞
lim
n→∞

((ιm ◦ πm) ◦ f ◦ (ιn ◦ πn)) （ 圏EA の条件 6 の (a) により ↓）

= lim
m→∞

((ιm ◦ πm) ◦ f ◦ (ιm ◦ πm))

なので，(
lim

m→∞
(ιFm ◦ πF

m)
)
(f) = f.

f ∈ E は任意なので， lim
n→∞

(ιFn ◦ πF
n ) = idE . したがって，最後にもう一度補題 2 を用いることに

より，E が射影極限であることがわかる．

圏R に言い換えると，� �
圏R において函手DF は，レトラクト列 (Dj , prj , ιj) の射影極限 (D,πj , ιj) を，
レトラクト列 (DF

j , pr
F
j , in

R, j) の射影極限 (DF , πF
j , ι

F
j ) に写す� �

ということであり，最初に射影極限D を求めてから hom(D,D) を作ると，それは，各Dn に対
して hom(Dn, Dn) を作ってから射影極限を作ったものとなっていることを示している．つまり，
射影極限をとる操作と函手DF : A 7→ hom(A,A) は可換．
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第2章 Models

2.1 D.Scott のD∞

EA 圏 C において，hom(D∞, D∞) とD∞ が同型になるような対象D∞ を構成する．

2.1.0.1 レトラクト対の延長

圏EA において，A は任意の対象, B = hom(A,A) であり †，A とB の間のレトラクト対 ⟨p, i⟩
が与えられているとする：

A

id

B
poo

id

A
i

// B

B = hom(A,A), p ◦ i = idA, i ◦ p ⪯ idB

Remark.† B = hom(A,A) と選んでいることが，これからの構成の核心となる．

B = hom(A,A) としたのだが，さらに，C = hom(B,B) と置く．

1. f ∈ B = hom(A,A) に対して，

iF (f) = i ◦ f ◦ p

と置くと，iF (f) ∈ hom(B,B) = C であり，iF はB から C = hom(B,B) への射．

A

f

��

B
poo

iF (f)
��

A
i

// B
iF

// C

2. g ∈ C = hom(B,B) に対して，

pF (g) = p ◦ g ◦ i

39



と置くと，pF (g) ∈ hom(A,A) = B であり，pF はC = hom(B,B) からB = hom(A,A) へ
の射．

A B
poo C

pFoo

A
i

//

pF (g)

OO

B

g

OO

3. pF ◦ iF = idB, iF ◦ pF ⪯ idC であり，(pF , iF ) はレトラクト対になる.

A

id

B
poo

id

C
pFoo

id

A
i

// B
iF

// C

以上により，与えられたレトラクト対

A

id

B
poo

id

A
i

// B

B = hom(A,A), p ◦ i = idA, i ◦ p ⪯ idB

の右側にレトラクト対 (pF , iF ) を付け加えて延長する操作を得たことになる．

A

id

B
poo

id

C
pFoo

id

A
i

// B
iF

// C

C = hom(B,B), pF ◦ iF = idB, i
F ◦ pF ⪯ idC

2.1.0.2 構成の前提

D0 は任意の対象，D1 = hom(D0, D0) として，レトラクト対 ⟨pr0, in1⟩ が与えられていると
する．

D0

id

D1
pr0oo

id

D0 in1

// D1

pr0 ◦ in1 = id0

in1 ◦ pr0 ⪯ id1

これを前提として，Dn+1 = hom(Dn, Dn)となるレトラクト列 (Dj , prj , inj)を再帰的に構成する：

40



2.1.0.3 再帰的構成

Dn まで構成されているとする．つまり，図式

D0

id

D1
pr0oo

id

· · · · · ·pr1oo Dn−2
prn−3oo

id

Dn−1
prn−2oo

id

Dn
prn−1oo

id

D0 in1

// D1 in2

// · · · · · ·
inn−2

// Dn−2 inn−1

// Dn−1 inn

// Dn

の対象と射が定められていて，j = 0, 1, 2, . . . , n− 1 に対して

Dj+1 = hom(Dj , Dj), prj ◦ inj+1 = idj , inj+1 ◦ prj ⪯ idj+1

となっているとする．
このとき，図式の最後のレトラクト対

Dn−1

id

Dn
prn−1oo

id

Dn−1 inn

// Dn

を右に延長する操作，つまり，Dn+1 = hom(Dn, Dn),

prn : g ∈ Dn+1 7→ prn−1 ◦ g ◦ inn ∈ Dn

inn+1 : f ∈ Dn 7→ inn ◦ f ◦ prn−1 ∈ Dn+1

と定め図式

Dn−1

id

Dn
prn−1oo

id

Dn+1
prnoo

id

Dn−1 inn

// Dn inn+1

// Dn+1

を得る操作を再帰的に行うことにより，条件Dj+1 = hom(Dj , Dj) を満たすレトラクト列

D0

id

D1
pr0oo

id

· · · · · ·pr1oo Dn−2
prn−3oo

id

Dn−1
prn−2oo

id

Dn
prn−1oo

id

· · ·prnoo

D0 in1

// D1 in2

// · · · · · ·
inn−2

// Dn−2 inn−1

// Dn−1 inn

// Dn inn+1

// · · ·

を作ることができる．

圏 C において，この構成により作られた射影列 ({Dj}, {prj}) の射影極限が存在するならば，そ
れをD∞ と表すことにする．

41



2.1.0.4 定理

最初に，射影列の定義を少しだけ広く解釈しておく（添え字の付け替えとして解釈すれば済む
のだが，記述は煩雑になる）；一般に，射影列

D0 D1
p0o o D1

p1oo · · ·p2oo

への射の族 f0, f1, f2, . . . が与えられている場合，そこから f0 を捨てるだけで，

D1 D1
p1oo · · ·p2oo

への射の族 f1, f2, . . . を作ることができる．逆に，f1, f2, . . . に f0 = p0 ◦ f1 を付け加えるだけ
で，D0 から始まる射影列への射の族を作ることができる．また，D1 から始まる射影列の上界D,

π1, π2, . . . は π0 = p0 ◦ π1 と定めることによりD0 から始まる射影列の上界になるし，また，一
意性や不等号についての簡約性についても同様．したがって，射影列の上界，上限，射影極限は，
D0 から始まると射影列についても，D0 を捨ててD1 から始まるとした射影列についても同じこ
とである．
これから，D0 を捨ててD1 から始まるとした場合についても，D0 から始まる場合と特に区別

せずに，射影極限などの用語を用いることにする．

定理 2. EA圏Cにおいて，D0 は任意の対象，D1 = hom(D0, D0)として，レトラクト対 ⟨pr0, in1⟩
が与えられているとする．これを延長して，条件Dj+1 = hom(Dj , Dj) を満たすレトラクト列

D0

id

D1
pr0oo

id

· · · · · ·pr1oo Dn−2
prn−3oo

id

Dn−1
prn−2oo

id

Dn
prn−1oo

id

· · ·prnoo

D0 in1

// D1 in2

// · · · · · ·
inn−2

// Dn−2 inn−1

// Dn−1 inn

// Dn inn+1

// · · ·

を作る．射影列 ({Dj}, {prj}) の射影極限D∞が存在するならば，D∞ と hom(D∞, D∞) は同型．

［証明］　

1. 定理 1 により，hom(D∞, D∞) は射影列 ({hom(Dj , Dj)}, {prFj }) の射影極限のひとつと
なる．

2. D∞ は射影列

D1 D2
pr1oo D3

pr2oo · · ·pr3oo

の射影極限でもあり，

3. hom(Dj , Dj) = Dj+1, prFj = prj+1. なので，

4. D∞ は射影列 ({hom(Dj , Dj)}, {prFj }) の射影極限．

5. 以上により，hom(D∞, D∞) とD∞ は同型．
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2.2 Pωモデル

2.2.1 順序集合としての P(S)

2.2.1.1 P(S) の部分集合

集合 S のべき集合（すべての部分集合の集合）を P(S), S のすべての有限部分集合（空集合も
含む）の作る集合を P0(S) と表すことにする；

P(S) = {x | x ⊂ S },
P0(S) = {x ∈ P(S) | xは有限集合 }.

S の部分集合からなる集合A ⊂ P(S) に対して，
∪
A は，A に属する部分集合 a すべての和集

合を表す；∪
A = {s ∈ S | ∃a ∈ A : s ∈ a }. (2.1)

Remark. 　 ∃a ∈ A : · · · · · · は，

・・・・・・となる a ∈ A が存在する, a ∈ A が存在して条件・・・・・・を満たす

ということを表す．なるべくなら，このような表記は避けて普通の文で表現したいところだが，こ
れから先，なにかと紛らわしい状況が多くなるので，このような記号を用意しておく．

例 1. S = {1, 2, 3, 4, 5, 6}, A = {{3, 6}, {2, 4, 6}} とする．

1. S の部分集合は（空集合と全体集合も含めて）26 個あるので，

2. P(S) は 64 個要素をもつ集合．

3. P(S) の部分集合A は 2 個の要素を持つ．

4.
∪
A = {3, 6} ∪ {2, 4, 6} = {2, 3, 4, 6}．

A が，添え字集合を J とする集合族 {Aj}j∈J として与えられているときは，∪
A =

∪
j∈J

aj (2.2)

と表すこともできる．例えば，上の例で a1 = {3, 6}, a2 = {2, 4, 6}, J = {1, 2} と置くと，∪
j∈J

aj = a1 ∪ a2 = {3, 6} ∪ {2, 4, 6} = {2, 3, 4, 6}.
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この発想をA が単なる部分集合のときにも当てはめて，∪
A =

∪
a∈A

a (2.3)

と表しても良い．

(2.2) 式，(2.3) 式については ⇒ Appendix 4.1.0.1．

2.2.1.2 poset (P(S),⊏)

任意の集合 S に対して，P(S) の順序関係⪯ を包含関係⊂ により定める；

x1 ⪯ x2 ⇐⇒ x1 ⊂ x2, x1, x2 ∈ P(S).

記号⊂ の代わりに，記号⊏ を用いても良いことにする．

Remark. 　 P(S) の順序関係は，集合としての S の性質のみから決まり，また， posetとして
要求されている以上の集合論的性質を豊富に持つので，順序関係一般を表すために用いてきた記
号⪯ とは違う記号を用いたい．ここでは記号⊏ を，

包含関係を順序関係として見ていること

を明示したい場合に用いることにする．したがって，a ⊂ b と a ⊏ b は，数学的には同じ．
一般の順序関係を記号 ⊏ で表すことはしない．あくまでも，⊏ は数学的には ⊂ と同じ記号と

して扱う．

(P(S), ⊏) において，A ⊂ P(S) に対しての上限 supA は常に存在し，A に属するすべての a の
和集合となる；

supA =
∪

A. (2.4)

したがって，空でない任意の集合 S に対して，(P(S), ⊏) は ∅ を最小元とする完備束となる（の
で，dcpo となる）．

一応，(2.4) 式の証明を書いてみる；

1. 各 a ∈ A に対して，a ⊏
∪

A であり（
∪
A はA の上界であり），

2. b ∈ P(S) が任意の a ∈ A に対して a ⊏ b となっているならば（b が A の上界ならば），∪
A ⊏ b （したがって，

∪
A は最小の上界）．

Remark. 　 (2.1)式の形で “∃” を用いた証明は ⇒ Appendix 4.1.0.2. さすがに，これはやり
過ぎ．
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2.2.1.3 コンパクト

(P(S),⊏) は完備束なのだが，P0(S) との関係で，有向集合という概念は，やはり本質的な役割
を果たす；

補題 4. S を空でない集合としてX = P(S), X0 = P0(S) と置く．A はposet (X,⊏) の有向部分
集合であるとする．このとき，任意の x0 ∈ X0 に対して，

x0 ⊏
∪

A =⇒ ∃a ∈ A : x0 ⊏ a .

［証明］　 x0 ∈ P0(S), x0 ⊂
∪
A とする．

1. x0 = {s1, s2, · · · , sn} と表しておくと，

2. 各 sj に対して，sj ∈ x0 ⊂
∪
A なので，sj ∈ a となる a ∈ A が存在する．そのような a を

ひとつ選び aj と表しておく；したがって， sj ∈ aj , j = 1, 2, . . . , n.

3. A は有向なので，これらの a1, a2, . . . , an に対して aj ⊏ a, j = 1, 2, . . . , n となる a ∈ A が
存在し，

4. sj ∈ a, j = 1, 2, . . . , n となるので，x0 ⊏ a.

Remark. 　 3. の部分の証明は，

1. aj ⊂ a′, j = 1, 2, . . . , k となる a′ ∈ A が存在すると仮定（帰納法の仮定）．

2. A は有向なので，a′ と ak+1 に対して a′ ⊂ a′′, ak+1 ⊂ a′′ となる a′′ ∈ A が存在し，

3. aj ⊂ a′′, j = 1, 2, . . . , k + 1.

という形の帰納法を用いれば良い．ただし，これは有向集合の基本的な性質であり，「有限個の
a1, . . . , ak ∈ A に対して aj ⪯ a となる a ∈ A が存在する」を有向集合の定義としておいても良い．

一般に，X は空でない集合，(X,⪯) はposetとして，x0 ∈ X がコンパクト (compact) である
ことを，

A が X の有向部分集合であって x0 ⪯ supA となっているならば，x0 ⪯ a となる
a ∈ A が存在する

と定義する．

補題 4 は，

(P(S),⊏) において，S の有限部分集合はコンパクト

と言い換えることができる．

コンパクトという用語については，⇒ Appendix 4.2.0.3
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2.2.2 写像

2.2.2.1 値 h(a) と 像 h ⟨a⟩，あるいは，値H(a)

空でない２つの集合 U, V が与えられているとする．

これは典型的な「集合と写像」の演習問題だが，h : U −→ V , a, a′ ⊂ U に対して，

1. a ⊂ a′ =⇒ h(a) ⊂ h(a′).

2. h(a ∪ a′) = h(a) ∪ h(a′)

となる（ただし，h(a ∩ a′) = h(a) ∩ h(a′) が成立するとは限らない）．

２つの部分集合 a, a′ ∈ P(U) に限らず（つまり，２個の部分集合から成る集合 {a, a′} ⊂ P(U)

に限らず，任意個の）部分集合の集合A ⊂ P(U) に対しても，

h
(∪

A
)
=
∪
a∈A

h(a) (2.5)

となる．証明は，

1. 任意の a ∈ A に対して a ⊂
∪
A なので，h(a) ⊂ h (

∪
A) であり，

∪
a∈A h(a) ⊂ h (

∪
A).

2. v ∈ h (
∪
A) とすると，

(a) v = h(u) となる u ∈
∪
A が存在する．

(b) この u に対して u ∈ a となる a ∈ A が存在し，この a に対して v ∈ h(a) となり，

(c) v ∈
∪

a∈A h(a)

したがって，h (
∪

A) ⊂
∪

a∈A h(a).

Remark. 　 (2.5)式は，

h

(∪
a∈A

a

)
=
∪
a∈A

h(a) (2.6)

と書くこともできる（この方が分かりやすい）．

h : U −→ V により，U の部分集合 a（言い換えると，a ∈ P(U)）に対して V の部分集合 h(a)

（言い換えると h(a) ∈ P(V )）を対応される写像H が決まる；

H : P(U) −→ P(V ), H : a ∈ P(U) 7→ h(a) ∈ P(V ).
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Remark. 　 この定義により，h(a) = H(a) ( ∀a ∈ P(U) ) となるが，h は U から V への写像で
あり，H は P(U) から P(V ) への写像なので，異なる記号 h,H を用いている．すべての a で一致
しているのだから同じ記号を使うべき，という気持ちもわかる．しかし，h(a) は a の像であって
h による値ではない．

Remark. 　「どこからどこへの関数なのか」を重視する現代数学の感性から，「引数に対して
の値を計算する」という感性に戻るならば，h と別の記号H は使わない方が自然．P(U) の要素が
引数と言わずに，U の部分集合が引数（でありその像を計算する）と言えば良いだけのこと．必
要ならば，最後に「現代数学での写像」に言い換えれば良い・・・・・・ただし，混乱なく切り抜けら
れる場合には，だが．

値なのか像なのか，混乱する場合も在ることを前提として，h(a) が写像 h : U −→ V による
a ⊂ U の像であることを明示したい場合には，記号を少しだけ変えて

f ⟨a⟩

と表すことにしておく．

(2.6) 式を書き直すと，

h

⟨∪
a∈A

a

⟩
=
∪
a∈A

h ⟨a⟩ . (2.7)

記号を少しだけ変えた影響も，この式では目立ちすぎで，しかも見栄えが悪いのだが，混乱す
るよりはまし．
像の記号については ⇒ Appendix 4.2.0.2.

2.2.2.2 各点の順序

X,V を空でない集合として，f1, f2 ∈ Map(X,P(V )) に対して，

f1 ⪯ f2 ⇐⇒ f1(x) ⊏ f2(x) ( ∀x ∈ X )

と定め，これをMap(X,P(V )) の各点の順序と言うことにする．

この順序は，集合としてのX,V のみから決まるので（特にX は「すべての x に対して」とい
う領域を指定しているに過ぎない），f1 ⪯ f2 も，この関係が集合としてのX,V のみから決まる
ことを考慮して，f1 ⊏ f2 と書くことにする．
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命題 4. U, V は空でない集合とする．任意の写像 h ∈ Map(U, V ) に対して，

H : P(U) −→ P(V ), H(a) = h ⟨a⟩

は連続写像．

［証明］　任意の有向部分集合A ⊂ P(U) に対して，

• (P(U),⊏) でのA ⊂ P(U) の上限 supA は
∪
A であり，

• (P(V ),⊏) でのH ⟨A⟩ の上限は
∪

a∈AH(a) =
∪

a∈A h ⟨a⟩

なので，(2.7)式はH が連続であることを保証している；

H(supA) = H

(∪
a∈A

a

)
（ H の定義により ↓）

= h

⟨∪
a∈A

a

⟩
（ (2.7) 式により ↓）

=
∪
a∈A

h ⟨a⟩ = supH(A).

Remark. 　この証明に現れる記号を整理しておくと，

1. h は U から V への写像．h ⟨a⟩ は a ⊂ U の像； h ⟨a⟩ = {h(u) | u ∈ a }．

2. H は P(U) から P(V ) への写像．H(a) は a ∈ P(U) の値．H(a) = h ⟨a⟩.

3. H ⟨A⟩ は，A ⊂ P(U) の像； H ⟨A⟩ = {H(a) | a ∈ A }.

さすがに，h とH を同じ記号で済ますと，混乱しそう．

Remark. 　連続写像の定義

dcpo X から dcpo Y への写像 f は，X の任意の有向部分集合A に対して

f(supA) = sup
a∈A

f(a)

となるとき，連続写像

は変更しない．P(U), P(V ) は完備束なので，有向部分集合という条件を避けることもできるが，
一般論との折り合いが悪くなるだけでメリットは少ない．

h : U −→ V から定まる写像H(a) = h ⟨a⟩ を，P(h) と表すことにする；

P(h) : P(U) −→ P(V ), (P(h))(a) = h ⟨a⟩ .
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Remark. 　 P は，集合の圏から dcpo の圏への函手となる．

2.2.3 直積X0 × T のべき集合

X0 と T を空でない集合として，積集合X0 × T を考える．

2.2.3.1 記号

a ∈ X0 と b ∈ P(T ) に対して，

⟨a|b = {⟨a, t⟩ | t ∈ b }

と定める（⇒ Appendix 4.1.0.4）．

a ∈ X0 に対して，a-slit を，“X0-座標が aのスリット”として定める；

a-slit = {⟨a, t⟩ | t ∈ T }

⟨a| は，T から a-slit への「平行移動」（というイメージ）であり，P(T ) から P(a-slit) への順
序同型（順序，この場合は包含関係，を保つ全単射）となる．

したがって，B ⊂ P(t) に対して，

⟨a|
∪
b∈B

b =
∪
b∈B
⟨a|b (2.8)

となる．

Remark. 　 また，⟨a|b を

T から a-slit への写像 t 7→ ⟨a, t⟩ による像

と考えれば，つまり，⟨a, t⟩ を ⟨a|t と表しても良いことにして関数 ⟨a| : t 7→ ⟨a|t を定めていると
考えれば，これは，h とH で同じ記号を用いている場合であり，等式 (2.8) は等式 (2.7) に帰着
する．
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2.2.3.2 func(c) と graph(f)

1. c ⊂ X0 × T を固定しておく．a ∈ X0 に対して，

X0 × T の部分集合 c を a-slit で観察した “T -座標”

を，scanc(a) と表すことにする；

scanc(a)
def
= {t ∈ T | ⟨a, t⟩ ∈ c }.

(a) X0 から P(T ) への写像 scanc を，

scanc : a ∈ X0
� // scanc(a) ∈ P(T ).

と定める．

(b) c ⊂ X0 × T は，この「断層撮影」の合成を行うことにより復元できる；

c =
∪

a∈X0

⟨a|scanc(a).

scanc(a) は「断層撮影」をしたときの a-slit での「写真」であり，⟨a|scanc(a) は，a-slit で
の c の断面に相当する；

⟨a|scanc(a) = a-slit ∩ c.

2. scanc はX0 から P(T ) への写像なので，scanc を func(c) と表すことにすると，

func : c ∈ P(X0 × T ) � // func(c) ∈ Map(X0,P(T )).

3. 逆に，f ∈ Map(X0,P(T )) が与えられると，

c =
∪

a∈X0

{⟨a, t⟩ | t ∈ f(a) }

=
∪

a∈X0

⟨a|f(a)

と置くことにより，func(c) = f となる c を一意に定めることができる．f に対して定まる
この部分集合 c ∈ P(X0 × T ) を，graph(f) と表すことにする；

graph(f) =
∪

a∈X0

⟨a|f(a) (2.9)

graph : f ∈ Map(X0,P(T ))
� // graph(f) ∈ P(X0 × T )

4. graph(func(c)) = c, func(graph(f)) = f となるので，graph と func は互いの逆写像．
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Remark. 　 f ∈ Map(X0,P(T )) の graph(f) は，

• 数学一般での定義では（“∃” を用いて表すと）

graph = {⟨x, b⟩ ∈ X0 × P(T ) | ∃a ∈ X0 : x = a, b = f(a) }, (2.10)

• ここでの定義は，

graph(f) = {⟨x, t⟩ ∈ X0 × T | ∃a ∈ X0 : x = a, t ∈ f(a) } (2.11)

であり，a と f(a) のペア ⟨a, f(a)⟩ を作るか，f(a) を “unpack” してから a とのペアとしたもの
を “pack” して ⟨a|f(a) を作るか，という点で，両者は異なる．なお，(2.10)式を「断層撮影の合
成」として表すならば，

graph(f) =
∪

a∈X0

{⟨a, f(a)⟩} （⇐１点集合の合成）,

となる．(2.11) 式の場合は，(2.9)式．

次に，graph, func の連続性について調べる．

1. P(X0 × T ) の部分集合C が与えられたとして，γ =
∪
C (= sup C) と置く．任意の a ∈ X0

に対して，

⟨a|
(
scanγ(a)

)
= a-slit ∩ γ = a-slit ∩

∪
c∈C

c,

⟨a|
(
scanc(a)

)
= a-slit ∩ c, ( ∀c ∈ C )

なので，

⟨a|
(
scanγ(a)

)
=
∪
c∈C

(
a-slit ∩ c

)
, （⇐集合の分配律）

=
∪
c∈C
⟨a|
(
scanc(a)

)
, （ (2.8) 式により ↓）

= ⟨a|
∪
c∈C

(
scanc(a)

)
.

したがって，

scanγ(a) =
∪
c∈C

(
scanc(a)

)
であり，

scanγ(a) = func(γ)(a), scanc(a) = func(c)(a)
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なので，

func(γ)(a) =
∪
c∈C

(
func(c)(a)

)
（ 写像の集合の上限は各点での上限なので ↓）

=
(
sup
c∈C

func(c)
)
(a).

a ∈ X0 は任意なので，

func(supC) = func(γ) = sup
c∈C

func(c)

であり，func は連続．

2. F ⊂ Map(X0,P(T )) が与えられたとして，φ = sup F と置く．任意の a ∈ X0 に対して，写
像の集合の上限は各点での上限なので，

φ(a) =
∪
f∈F

f(a)

であり，

graph(φ) =
∪

a∈X0

⟨a|φ(a)

=
∪

a∈X0

⟨a|

∪
f∈F

f(a)

 （ (2.8) 式により ↓）

=
∪

a∈X0

∪
f∈F
⟨a| f(a)

=
∪
f∈F

∪
a∈X0

⟨a| f(a)

=
∪
f∈F

graph(f)

= sup
f∈F

graph(f)

となる．F は任意なので，graph は連続．

以上，命題の形でまとめておく；

命題 5. X0, T は空でない集合とする．X0 と T に対して定義された写像

func : P(X0 × T ) −→ Map(X0, T )

graph : Map(X0, T ) −→ P(X0 × T )

は連続であり，

func ◦ graph = idMap(X0,T ), graph ◦ func = idP(X0×T ).
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Remark. 　 func は，P(X0 × T ) からMap(X0,P(T )) への連続写像なのだが，Map(X0,P(T ))

は，（単調性や連続性などを要求していない）「ただの写像」，つまり，集合の圏での射，の集合であ
ることに注意．Map(X0,P(T )) の要素は集合の圏での射に過ぎないが，Map(X0,P(T )) は，P(T )

の順序から導かれる各点の順序が与えられた完備束，したがって，dcpo である．

2.2.3.3 写像 7→ 連続写像

次の条件を満たすX,X0 を考える；
条件１．(X,⪯) は dcpo . X0 はX の空でない部分集合であり，

1. x, x′ ∈ X0 =⇒ sup{x, x′} ∈ X0,

2. X0 のすべての要素はコンパクト．

この一般的な設定が面倒ならば，X = P(S), X0 = P0(S) の場合に限定して考えても良い．そ
の場合，記号 ⪯ は ⊏ に，sup は

∪
に，特に sup{x, x′} は x ∪ x′ に，置き換えられる．ただし，

⪯, sup のままの方が，単なる順序関係と，集合論的操作に頼る順序関係を区別でき，考えやすい
と思う．

Remark. 　 x, x′ が有限集合ならば，x∪x′ も有限集合であり，また，補題 4 により，x0 ∈ P(S)

はコンパクト．

a ∈ X に集合 {x0 ∈ X0 | x0 ⪯ a } を対応させる写像を c⌈: a 7→ c⌈a と表すことする．

a ∈ X から決まる集合 c⌈a は，

1. 有向である；

x0, x
′
0 ∈ X0, x0 ⪯ a, x′0 ⪯ a =⇒ sup{x0, x′0} ∈ X0, sup{x0, x′0} ⪯ a.

2. コンパクトな要素のみから成る．

空でない集合 T が与えられているとして，Y = P(T ) と置く．
X0 で定義され Y に値をとる写像 φ ∈ Map(X0, Y ) に対して，X 全体で定義された写像←−φ を，

←−φ (x) =
∪

x0∈ c⌈x

φ(x0)
(
=
∪

φ ⟨ c⌈x ⟩
)

と定める；

←−φ (x) = {t ∈ T | ∃x0 ∈ c⌈x : t ∈ φ(x0) }
= {t ∈ T | ∃x0 ∈ X0 : x0 ⪯ x ∧ t ∈ φ(x0) }.
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←−φ に対して，以下が成り立つ；

1. ←−φ は単調（これは，x ⪯ x′ ならば c⌈x ⊂ c⌈x′ であることから明らか）．

2. x0 ∈ X0 に対しては，

• x0 ∈ c⌈x0 なので φ(x0) ⊂ ←−φ (x0) であり，

• x0 は，(X,⪯) の部分集合 c⌈x0 の最大なので，φ が単調ならば，φ(x0) =
←−φ (x0).

補題 5. φ ∈ Map(X0,P(T )) とする．このとき，任意の有向部分集合A ⊂ X0 に対して，

←−φ (supA) =
∪←−φ ⟨A⟩ . (2.12)

［証明］　
α = supA と置く（X は dcpo なので supA が存在する．ただし，それがX0 に属するとは限

らない）．このとき，←−φ の定義により，

←−φ (α) =
∪

x0∈c⌈α

φ(x0)

であり，t ∈ ←−φ (α) に対して，t ∈ φ(x0), x0 ⪯ αとなる x0 ∈ X0 を選んでおくと，

1. x0 ⪯ supA なので，x0 がコンパクトであることの定義により（もしくは，補題 4 により），
x0 ⪯ a となる a ∈ A が存在し，

2. この a に対して，t ∈ φ(x0), x0 ⪯ a なので，

3. t ∈ ←−φ (a).

したがって，

t ∈ ←−φ (α) =⇒ ∃a ∈ A : t ∈ ←−φ (a)

であり，←−φ (α) ⊂
∪←−φ ⟨A⟩.

逆向きの包含関係は，

1. t ∈
∪←−φ ⟨A⟩ ならば t ∈ ←−φ (a) となる a ∈ A が存在し，

2. ←−φ は単調で a ⪯ α なので，t ∈ ←−φ (α),

よって，
∪←−φ ⟨A⟩ ⊂ ←−φ (α), と導かれる．

∪←−φ ⟨A⟩ = sup←−φ ⟨A⟩ なので，任意の有向部分集合 A ∈ X に対して式 (2.12) が成立すること
は，←−φ が連続写像であることを意味する．

ここまで，X0 で定義された写像 φ が与えられたとして←−φ を考えて来たが，ここからは，
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X 全体で定義された写像 f : X −→ P(T ) が与えられたとして，φ は，その定義域を
X0 に制限した写像 f |X0 であるする．この φ から←−φ を作る

という設定に変える．つまり，i を埋め込み写像

i : x0 ∈ X0 7→ x0 ∈ X

として，φ = f ◦ i についての←−φ を考える．
以下，hom(X,Y ) は dcpo の圏における射の集合（つまり，X から Y への連続写像すべての集

合）を表す．

補題 6. X,X0 は条件 1. を満たす poset，T は空でない集合，Y = P(T ) とする．

1. 写像 f ∈ hom(X,Y ) 7→ f ◦ i ∈ Map(X0, Y ) は連続．

2. 写像 φ ∈ Map(X0, Y ) 7→ ←−φ ∈ hom(X,Y ) は連続．

［証明］　

1. f 7→ f ◦ i の連続性は各点での上限により決まるので明らかだが，証明を書く（と無駄に
長い）；

任意の x0 ∈ X0 に対して，(
sup
f∈F

(f ◦ i)

)
(x0) =

∪
f∈F

(
(f ◦ i)(x0)

)
（⇐ Map(X0, Y ) での上限は各点での上限）

=
∪
f∈F

f(x0) （⇐ i(x0) = x0）

=

(
sup
f∈F

f

)
(x0). （⇐ Map(X,Y ) での上限は各点での上限）

よって，

sup
f∈F

(f ◦ i) =

(
sup
f∈F

f

)
◦ i.

2. 補題 5 により，←−φ は連続なので，φ 7→ ←−φ は hom(X,Y ) への写像．この写像が連続である
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ことを証明する．F ⊂ Map(X0, Y ) に対して，すべての x ∈ X0 において，(
sup
φ∈F

←−φ

)
(x) =

∪
φ∈F

←−φ (x) （⇐ hom(X,Y ) の順序は各点の順序）

=
∪
φ∈F

∪
x0⪯x

φ(x0)

=
∪

x0⪯x

∪
φ∈F

φ(x0)

=
∪

x0⪯x

(
sup
φ∈F

φ

)
(x0) （⇐ Map(X0, Y ) の順序は各点の順序）

=←−−−sup
φ∈F

φ (x).

x ∈ X0 は任意なので，

sup
φ∈F

←−φ =←−−−sup
φ∈F

φ

であり，φ 7→ ←−φ は連続．

2.2.3.4 代数的な dcpo

次に，f から φ = f ◦ i, φ から←−φ , とX からの写像に戻した
←−−
f ◦ i が，元の f に戻るために，

(X,⪯) が満たすべき条件を調べる．

まず，補題 5 により←−φ は連続なので，（X 全体で）等式←−φ = f が成り立つためには，φ 自身も
連続であることが必要．しかし，これは十分条件とはならない．←−φ は，X の部分集合X0 での φ

の値のみで決まるので，X がX0 で手の届く場合でないと，等号を期待するのは無理．この「手
の届く」という数学とは言えない表現を，以下の数学的定義に変えておく；

次の条件を満たすとき，dcpo (X,⪯) は代数的 (algebraic) であるという；

X0 をX のすべてのコンパクトな要素の集合として定めると，

sup (c⌈(x)) = x (∀x ∈ X ).

例 2. (P(N),⊏) は代数的である；

1. 一般に，任意の空でない集合 S に対して (P(S),⊏) は完備束であり，したがって (P(N),⊏)

は dcpo .
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2. N の有限部分集合はコンパクトであり（補題 4），逆に，無限個の要素を持つ部分集合はコン
パクトではない．［証明］　 x が無限集合ならば，n ∈ N に対して cn = {m ∈ N | m ≤ n }
と置いて an = x ∩ cn と定めると，

(a) A = {an | n ∈ N } は（全順序なので）有向．

(b)
∪

n∈N cn = N なので，
∪
{an | n ∈ N } = x であり，したがって，x ⊏

∪
A.

となるが，すべての an は有限集合，xは無限集合なのでx ⊏ an となる an は存在しない．
したがって，X0 = P0(N) は，コンパクトな要素すべてから成る集合．

3. x ∈ P(N) に対して，

(a) an ⊏ x, an ∈ X0 であり，

(b)
∪

n∈N an = x なので，∪
c⌈x = x. よって，(P(N),⊏) は代数的．

Remark. 　実は，X = P(S) の場合に限ってしまうと，代数的であるための必要十分条件は，S

が可算集合，もしくは，有限集合，となってしまい，数学用語として定義する必要はなくなって
しまう．代数的という用語は，(P(S),⊏) に限定せず一般の dcpo を考えて始めて，意味のある用
語となる．

(X,⪯) が代数的な場合，X0 はコンパクトな要素すべての集合とする．条件 1. は，もはや要求
する必要はない．

Remark. 　 x, x′ がコンパクトなら sup{x, x′} はコンパクトであることは，以下のように示
される；sup{x, x′} ⪯ supA ならば x ⪯ a, x′ ⪯ a′ となる a, a′ が存在し，A は有向なので，
a ⪯ a′′, a′ ⪯ a′′ となる a′′ が存在し，sup{x, x′} ⪯ a′′．

命題 6. (X,⪯) は代数的で，X0 は，X のコンパクトな要素すべてから成る部分集合であるとす
る．このとき，f ∈ Map(X,P(T )) が連続ならば，

←−−
f ◦ i = f .

［証明］　
x ∈ X が与えられたとする．X の部分集合A をA = c⌈x と定める．φ = f ◦ i と置く．

1. A は有向．

2. f は連続でありA は有向なので，任意の x ∈ X に対して，

f (sup (c⌈x)) =
∪

f ⟨c⌈x⟩ =
∪

φ ⟨c⌈x⟩ =←−φ (x).

3. X は代数的なので，sup (c⌈x) = x であり，
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4. f(x) =←−φ (x).

5. x ∈ X は任意なので，f =←−φ =
←−−
f ◦ i.

2.2.3.5 Func とGraph

定理 3. (X,⪯) は代数的な dcpo であり，X0 はX のすべてのコンパクトな要素から成る部分集
合，i は埋め込み写像 i : x0 ∈ X0 7→ x0 ∈ X とする．T, W は空でない集合であり，X0 × P(T )

からW への全単射 hg が与えられているとする．Y = P(T ), H = P(hg) と置き，写像Graph と
Func を，

Graph : hom(X,Y ) −→ P(W ), f ∈ hom(X,Y ) � // H(graph(f ◦ i)) ∈ P(W )

Func : P(W ) −→ Map(X,Y ), c ∈ P(W ) � //
←−−−−−−−−−
func(H−1(c)) ∈ Map(X,Y )

と定める．このとき，

1. Func は hom(X,Y ) への写像となり，連続

2. Graph は連続

3. Func ◦Graph = idhom(X,Y )

4. Graph ◦ Func ⪰ idP(W )

となる．

［証明］　

1. 任意のφ ∈ Map(X0, Y )に対して，←−φ は補題5により連続なので，
←−−−−−−−−−
func(H−1(c)) ∈ hom(X,Y ).

H−1 = P(h−1
g ) は，命題 4 により連続であり，func は命題 5 により連続，φ 7→ ←−φ は補題 6

により連続なので，Func は連続．

2. 任意の f ∈ hom(X,Y ) に対して，f 7→ f ◦ i は補題 6 により連続であり，graph は命題 5 に
より連続，H = P(hg) は命題 4 により連続なので，Graph は連続．

3. 任意の f ∈ hom(X,Y ) に対して，

Func(Graph(f)) =
←−−−−−−−−−−−−−−−−
func(H−1(Graph(f)))

=
←−−−−−−−−−−−−−−−−−−−−−
func(H−1(H(graph(f ◦ i))))

=
←−−−−−−−−−−−−−−
func((graph(f ◦ i))) （ 命題 5 により ↓）

=
←−−
f ◦ i （ 命題 6 により ↓）

= f
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4. c ∈ P(W ) に対しては，

Graph(Func(c)) = Hg

(
graph(Func(c) ◦ i)

)
= Hg

(
graph(

←−−−−−−−−−
func(H−1

g (c)) ◦ i)
)

となる．等式←−φ ◦ i = φ が成立するならば，φ = func(H−1
g (c)) と置いて計算を進めること

ができるのだが，一般には，この等式は成立しない．したがって，これ以上の等式としての
式変形はできないが，←−φ の定義により不等式

←−φ ◦ i ⪰ φ

は成立するので，

Graph(Func(c)) = Hg

(
graph(←−φ ◦ i)

)
⪰ Hg

(
graph(φ)

)
= Hg

(
graph(func(H−1

g (c)))
)

（ 命題 5 により ↓）
= Hg(H

−1
g (c))

= c

であり，c ∈ P(W ) は任意なので，不等式

Graph(Func) ⪰ idP(W ).

2.2.3.6 モデル Pω

ここまで，構成の流れを見るために一般的枠組みで話を進めてきたが，最も重要な例は，Pω で
ある．

1. X = P(N), T = N, W = N とする．

2. X0 = P0(N) であり， P0(N) から N への全単射が存在する．例えば，a ∈ P0(N) の特性関
数 Ia から

g(a) =
∞∑
j=0

Ia(j) · 2j

と定めた関数 g : P0(N) −→ N は全単射（右辺は無限和の形で書かれているが，a は有限集
合なので，実際には有限和）．
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3. X0 × Y = P0(N)× P(N) からW = N への全単射 hg を以下のように作る;

(a) N× N から N への全単射が存在するので，そのひとつを h : N× N −→ N とする．

(b) N× Y から P0(N)× Y への全単射

g × idY : ⟨n, y⟩ 7→ ⟨g(n), y⟩

の逆写像は g−1 × idY であり全単射.

(c) hg = h ◦ (g−1 × idY ) と定める．

4. X = Y = P(N), P(W ) = P(N) であり，

(a) Graph : hom(P(N),P(N)) −→ P(N) は連続．

(b) Func : P(N) −→ hom(P(N),P(N)) は連続．

(c) Func ◦Graph = idhom(P(N),P(N)), Graph ◦ Func ⪰ idP(N).

したがって，Func は，P(N) から hom(P(N),P(N)) へのレトラクト．
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1. (X,⪯) は代数的な dcpo であり，X0 はX のすべてのコンパクトな要素から成る部分集合．
i はX0 ⊂ X のX への埋め込み写像；i : x0 ∈ X0 7→ x0 ∈ X.

2. T は空でない集合であり，Y = (P(T ),⊏).

3. R は空でない集合であり，g はR からX0 への全単射（したがって，逆写像 g−1 が存在）．

4. W は集合で，h はR× T からW への全単射（したがって，逆写像 h−1 が存在）．

この設定の下で，まず，R× T からX0 × Y への写像 g × idT : ⟨r, t⟩ 7→ ⟨g(r), t⟩ の逆写像

g−1 × idT : ⟨x0, t⟩ 7→ ⟨g−1(x0), t⟩

と h の合成写像 h ◦ (g−1 × idT ) を hg と置く；

W

R× T

h

OO

X0 × T 　
g−1×idT

oo

hg

iiRRRRRRRRRRRRRRR

hg = h ◦ (g−1 × idY )

hg, h
−1
g から定められる写像

Hg : P(X0 × T ) −→ P(W ), c′ ∈ P(X0 × T ) 7→ hg(c)

H−1
g : P(W ) −→ P(X0 × T ), c ∈ P(X0 × T ) 7→ h−1

g

は，命題 4 により連続であり，互いの逆写像になる．

P(W ) の部分集合 c と f : X −→ Y の対応を考える．

1. f ∈ Map(X,P(T )) が与えられたとする．

(a) f ◦ i はX0 から P(T ) への写像,

(b) graph(f ◦ i) ⊂ X0 × T ,

(c) H
(
graph(f ◦ i)

)
⊂W

なので，

Graph(f) = H
(
graph(f ◦ i)

)
と置いてGraph を定めると，

Graph : f ∈ Map(X,P(T )) 7→ Graph(f) ∈ P(W ).
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(a) 写像 f 7→ f ◦ i は連続, （⇐補題 6）

(b) graph は連続, （⇐命題 5）

(c) H は連続 （⇐命題 4）

なので，Graph は連続．

2. c ⊂W が与えられたとする．

(a) H−1
g (c) ⊂ X0 × T なので，

(b) func(H−1
g (c)) ∈ Map(X0,P(T )).

(c) したがって，

←−−−−−−−−−
func(H−1

g (c)) ∈ hom(X,P(T )).

なので，

Func(c) =
←−−−−−−−−−
func(H−1

g (c)) ∈ hom(X,P(T ))

として Func(c) を定めると，

Func : c ∈ P(W ) 7→ Func(c) ∈ hom(X,P(T )).

(a) H−1
g は連続． （⇐命題 4）

(b) func は連続． （⇐命題 5）

(c) 写像 φ 7→ ←−φ は連続 （⇐補題 6）

なので，Func は連続．

3. Func(Graph(f)) = f となる； f ∈ hom(X,Y ) ならば，

Func(Graph(f)) =
←−−−−−−−−−−−−−−−−
func(H−1

g (Graph(f)))

=
←−−−−−−−−−−−−−−−−−−−−−
func(H−1

g (H(graph(f ◦ i))))

=
←−−−−−−−−−−−−−−
func((graph(f ◦ i)))

=
←−−
f ◦ i

= f

4. c ∈ P(W ) に対しては，

Graph(Func(c)) = Hg

(
graph(Func(c) ◦ i)

)
= Hg

(
graph(

←−−−−−−−−−
func(H−1

g (c)) ◦ i)
)
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となる．等式←−φ ◦ i = φ が成立するならば，φ = func(H−1
g (c)) と置いて計算を進めること

ができるのだが，一般には，この等式は成立しない．したがって，これ以上の等式としての
式変形はできない．ただし，不等式

←−φ ◦ i ⪰ φ

は成立するので，

Graph(Func(c)) = Hg

(
graph(←−φ ◦ i)

)
⪰ Hg

(
graph(φ)

)
= Hg

(
graph(func(H−1

g (c)))
)

= Hg(H
−1
g (c))

= c

であり，c ∈ P(W ) は任意なので，不等式

Graph(Func) ⪰ idPW

が得られる．

2.2.3.7 定理

繰り返しになるが，設定と記号の定義も含めて，以上の結果を定理の形でまとめておく．

定理 4. 以下の条件を満たす dcpo (X,⪯) と空でない集合 T,R,W が与えられているとする；

1. (X,⪯) は代数的な dcpo であり，X0 はX のすべてのコンパクトな要素から成る部分集合．

2. R からX0 への全単射が存在する．そのひとつを g とする．

3. R× T からW への全単射が存在する．そのひとつを h とする．

g−1 × idT : ⟨x0, t⟩ 7→ ⟨g−1(x0), t⟩ と h の合成写像 h ◦ (g−1 × idT ) を，hg と置き，写像 H :

P(X0 × T ) −→ P(W ) を

Hg : P(X0 × T ) −→ P(W ), c′ ∈ P(X0 × T ) 7→ hg(c)

と定め，Graph : hom(X,P(T )) −→ P(W ), Func : P(W ) −→ Map(X,P(T )) を

Graph(f) = H(graph(f ◦ i)), f ∈ hom(X,P(T ))

Func(c) =
←−−−−−−−−−
func(H−1(c)), c ∈ P(W )

と定める．このとき，
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1. Func は hom(X,P(T )) への写像となり，連続．

2. Graph は連続．

3. Func ◦Graph = idhom(X,P(T )).

4. Graph ◦ Func ⪰ idP(W ).
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第3章 Appendix A. Examples

3.1 RETRACTION

3.1.1 O1 圏の条件

圏の対象は，集合であると限定されているわけではなく，射も写像であるとは限らない．さら
に，対象が集合で射が写像であるとしても，射の順序が各点の順序

f ⪯ g ⇐⇒ f(a) ⪯ g(a) ( ∀a ∈ A )

として定められているとも限らない．それでも，やはり「普通の圏」の場合にO1 圏の条件が何
を意味するかを見ておくべきだろう．以下の条件を満たすO1 圏 C を考える；

1. C の対象は posetであり，射は写像．

2. 要素をひとつだけもつ対象，そのひとつを {α} とする，が存在する．

3. 任意の対象 A と a ∈ A に対して，{α} からの写像 ha : α 7→ a は hom({α}, A) に属し，
a ⪯ a′ ⇐⇒ ha ⪯ ha′ .

このとき，このとき，A = {α} と考えて，

1. f ∈ hom(B,C) とする． b ⪯ b′ となる b, b′ ∈ B が与えられているとすると，

(a) 仮定 3. により，hb ⪯ hb′ .

(b) O1 圏の条件 1. により，f ◦ hb ⪯ f ◦ hb′ .

(c) f ◦ hb = hf(b), f ◦ hb′ = hf(b′).

(d) したがって，hf(b) ⪯ hf(b′) であり，仮定 3. により，

(e) f(b) ⪯ f(b′).

よって，f は単調．

2. f ⪯ f ′ となる f, f ′ ∈ hom(B,C) が与えられているとする．任意の b ∈ B に対して，

(a) O1 圏の条件 2. により，f ◦ hb ⪯ f ′ ◦ hb.

(b) f ◦ hb = hf(b), f ′ ◦ hb = hf(b′).
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(c) したがって，hf(b) ⪯ hf(b′) であり，仮定 3. により，

(d) f(b) ⪯ f(b′).

b ∈ B は任意なので，

f ⪯ f ′ =⇒ f(b) ⪯ f ′(b) ( ∀b ∈ B ).

Remark. 　 しかし，

f(b) ⪯ f ′(b) ( ∀b ∈ B ) =⇒ f ⪯ f ′

であるとは限らない．実際，C = B として，

1. B = {0, 1} とA = {α} のみが対象，

2. K0 : B −→ B を値 0 の定値写像として，

hom(B,A) = ∅, hom(B,B) = {K0, idB},

3. hom(B,B) においてK0 と idB は比較不能

と定めてO1 圏を作ることができる．

K0(0) ⪯ idB(0), K0(1) ⪯ idB(1)

となるのだが，K0 ⪯ idB とはならない（ように定義されている）ので，hom(B,B) の順序は各
点の順序ではない．

3.1.2 O2 圏の条件

さらに，圏 C はO2 圏であるとする．{α} を A と表すことは止めて，ここからは，A は C の
一般の対象とする．

1. f0, f1, f2, . . . ∈ hom(A,B) は単調列であり，a ∈ A が与えられているとして，

f̂j = fj ◦ ha ∈ hom({α}, B), j = 0, 1, 2, . . .

と定める．

• 任意のm = 0, 1, 2, . . . に対して，gj ∈ hom({α}, B) を

gj =

f̂j j = 0, 1, 2, . . . ,m

f̂m j = m,m+ 1, . . .
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と定めると，gj ⪯ f̂j , j = 0, 1, 2, . . . であり，O2 圏の条件 2.(b) により

lim
n→∞

gn ⪯ lim
n→∞

f̂n.

条件 2.(c) により limn→∞ gj = f̂m なので，

f̂m ⪯ lim
n→∞

f̂n.

条件 2.(a) (ii) により，

lim
n→∞

f̂n =
(
lim
n→∞

fn

)
◦ ha

なので，

f̂m ⪯
(
lim
n→∞

fn

)
◦ ha

であり，したがって，

fm(a) ⪯
(
lim
n→∞

fn

)
(a).

m は任意なので，(limn→∞ fn) (a) は f0(a), f1(a), f2(a), . . . の上界．

• b ∈ B は f0(a), f1(a), f2(a), . . . の上界であるとする．このとき，gj(α) = b, j =

0, 1, 2, . . . として gj ∈ hom({α}, B) を定めると，同じく 2.(b), 2.(c), 2.(a) (ii) によ
り，(limn→∞ fn) (a) ⪯ b.

以上により，各 a ∈ A に対して，(limn→∞ fn) (a) は，f0(a), f1(a), f2(a), . . . のB における
上限であることがわかる．

2. g ∈ hom(A,B) とA での単調列 a0 ⪯ a1 ⪯ a2 ⪯ . . . が与えられているとする．fj = haj と
して fj ∈ hom({α}, A) を定めると，f0 ⪯ f1 ⪯ f2 ⪯ · · · であり，

(a) 1.(a) により g ◦ fj は単調列なので，limn→∞(g ◦ fj) が定まる．

(b) 2.(a) により

lim
n→∞

(g ◦ fj) = g ◦ lim
n→∞

fj .

(c) したがって，

lim
n→∞

g(aj) = g
(
lim
n→∞

aj

)
. (3.1)

Remark. 　O2圏についても逆向きの主張は保証されない．実際，B = {0, 1}のような有限集合
に対しては，極限操作についての条件は，ほとんど効力がない．B からB への写像 0 7→ 1, 1 7→ 1

は等式 (3.1) を満たすが，これを hom(B,B) に登録しないことは可能．
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3.1.3 単射型と全射型

一般に，圏 C の任意の対象 A,B に対して hom(A,B) が高々ひとつの射しか含まないならば，
圏 C のすべての射は，単射型であり全射型でもある．

• 圏 C の対象は，A = {0} と B = {0, 1} のみで，f ∈ hom(B,A), f(0) = 0, f(1) = 0 とす
る．また，射の集合は，

hom(A,A) = {idA}, hom(B,B) = {idB}, hom(A,B) = ∅, hom(B,A) = {f}

であるとする．このとき，f は単射ではないが，単射型．

• 圏 C の対象は，A = {0} とB = {0, 1} のみで，g ∈ hom(A,B), g(0) = 0 とする．また，射
の集合は，

hom(A,A) = {idA}, hom(B,B) = {idB}, hom(A,B) = {g}, hom(B,A) = ∅

であるとする．g は全射ではないが，全射型．

3.2 不等式についての簡約性

まず，順序関係と独立な性質を調べる．hom(A,B) に順序関係を要求しない一般的意味での圏
を，圏 C− と表すことにする（ただし，hom(A,B) が集合であることは要求する）．

3.2.1 スケルトン

3.2.1.1 単純列

射影列と帰納列から成るレトラクト列

D0 D1
pr0oo · · ·pr1oo Dn

prn−1oo Dn+1
prnoo · · ·

prn+1oo

D0 in1

// D1 in2

// · · ·
inn

// Dn inn+1

// Dn+1 inn+2

// · · ·

から順序関係に絡む性質 inn+1 ◦ prn ⪯ idn+1 を忘れて，prn ◦ idn+1 = idn のみを要求したものを
考える．
この射影列の射影極限を調べたい場合，Dn と同型になるDn+1 は冗長なので，つまり，inn+1 ◦

prn = idn となる Dn+1 は冗長なので，そのような項は既に取り除かれているものとして，各
n = 0, 1, 2, . . . に対してDn とDn+1 が同型ではないことを要求する．したがって，

prn ◦ inn+1 = idn, inn+1 ◦ prn ̸= idn+1

という条件を要求する．この条件を満たす射影列と帰納列の対を， 単純列と言うことにする．
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3.2.1.2 スケルトン

順序関係に関わっていないことを強調して，記号 prn, inn+1 を使うことは控えて，それぞれ
pn, in+1 と書くことにする．idDm は idm と略記する．したがって，prnm, inm

n の代わりに，m ≤ n

に対して，

pnm = pm ◦ pm+1 ◦ · · · ◦ pn−1, imn = in ◦ in−1 ◦ · · · ◦ im+1

と表すことになる．pmm, imm は恒等写像 idm とする．
pnm を（添え字を無視して一般に）p-射，imn を i-射と言うことにする．

m ≤ n に対して，pnm ◦ imn = idm になるので，p-射は全射型であり，i-射は単射型である；

f ◦ pnm = g ◦ pnm =⇒ f = g. （⇐右側から imn を合成すれば良い）

imn ◦ f = imn ◦ g =⇒ f = g. （⇐左側から pnm を合成すれば良い）

実際には，

• 等式を変形して，両辺の右側に共通の p-射があれば，それを取り除く

• 等式を変形して，両辺の左側に共通の i-射があれば，それを取り除く

という使い方をすることになる．

圏 C− において，p-射と i-射の合成射として作れる射を考える．この形の射を ⟨p, i⟩-射と言うこ
とにする．単純列を作るDm, Dn の間の射がすべて ⟨p, i⟩-射であるとき，この単純列を スケルト
ンと言うことにする．

f を p-射と i-射の合成として表したとき，i-射の左側にひとつでも p-射があるならば，p-射を左
側，i-射を右側として隣接する２つの射が存在し，それらは，pj+1

j ◦ ijj+1 (= pj ◦ ij+1) の形をとる．
しかし，これは idj に等しいので取り除いてしまっても，残りの射で f を表すことができる．した
がって，この操作を繰り返すことにより，f を，（添え字を無視して書くと）f = i ◦ · · · i ◦ p ◦ · · · p
の形で表すことができる．
スケルトンでは，射の合成が可能となる条件から，

• 0 ≤ ℓ ≤ m に対して，f ∈ hom(Dm, Dℓ) は，

fj = ijℓ ◦ p
m
j , j = 0, 1, . . . , ℓ

のいずれかと等しく（特に j = ℓ のときは，fℓ = pmℓ ），

• m ≤ n に対して，f ∈ hom(Dm, Dn) は，

fj = ijn ◦ pmj , j = 0, 1, . . . ,m

のいずれかと等しい (特に j = n のときは，fn = imn )．
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補題 7. 0 ≤ j ≤ k に対して，

ijk ◦ p
k
j = idk =⇒ j = k.

［証明］　 j を固定し，ijj+n ◦ p
j+n
j ̸= idj+n, n = 1, 2, . . . であることを帰納法で証明する．

まず，単純列の定義により，n = 1 で成立．ijj+n ◦ p
j+n
j ̸= idj+n を帰納法の仮定として，n+ 1

でも等号が成立しないことを示す；
ijj+n+1 ◦ p

j+n+1
j = idj+n+1 ならば，両辺を

ijj+n+1 ◦ p
j+n+1
j = ij+n+1 ◦ (ijj+n ◦ p

j+n
j ) ◦ pj+n

idj+n+1 = ij+n+1 ◦ idj+n ◦ pj+n

と書き直してから両辺で共通の i-射 ij+n+1 と p-射 pj+n を取り除くことにより，等式 ijj+n ◦p
j+n
j =

idj+n を得るが，これは帰納法の仮定に反する．よって，ijj+n+1 ◦ p
j+n+1
j ̸= idj+n+1.

補題 8. スケルトンでは，0 ≤ j ≤ k ≤ m,m′ に対して，

ijm′ ◦ pmj = ikm′ ◦ pmk =⇒ j = k.

［証明］　 ijm′ ◦ pmj = ikm′ ◦ pmk の両辺を（k を中継点に選んで）

ijm′ ◦ pmj = ikm′ ◦ (ijk ◦ p
k
j ) ◦ pmk

ikm′ ◦ pmk = ikm′ ◦ idk ◦ pmk

と書き直すことにより，hom(Dk, Dk)における等式 ijk ◦ p
k
j = idk を得る．補題7により，j = k.

f ∈ hom(Dm, Dm′) を ism′ ◦ pms と表したときの s の値を， f の指数と言うことにする．f ∈
hom(Dm, Dm′) の指数は，0 からmin{m,m′} の値を取り得る．

スケルトンでは，0 ≤ m,m′ に対して hom(Dm, Dm′) の要素は，指数 s が 0 からmin{m,m′}
まで，

ism′ ◦ pms , s = 0, 1, . . . ,min{m,m′}

の形であり，指数 s により一意に決まる；

hom(Dm, Dm′) = {ism′ ◦ pms | s = 0, 1, 2, . . . ,min{m,m′} }.

特に，m = m′ の場合，

hom(Dm, Dm) = {ism ◦ pms | s = 0, 1, 2, . . . ,m }.

70



補題 9. ⟨p, i⟩-射 f, g の合成 f ◦ g の指数は，f の指数 ρと g の指数 σの最小値 s = min{ρ, σ} と
なる．

［証明］　 dom(g) = Dm, cod(g) = dom(f) = Dm′ , cod(f) = Dm′′ とする．
ρ ≤ σ のときは pm

′
ρ を pσρ ◦ pm

′
σ と書き換え，σ ≤ ρ のときは iσm′ を iρm′ ◦ iσρ に書き換えて計算

する；

f ◦ g = (iρm′′ ◦ pm
′

ρ ) ◦ (iσm′ ◦ pmσ )

=



iρm′′ ◦ (pσρ ◦ pm
′

σ ) ◦ iσm′ ◦ pmσ = iρm′′ ◦ pσρ ◦ (pm
′

σ ◦ iσm′) ◦ pmσ
= iρm′′ ◦ pσρ ◦ pmσ
= iρm′′ ◦ pmρ ,

if ρ ≤ σ

iρm′′ ◦ pm
′

ρ ◦ (i
ρ
m′ ◦ iσρ ) ◦ pmσ = iρm′′ ◦ (pm

′
ρ ◦ i

ρ
m′) ◦ iσρ ◦ pmσ

= iρm′′ ◦ iσρ ◦ pmσ
= iσm′′ ◦ pmσ ,

if σ ≤ ρ.

であり，両方共に指数はmin{ρ, σ} となっている．
　

3.2.1.3 射影列への射

スケルトン

D0 D1
p0oo · · · · · ·p1oo Dm

pm−1oo · · · · · ·pmoo

D0 i1
// D1 i2

// · · · · · ·
im

// Dm im+1

// · · · · · ·

に対して，以下の記号を用意しておく；

Em = hom(Dm, Dm) = {ism ◦ pms | s = 0, 1, . . . ,m }, m = 0, 1, 2, . . . ,

E =
∪

j=0,1,...

Ej .

↓: E −→ E, ↓ (ism+1 ◦ pm+1
s ) =

ism ◦ pms , 0 ≤ s ≤ m

idm, s = m+ 1
(3.2)

↑: E −→ E, ↑ (ism ◦ pms ) = ism+1 ◦ pm+1
s , 0 ≤ s ≤ m. (3.3)

したがって，
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1. ↓ ◦ ↑= idE .

2. 各m に対して，s ≤ m に対しては (↑ ◦ ↓) (ism+1 ◦ pm+1
s ) = ism+1 ◦ pm+1

s となるが，

3. (↑ ◦ ↓) (idm+1) = im+1 ◦ pm であり，↓ は im+1 ◦ pm と idm+1 の両者を idm に写す．

補題 10. スケルトンの射影列

D0 D1
p0oo · · · · · ·p1oo Dm

pm−1oo · · · · · ·pmoo

と，対象X からこの射影列への射の族 {fj}, {gj}，及び，m ≥ 1 が与えられていて，条件

各 0 ≤ j ≤ m に対して， gj = hj ◦ fj となる hj ∈ Ej が一意に存在する

を満たしているとする．このとき，

1. hj =↓ (hj+1), 0 ≤ j ≤ m− 1 であり，

2. fℓ = gℓ となる最大の ℓ ≤ m が存在して，

gj =

pℓj ◦ gℓ, 0 ≤ j ≤ ℓ

iℓj ◦ gℓ, ℓ ≤ j ≤ m

となる．

［証明］　まず， hj =↓ (hj+1) となることを，hj+1 の指数が j +1 の場合（hj+1 = idj+1 の場合）
とそれ以外に場合分けして確かめる；

• gj+1 = idj+1 ◦ fj+1 のときは，

gj = pj ◦ gj+1 = pj ◦ fj+1 = fj

であり，一意性により hj = idj =↓ (hj+1).

• gj+1 = (isj+1 ◦ p
j+1
s ) ◦ fj+1, s ≤ j のときは，

gj = pj ◦ gj+1

= pj ◦ (isj+1 ◦ pj+1
s ) ◦ fj+1 （ pj ◦ isj+1 = isj なので ↓）

= isj ◦ pj+1
s ◦ fj+1

= isj ◦ (pjs ◦ p
j+1
j ) ◦ fj+1 （ pj ◦ fj+1 = fj なので ↓）

= (isj ◦ pjs) ◦ fj

であり，一意性により hj = isj ◦ p
j
s =↓ (hj+1).
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次に，fℓ = gℓ となる最大の ℓ ≤ m が存在することは，（E0 = {id0} なので）f0 = g0 となるこ
とから明らか．
0 ≤ j ≤ ℓ に対しては，射影列への射の定義により gj = pℓj ◦ gℓ なので，j = ℓ, ℓ + 1, . . . ,m の

場合について gj = iℓj ◦ gℓ となることを確かめれば良い．
j = ℓ の場合は，gℓ = idℓ ◦ gℓ = iℓℓ ◦ gℓ.
ℓ+ 1 ≤ m である場合，↓ (hℓ+1) = idℓ となる hℓ+1 は idℓ+1, もしくは，iℓ+1 ◦ pℓ だが，ℓ が最

大であることにより，hℓ+1 = iℓ+1 ◦ pℓ に限定される. したがって，

gℓ+1 = (iℓ+1 ◦ pℓ) ◦ gℓ+1

= iℓ+1 ◦ (pℓ ◦ gℓ+1) = iℓℓ+1 ◦ gℓ.

ℓ+ 2 ≤ m である場合，hℓ+1 ̸= idℓ+1 であることがすでに示されているので，↓ (hℓ+2) = hℓ+1 と
なる hℓ+2 は ↑ (hℓ+1) に限られる．よって，hℓ+2 = iℓℓ+2 ◦ p

ℓ+2
ℓ であり

gℓ+2 =
(
iℓℓ+2 ◦ pℓ+2

ℓ

)
◦ gℓ+2

= iℓℓ+2 ◦ gℓ.

以下，再帰的に，j = ℓ, ℓ+ 1, . . . ,m に対して，

gj = iℓj ◦ gℓ

であることが導かれる．

3.2.1.4 Dm からの射の族

補題 11. Dm からスケルトンへの射の族 {gj} が与えられているとする．gj は

gj =

psj ◦ gs, 0 ≤ j ≤ s

isj ◦ gs, s ≤ j

と表され，s は gm の指数として求められる．

［証明］　
射の族 {fj} を，

fj =

pmj , 0 ≤ j ≤ m

imj , m ≤ j

と定めると，{fj} は射影列への射の族となる．0 ≤ j ≤ m に対して，スケルトンの定義により，
Dm からDj への射 gj は，その指数を ℓ として iℓj ◦ pmℓ の形に限られ，

gj = iℓj ◦ pmℓ = (iℓj ◦ p
j
ℓ) ◦ p

m
j = (iℓj ◦ p

j
ℓ) ◦ fj
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なので，hj = iℓj ◦ p
j
ℓ と置くことにより gj は，gj = hj ◦ fj (= hj ◦ pmj ) と表される．また，

(iℓj ◦ p
j
ℓ) ◦ p

m
j = hj ◦ pmj =⇒ iℓj ◦ p

j
ℓ = hj

なので，hj は一意に決まる． したがって，補題 10 を用いることができ，

gj =

psj ◦ gs, 0 ≤ j ≤ s

isj ◦ gs, s ≤ j ≤ m
, gs = fs

となる 0 ≤ s ≤ m が存在することがわかる．特に，j = m では gm = ism ◦ fs = ism ◦ pms であり
右辺の指数は s なので，s は gm の指数として求められる．したがって，j = s では gs = fs = pms
となる．
m ≤ n に対しては，gn ∈ hom(Dm, Dn) は gn = iℓn ◦ pmℓ の形に限られ，

gm = iℓm ◦ pmℓ

となるので，ℓ = s. したがって，

gn = isn ◦ pms = isn ◦ gs

であり，n ≥ m についても gn = isn ◦ gs となる．

3.2.1.5 射影極限

補題 12. Dがスケルトンの射影列に対しての射影極限ならば，射の族 ιj : Dj −→ D, j = 0, 1, 2, . . .

で等式

1. 0 ≤ ℓ ≤ m に対して，πℓ ◦ ιm = pmℓ ,

2. m ≤ n に対して，πn ◦ ιm = imn

を満たし，帰納列からの射の族となるもの，つまり，

ιm = ιm+1 ◦ im+1, m = 0, 1, 2, . . .

となるものが存在する．

［証明］　
ιj の構成の部分は，命題 2 での証明が（順序関係に絡んだ性質はなにも使っていないため）そ

のまま成り立つが，帰納列からの射の族となることは，D が射影極限であることを用いて直接に
「単純作業」で示す必要がある．

1. 0 ≤ ℓ ≤ m に対して，

πℓ ◦ (ιm+1 ◦ im+1) = (πℓ ◦ ιm+1) ◦ im+1 = pm+1
ℓ ◦ im+1

= pmℓ = πℓ ◦ ιm.
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2. m < n に対して，

πn ◦ (ιm+1 ◦ im+1) = (πn ◦ ιm+1) ◦ im+1 = im+1
n ◦ im+1

= imn = πn ◦ ιm.

したがって，すべての j = 0, 1, 2, . . . に対して，πj ◦ (ιm+1 ◦ im+1) = πj ◦ ιm となるが，射影極限
の射の族 {πj} は（等号についての）簡約性をもつので，

ιm+1 ◦ im+1 = ιm.

3.2.1.6 Em と Êm の対応

対象D からスケルトンの射影列への射の族 {πj} と，帰納列からD への射の族 {ιj} であって
関係

πj ◦ ιm =

pmj , 0 ≤ j ≤ m

imj , m ≤ j

を満たすものが与えられているとする．
各m = 0, 1, 2, . . . に対して，

1. Em = hom(Dm, Dm)，

2. f ∈ Em に対して，f̂ = ιm ◦ f ◦ πm ∈ hom(D,D),

3. Êm = {f̂ | f ∈ Em } ⊂ hom(D,D)

と置く．

Remark. 　 πm ◦ ιm = idDm となるので，πm は全射型であり，ιm は単射型．したがって，
f̂ = ĝ =⇒ f = g であり，f 7→ f̂ は，Em から Êm への全単射．

補題 13. 上の設定の下で，以下が成り立つ；

1. {Êj}j=0,1,2,... は，hom(D,D) の部分集合としての包含関係により狭義単調増加；

Ê0 ⊊ Ê1 ⊊ Ê2 ⊊ · · · .

2. {πj ◦ f̂ | f ∈ Êj } = {f ◦ πj | f ∈ Ej }, j = 0, 1, 2, . . ..
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3. {f̂ ◦ ιj | f ∈ Êj } = {ιj ◦ f | f ∈ Ej }, j = 0, 1, 2, . . ..

［証明］　

1. 任意の f ∈ Em に対して f̂ は，

ιm ◦ f ◦ πm = ιm+1 ◦ (im+1 ◦ f ◦ pm) ◦ πm+1

と表され，im+1 ◦ f ◦ pm ∈ Em+1 なので，Êm ⊂ Êm+1.

ιm+1 ◦ idm+1 ◦ πm+1 ∈ Êm+1 が Êm の要素ならば，等式

ιm+1 ◦ idm+1 ◦ πm+1 = ιm ◦ f ◦ πm
= ιm+1 ◦ (im+1 ◦ f ◦ pm) ◦ πm+1

が成立させる f ∈ Em が存在し，ιm+1 は単射型，πm+1 は全射型であることにより，idm+1 =

im+1 ◦ f ◦ pm となるはずだが，左辺の指数はm+ 1, 右辺の指数はm 以下なので，この等
式は成立しない．したがって，Êm ̸= Êm+1 であり，Êm ⊊ Êm+1.

2. πj ◦ f̂ = πj ◦ (ιj ◦ f ◦ πj) = f ◦ πj .

3. f̂ ◦ ιj = (ιj ◦ f ◦ πj) ◦ ιj = ιj ◦ f .

f, g ∈ Em に対して，

f̂ ◦ ĝ = (ιm ◦ f ◦ πm) ◦ (ιm ◦ g ◦ πm) = ιm ◦ (f ◦ g) ◦ πm
= f̂ ◦ g.

また，îdm = ιm ◦ πm は，Em の単位元としての条件

f̂ ◦ îdm = f̂ , îdm ◦ f̂ = f̂

を満たす．よって，Êm は，（単位元を持つ）モノイドとしてEm と同型．

3.2.1.7 φ ∈ Ê の標準形

Ê =
∪

j=0,1,... Êj と置く．φ ∈ Ê に対して，その指数と標準形を定義する．

φ ∈ Ê に対して，φ ∈ Êm となるm と φ = f̂ となる f ∈ Em を選ぶと，この f は，つまり，
f̂ = ιm ◦ f ◦ πm となる f ∈ Em は，ιmが単射型で πm が全射型であることにより一意に決まる
（ただし，m の選び方には依存する）．この f の指数を s とすると，

ιm ◦ f ◦ πm = ιm ◦ (ism ◦ pms ) ◦ πm
= (ιm ◦ ism) ◦ (pms ◦ πm)

= ιs ◦ πs
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となる．この式変形を，m を任意の n ≥ s に書き換えて逆に辿ると，

ιs ◦ πs = (ιn ◦ isn) ◦ (pns ◦ πn)
= ιn ◦ (isn ◦ pns ) ◦ πn

となるので，f ′ = isn ◦ pns ∈ En と置くと，

f̂ ′ = ιs ◦ πs = f̂

であることがわかる．つまり，φ ∈ Ê に対して，

1. φ = ιs ◦ πs となる 0 ≤ s が存在し，

2. 任意の n ≥ s に対して，φ = f̂ となる指数が s の f ∈ En が存在する．

3. φ = f̂ となる f ∈ En は（n に対して）一意に決まり，f の指数は一意に決まるので，s は
φ のみから一意に決まる．

この s を φ ∈ Ê の指数と言い，ιs ◦ πs を φ の標準形と言うことにする．

標準形を用いて表すと，

Êm = {ιj ◦ πj | j = 0, 1, 2, . . . ,m }
Ê = {ιj ◦ πj | j = 0, 1, 2, . . . . . . }

となる．

Remark. 　 ιm ◦ πm = îdm は Êm の単位元（射の合成としては恒等射）となるが，Êm+1 の単
位元にはならない；
ιm+1 ◦ πm ∈ Êm+1 に対して，

(ιm+1 ◦ πm+1) ◦ (ιm ◦ πm) = ιm+1 ◦ imm+1 ◦ πm
= ιm ◦ πm

であり，idm の指数はm. 一方，ιm+1 ◦ πm+1 の指数はm+ 1 なので，

(ιm+1 ◦ πm+1) ◦ (ιm ◦ πm) ̸= ιm+1 ◦ πm+1

であり，ιm ◦ πm は，Em+1 では単位元としての性質をもたない．

Remark. 　 Êm の要素 ιs ◦ πs, s = 0, 1, . . . ,mは，標準形で考えればそれぞれEs のトップとな
る要素（指数最大の要素）ids と対応するが，m を固定した対応させるならば，Em の要素 ism ◦pms
と対応する．また，埋め込み写像 Êm → Êm+1 には，Em から Em+1 への射 ↑: Em −→ Em+1 :

ism ◦ pms 7→ ism+1 ◦ pm+1
s が対応する；
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3.2.1.8 スケルトン C−1

スケルトンとなる単純列，及び，対象D からの射の族 {πj} とD への射の族 {ιj} が与えられ，
等式

πj ◦ ιm =

pmj , j ≤ m

imj , j ≥ m

を満たすとする（したがって，πm ◦ ιm = idm）．このとき，以下の条件を満たす圏 C− をスケル
トンと言うことにする．

1. C の対象は，D, D0, D1, D2, · · · のみであり，

2. Ê =
∪

j=0,1,2,...

Êj と置くと，

hom(D,D) = {idD} ∪ Ê,

3. 各 j = 0, 1, 2 . . . に対して，

hom(D,Dj) = {f ◦ πj | f ∈ Ej }
hom(Dj , D) = {ιj ◦ f | f ∈ Ej }

スケルトン C− において，射の集合H0
0 , H

1
0 , H

0
1 , H

1
1 を

H0
0 =

∪
j,k=0,1,...

hom(Dj , Dk)

H1
0 =

∪
j=0,1,...

hom(D,Dj), H0
1 =

∪
j=0,1,...

hom(Dj , D)

H1
1 = Ê

と定め，その要素に対して標準形を定義する；

1. f ∈ H0
0 については，f = ism′ ◦ pms の形を標準形とする．

2. f ∈ H1
0 は f = f ′ ◦ πm と一意に表され，さらに，f ′ = ism ◦ pms と一意に表されるので，f

は，

f = f ′ ◦ πm = ism ◦ (pms ◦ πm) = ism ◦ πs

と一意に表される．f ′ の指数 s を f の指数，ism ◦ πs を f の標準形と定める．
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3. f ∈ H0
1 は f = ιm ◦ f ′ と一意に表され，さらに，f ′ = ism ◦pms と一意に表されるので，f は，

f = ιm ◦ f ′ = (ιm ◦ ism) ◦ pms = ιs ◦ pms

と一意に表される．f ′ の指数 s を f の指数，ιs ◦ pms を f の標準形と定める．

4. φ ∈ H0
0 については，既に定義した通り，φ = ιs ◦ πs の形を標準形，s を指数とする．

次の補題は，機械的に場合分けを徹底すれば，適切な中間点を選んで式を書き換えていく作業
のみで証明できる．しかし，記述は長くなる．ここでは，補題 9 に頼って指数を追跡することに
より証明する．また，場合分けを減らすために，以下の「小細工」を用いる；
πρ ◦ ισ : Dσ

ισ−→ D
πρ−→ Dρ は，場合分けにより p-射，もしくは，i-射として

πρ ◦ ισ =

pσρ , ρ ≤ σ

iσρ , σ ≤ ρ

と表されるが，s = min{ρ, σ} と置いて

πρ ◦ ισ = isρ ◦ pσs

と表すこともできる．

補題 14. スケルトン C− において，射の集合

H0
0 ∪H1

0 ∪H0
1 ∪H1

1

に属する射の合成 f ◦ g は，再びこの集合に属する．f ◦ g の指数は，f の指数 ρ と g の指数 σ の
最小 s = min{ρ, σ} に等しい．

［証明］　場合分けをして証明するが，いずれの場合でも，式変形の最後の形から，f ◦ g の指数
が s = min{ρ, σ} であることが読み取れる．

f, g ∈ H0
0 の場合； この場合は明らか．

f ∈ H0
0 , g ∈ H1

0 の場合； D
g // Dm

f // Dm′ とすると，g の標準形は g = iσm ◦ πσ であり，
iσm の指数は σ なので，f ◦ iσm ∈ hom(Dσ, Dm′) の指数は s. したがって，

f ◦ g = (ism′ ◦ pσs ) ◦ πσ = ism′ ◦ (pσs ◦ πσ)
= ism′ ◦ πs ∈ H1

0 .

f ∈ H0
1 , g ∈ H0

0 の場合； Dm
g // Dm′

f // D とすると，f の標準形は f = ιρ ◦pm′
ρ であり，

pm
′

ρ の指数は ρ なので，pm
′

ρ ◦ g の指数は s. したがって，

f ◦ g = ιρ ◦ (isρ ◦ pms ) = (ιρ ◦ isρ) ◦ pms
= ιs ◦ pms ∈ H0

1 .
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f ∈ H0
1 , g ∈ H1

0 の場合； D
g // Dm

f // D とすると，f, g の標準形は

f = ιρ ◦ pmρ , g = iσm ◦ πσ

であり，pmρ の指数は ρ, iσm の指数は σ なので，pmρ ◦ iσm の指数は s. したがって，

f ◦ g = ιρ ◦ (isρ ◦ pσs ) ◦ πσ
= (ιρ ◦ isρ) ◦ (pσs ◦ πσ) = ιs ◦ πs ∈ H1

1 .

f ∈ H1
0 , g ∈ H0

1 の場合； Dm
g // D

f // Dm′ とすると，f, g の標準形は

f = iρm′ ◦ πρ, g = ισ ◦ pmσ

であり，iρm′ の指数は ρ, πρ ◦ ισ の指数は s, pmσ の指数は σ なので，f ◦ gの指数は s．

f ∈ H1
0 , g ∈ H1

1 の場合； D
f // Dm とすると，f, g の標準形は

f = iρm ◦ πρ, g = ισ ◦ πσ

であり，iρm の指数は ρ, πρ ◦ ισ の指数は s なので，iρm ◦ πρ ◦ ισ の指数は s. したがって，

f ◦ g = (ism ◦ pσs ) ◦ πσ = ism ◦ (pσs ◦ πσ)
= ism ◦ πs ∈ H1

0 .

f ∈ H1
1 , g ∈ H0

1 の場合； Dm
g // D とすると，f, g の標準形は

f = ιρ ◦ πρ, g = ισ ◦ pmσ

であり，πρ ◦ ισ の指数は s なので πρ ◦ ισ = isρ ◦ pσs . したがって，

f ◦ g = ιρ ◦ (isρ ◦ pσs ) ◦ pmσ = (ιρ ◦ isρ) ◦ (pσs ◦ pmσ )

= ιs ◦ pms ∈ H0
1 .

f ∈ H1
1 , g ∈ H1

1 の場合； f, g の標準形は

f = ιρ ◦ πρ, g = ισ ◦ πσ

であり，πρ ◦ ισ の指数は s なので πρ ◦ ισ = isρ ◦ pσs . したがって，

f ◦ g = ιρ ◦ (isρ ◦ pσs ) ◦ πσ = (ιρ ◦ isρ) ◦ (pσs ◦ πσ)
= ιs ◦ πs ∈ H1

1 .
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3.2.1.9 スケルトンの射影極限

命題 7. スケルトン C−1 において，⟨D, {πj}⟩ は射影列の射影極限．

［証明］　
C−1 の対象X とX から射影列への射の族 {gj} に対して，gj = πj ◦ g となる射 g ∈ hom(X,D)

が存在することと，その一意性を示す．
X = Dm の場合と，X = D の場合を考えれば良い．

X = Dm の場合．補題 11 により，s を gm の指数として，

gj =

psj ◦ gs, 0 ≤ j ≤ s

isj ◦ gs, s ≤ j

と表される．g = ιs ◦ gs と置くと，

πj ◦ g = (πj ◦ ιs) ◦ gs =

psj ◦ gs 0 ≤ j ≤ s

isj ◦ gs s ≤ j.

Dm

gs

}}{{
{{
{{
{{ gn

''OO
OOO

OOO
OOO

OO

Ds
isn

// Dn

, Dm

gs

}}{{
{{
{{
{{

gn
((PP

PPP
PPP

PPP
PPP
g // D

πn

  A
AA

AA
AA

A

Ds
isn

//

ιs
66mmmmmmmmmmmmmmmm

Dn

X = D の場合．fj = πj とする．gj ∈ hom(D,Dj) は，スケルトンの定義により

gj = g′j ◦ πj , g′j ∈ Ej

と表され，両辺に右側から ιj を合成することにより g′j が一意に決まることが分かる．した
がって，fj = πj として，補題 10 をいくらでも大きなm に対して用いることができ，

gj =

psj ◦ gs, 0 ≤ j ≤ s

isj ◦ gs, s ≤ j

となる．f = ιs ◦ gs と置くと，πj ◦ f = gj , j = 0, 1, 2, . . ..

3.2.1.10 順序関係

ここまで，順序関係と独立な圏 C− を考えてきた．O1 圏 C から順序関係を忘れた圏 C− がスケ
ルトンであり，かつ，C で im+1 ◦ pm ⪯ idm+1, m = 0, 1, 2, . . . ならば，C での順序は

射影極限D の恒等射 idD を除いて
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一意に決まることを確かめておく；

1. 仮定により，ijj+1 ◦ p
j+1
j ⪯ idj+1, j = 0, 1, 2, . . . であり，したがって，s + 1 ≤ m,m′ なら

ば，O1 圏の条件により

ism′ ◦ pms = is+1
m′ ◦ (iss+1 ◦ ps+1

s ) ◦ pms+1

⪯ is+1
m′ ◦ ids+1 ◦ pms+1 = is+1

m′ ◦ pms+1.

これを再帰的に繰り返すことにより，

s ≤ ρ ≤ m,m′ =⇒ ism′ ◦ pms ⪯ iρm′ ◦ pmρ .

スケルトンであるという仮定により

hom(Dm, Dm′) = {ism′ ◦ pms | s = 0, 1, 2, . . . ,min{m,m′} }

なので，hom(Dm, Dm′) の順序は確定．

2. f, g ∈ hom(D,Dm) は f ′, g′ ∈ hom(Dm, Dm) を用いて f = f ′ ◦ πm, g = g′ ◦ πm と一意に
表されるので，f ′, g′ の順序により確定．

3. f, g ∈ hom(Dm, D) は f ′, g′ ∈ hom(Dm, Dm) を用いて f = ιm ◦ f ′, g = ιm ◦ g′ と一意に表
されるので，f ′, g′ の順序により確定．

4. f, g ∈ Êm は f ′, g′ ∈ hom(Dm, Dm) を用いて f = ιm ◦ f ′ ◦ πm, g = ιm ◦ g′ ◦ πm と一意に表
されるので，f ′, g′ の順序により決まる．したがって，Êm での順序は一意に確定．

5. f ∈ Êm, g ∈ Ên の場合，一般性を失うことなしにm ≤ n と仮定すると，f, g ∈ Ên. した
がって，Ê の順序は一意に確定．

以上，C−1 がスケルトンであるという条件により，これらの集合での順序は f ′, g′ ∈ hom(Dm, Dm′)

により決まり，hom(Dm, Dm) どの順序は指数の順序で決まるので，これらの集合での順序も指
数の順序で決まる．H0

0 ∪H1
0 ∪H0

1 ∪H1
1 の射の合成は，これらの集合の要素となる射の合成であ

り，補題?? により，合成した結果の指数は合成を構成する射の指数の最小値として定まるので，
H0

0 ∪H1
0 ∪H0

1 ∪H1
1 の順序は，つまり，D の恒等射 idD との順序以外以外のすべての順序が，完

全に確定することが分かった．
逆に，C− においてのH0

0 ∪H1
0 ∪H0

1 ∪H1
1 に，順序関係を指数の順序により与えると，この順

序はO1 圏の要求する条件

g1 ⪯ g2 =⇒ f ◦ g1 ⪯ f ◦ g2
f1 ⪯ f2 =⇒ f1 ◦ g ⪯ f2 ◦ g

を満たす．
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しかし，H0
0 ∪H1

0 ∪H0
1 ∪H1

1 は写像の合成について閉じているので，O1 圏の条件が idD との
順序を強制することはない（idD に対しては，指数を定義していない）．したがって，例えば idD

が hom(D,D) の他の要素すべてと比較不能としても，O1 圏の条件には違反しない．

その場合，fj = πj , gj = i0j ◦ π0, j = 0, 1, 2, . . . に対して，

fj = πj ◦ idD, gj = πj ◦ (ι0 ◦ π0), gj ⪯ fj , j = 0, 1, 2, . . .

となるが，f と g は比較不能．

結論：　 O1 圏では，射影極限が不等式についての簡約性を持つとは限らない．
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3.2.2 対象がposetの場合

対象がposetの場合は，その射の集合がスケルトンとしての条件を満たすことを確かめれば，こ
こまでの結果を用いることができる．しかし，実際には，直接に導いた方がイメージを把握しや
すい．

ここでは，N = {1, 2, 3, . . .} とする（0 は含めない）．P = Map(N, {0, 1}) と置く．

Remark. 　{0, 1}への写像とする必然性はなく，{0, 2}への写像としても良い．P = Map(N, {0, 2})
とした場合には，a ∈ P に対して，a から決まる部分集合

{j | a(j) = 2 }

を考えることになる．P = Map(N, {0, 1}) としておけば，a ∈ P は {j | a(j) = 1 } の特性関数．

3.2.2.1 Cut と Cut+

n = 0, 1, 2, . . . に対して，nCut ∈ Map(P,P) を，a ∈ P, j ∈ N に対して

(nCut(a))(j) =

a(j), j ≤ n

0, j > n

と定め，

Cut = {0Cut, 1Cut, 2Cut, . . .}, Cut+ = Cut ∪ {idP}

と置く．
P を，N の部分集合すべての集合（N のべき集合）とみることもできる．この場合，nCut は n

より大きな要素を取り除く操作を表す（0Cut は，すべての要素を取り除き空集合に変える）．し
たがって，Cut に属する関数による像は，有限集合となる（空集合も有限集合と考える）．

f, g ∈ Cut+ のどちらか一方でも Cut に属するならば，f ◦ g も Cut に属する．

例 3. 対象は P のみ，hom(P,P) = Cut+ である圏 C を考える．

1. mCut, nCut ∈ hom(P,P) = Cut+ の順序が

mCut ⪯ nCut ⇐⇒ m ≤ n, mCut ⪯ idP

と与えられているならば，圏 C はO1 圏となる．
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2. f, g ∈ Cut の順序は各点の順序

mCut ⪯ nCut ⇐⇒ m ≤ n

だが，idP は Cut の要素のいずれとも比較不能であるとして hom(P,P) に順序関係を定め
てみる．この場合にも，圏 C はO1 圏となる．

［証明］　 1. は明らか．2. では，idP がCut の上界となることが，Cut の順序から導かれるかが
問題になる．しかし，Cut の順序関係から idP との順序を導こうとして，例えば

g1 ⪯ g2 =⇒ f ◦ g1 ⪯ f ◦ g2

を用いようとしても，そのためには

• g1, g2 ∈ Cut であり，

• f ◦ g1, f ◦ g2 のどちらかは idP

となるように設定する必要があるが，これは不可能．したがって，C はO1 圏としての条件を満
たす．

つまり，Cut の順序関係が idP の順序を強制することはない．

3.2.2.2 射影列

以下，単純列を定義する．Dn は，実質的には {0, 1, . . . , n} のべき集合に過ぎず，有限の世界に
収まっている．しかし，D は非可算個の要素を持ち，無限の世界に属する．

n = 0, 1, 2, . . . に対して，Dn = nCut(P) と定める；

Dn = {a ∈ P | a(j) = 0, j = n+ 1, n+ 2, . . . }.

また，D = P と置く．kCut の domain や codomain の一方，もしくは，両方をD0, D1, D2, . . . に
制限したものも，kCut と表しても良いことにする．正確に表したい場合には，それぞれ，

• kCut : D −→ Dn は kCutn,

• kCut : Dm −→ D は kCut
m,

• kCut : Dm −→ Dn は kCut
m
n

と表すことにする．
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例 4. prn : Dn+1 −→ Dn, inn+1 : Dn −→ Dn+1 を，

prn = nCut
n+1
n , inn+1 = nCut

n
n+1

と定め，射影列

D0 D1
pr0oo · · ·pr1oo Dn

prn−1oo Dn+1
prnoo · · ·

prn+1oo

と帰納列

D0 in1

// D1 in2

// · · ·
inn

// Dn inn+1

// Dn+1 inn+2

// · · ·

を考える．また，πm = mCutm, ιm = mCutm と定める．このとき，これらの射の合成は kCut, k =

0, 1, 2, . . . の形であり，

1. 対象はD, D0, D1, D2, . . . のみ．

2. 射は，kCut の形の射と，D での恒等射 idD.

として圏を定めると，D はこの圏の射影極限になる．

例 4 の結論はスケルトンとしての一般論から導くことができるが，むしろ，直感的に考えた方
が納得できると思う．

例 4 の場合にも，Cut の順序は各点の順序に限定されるが，Cut+ の順序は，idP との順序が強
制されないので，一意には決まらない．したがって，idP は他の要素と比較不能として hom(D,D)

の順序を定めることも可能．この順序を設定してD から射影列への射 fj , gj を

fj = 0Cutj , gj = πj , j = 0, 1, 2, . . .

と定めると，

1. fj ⪯ gj , j = 0, 1, 2, . . ..

2. f = 0Cut ∈ hom(D,D), g = idD ∈ hom(D,D) とおくと，

π ◦ f = fj , π ◦ g = gj , j = 0, 1, 2, . . .

となるが，

3. f と g は比較不能

であり，射影極限D は不等式についての簡約性を満たさない．
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例 5. a1, a2, . . . ∈ Map(N, {0, 1}) を

an(j) =

1, j ≤ n

0, j > n

と定め，また，a0, a∞ を

a0(j) = 0, a∞(j) = 1, j = 1, 2, 3, . . .

と定め，

D = {a0, a1, a2, . . . , a∞}

と置く．つまり，n = 1, 2, 3, . . . に対して an は，左から n 個 1 が並び後は 0 が続く列であり，a0

はすべて 0, a∞ はすべて 1 の列，というイメージ．
この D は P の部分集合であり，nCut を D の要素に作用させた値は D の要素となるので，

nCut ∈ Map(D,D) とみなすことができる．この場合にも，D0, D1, D2, . . . , を定めて射影列，帰
納列を定義して，同じ議論を繰り返すことができる．

ここまで，P の順序は部分集合としての包含関係としてきたが，この順序はCut の形の射の順
序を定めるためにしか用いていない．したがって，

1. kCut が順序を保つ（a ⪯ b =⇒ kCut(a) ⪯ kCut(b)）.

2. j ≤ k =⇒ jCut ≤ kCut.

を満たす順序ならば，他の順序を用いることが可能．

1. 左から辞書式の順序でも良い．

2. P はMap(N, {0, 2}) として，a ∈ P に対して，

r(a) =
∞∑
j=1

(
a(j)

3

)j

と置いて，a, b ∈ P の順序を

a ⪯ b ⇐⇒ r(a) ≤ r(b)

と定めても良い（辞書式順序と同じことになる）．

3. P はMap(N, {0, 1}) として，a ∈ P に対して，

s(a) =

∞∑
j=1

(
a(j)

2

)j
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と置いて，a, b ∈ P の順序を

a ⪯ b ⇐⇒ s(a) ≤ s(b)

と定めてみる．この順序は，a ∈ P を実数の 2 進法による小数表示

a = 0.a(1)a(2)a(3) · · ·

と考えた場合の順序になる・・・・・と言いたいところだが，

a = 0.10000 · · · , b = 0.01111 . . .

に対して，s(a) = s(b) であり（posetとしての条件を満たさず），同値関係による剰余を導
入して a = b と解釈すると，

1Cut(a) = 0.1000 · · · , 1Cut(b) = 0.0000 · · ·

であり，a ≤ b だが a ̸⪯ n ということになり，1Cut は単調ではなくなってしまう．

つまり，P は実数として解釈することはできないが，Cantor 集合として解釈することは可能と
いうこと．

3.3 O2 圏．　 posetの場合について

3.3.0.1 O2 の定義

圏の対象がすべてposetの場合，つまり，各対象がすべて集合であり順序が定義されている場合，
に戻って考えても，O2 圏の条件は，かなり強い条件となっている．圏 C が次の条件を満たすと
してみよう；

1. C の対象はすべて posetであり，射はすべて写像となっている．

2. C の対象として唯ひとつの要素のみを持つposet（そのひとつを {α} とする）が存在し，そ
こから C の任意の対象A への写像はすべて射となる（a ∈ A に対して，φ(α) = a となる射
φ ∈ hom({α}, A) を記号 ha で表すことにする）．

3. ha1 ⪯ ha2 ⇐⇒ a1 ⪯ a2.

このとき，

1. A の任意の２つの要素 a1 ⪯ a2 に対して，ha1 ⪯ ha2 であり，g ∈ hom(A,B) に対して，条
件 1.(a) により g ◦ ha1 ⪯ g ◦ ha2 . したがって，g(a1) ⪯ g(a2) であり，g は単調．
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2. f1 ⪯ f2, f1, f2 ∈ hom(A,B) であるとする．任意の a ∈ A に対して，条件 1.(b) により
f1 ◦ ha ⪯ f2 ◦ ha となるので，f1(a) ⪯ f2(a). a ∈ A は任意なので

f1 ⪯ f2 =⇒ f1(a) ⪯ f2(a) ( ∀a ∈ A ).

3. f0, f1, f2, . . . ∈ hom(A,B)は単調列であり，a ∈ Aが与えられているとして，f̂j = fj◦ha, j =

0, 1, 2, . . . と定める．

• 任意のm = 0, 1, 2, . . . に対して，gj ∈ hom({α}, B) を

gj =

f̂j j = 0, 1, 2, . . . ,m

f̂m j = m,m+ 1, . . .

と定めると，gj ⪯ f̂j , j = 0, 1, 2, . . . であり，2.(b) により

lim
n→∞

gn ⪯ lim
n→∞

f̂n.

2.(c) により limn→∞ gj = f̂m なので，

f̂m ⪯ lim
n→∞

f̂n.

2.(a) (ii) により，

lim
n→∞

f̂n =
(
lim
n→∞

fn

)
◦ ha

なので，

f̂m ⪯
(
lim
n→∞

fn

)
◦ ha

であり，したがって，

fm(a) ⪯
(
lim
n→∞

fn

)
(a).

m は任意なので，(limn→∞ fn) (a) は f0(a), f1(a), f2(a), . . . の上界．

• b ∈ B は f0(a), f1(a), f2(a), . . . の上界であるとする．このとき，gj(α) = b, j =

0, 1, 2, . . . として gj ∈ hom({α}, B) を定めると，同じく 2.(b), 2.(c), 2.(a) (ii) によ
り，(limn→∞ fn) (a) ⪯ b.

以上により，各 a ∈ A に対して，(limn→∞ fn) (a) は，f0(a), f1(a), f2(a), . . . のB における
上限であることがわかる．

4. g ∈ hom(A,B) とA での単調列 a0 ⪯ a1 ⪯ a2 ⪯ . . . が与えられているとする．fj = haj と
して fj ∈ hom({α}, A) を定めると，f0 ⪯ f1 ⪯ f2 ⪯ · · · であり，
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(a) 1.(a) により g ◦ fj は単調列なので，limn→∞(g ◦ fj) が定まる．

(b) 2.(a) により

lim
n→∞

(g ◦ fj) = g ◦ lim
n→∞

fj .

(c) したがって，

lim
n→∞

g(aj) = g
(
lim
n→∞

aj

)
.

3.3.0.2 hom(D,D) の作用について

純粋に圏論での射として考えるならば，射 f ∈ hom(D,D) は「単なる矢印」なのだが，対象
がposetで射が写像の場合には，写像が対象の要素に作用した値を考えることができる．特にD

が射影列の「集合論的射影極限」の場合について，写像としての作用を調べてみよう．

D はRETRACTIONの射影列

D0 D1
pr0oo D2

pr1oo · · ·pr2oo

の射影極限であり，hom(D,D) はRETRACTIONの射影列

E0 D1
prF0oo D2

prF1oo · · ·
prF2oo

の射影極限であるとする．f ∈ hom(D,D) と x ∈ D に対して，

1. limn→∞(ιn ◦ πn)(x) = idn なので，

f(x) = f
(
lim
n→∞

(ιn ◦ πn)(x)
)

= lim
n→∞

(f((ιn ◦ πn)(x)))

であり，

2. limm→∞(ιFm ◦ πF
m) = idE なので，

f((ιn ◦ πn)(x)) =
(

lim
m→∞

((ιFm ◦ πF
m)(f)

)
((ιn ◦ πn))(x))

= lim
m→∞

(
((ιFm ◦ πF

m)(f))((ιn ◦ πn))(x)
)

なので，

f(x) = lim
n→∞

lim
m→∞

(
((ιFm ◦ πF

m)(f))((ιn ◦ πn))(x)
)

= lim
n→∞

(
((ιFn ◦ πF

n )(f))((ιn ◦ πn))(x)
)
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となる．したがって，πn(x) = xn, πF
n (f) = fn と置くと，

f(x) = lim
n→∞

(
((ιFn (fn))(ιn(xn))

)
= lim

n→∞
((ιn ◦ fn ◦ πn)(ιn(xn)))

= lim
n→∞

((ιn ◦ fn ◦ (πn ◦ ιn))(xn))

= lim
n→∞

(ιn(fn(xn)))

となる．つまり，f(x) は各Dn において fn(xn) を計算した値を ιn でD に埋め込んだもの
の極限となる．
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3.4 Cantor Set

3.4.1 P(N) の辞書式順序

ここでは，N = {1, 2, 3, . . .} とする．

3.4.1.1 Cantor set

X = P(N) に対して，包含関係による順序⊏ とは別の順序を定め，区間 [0, 1] ⊂ R 上の Cantor

set と同一視してみる；

x ∈ X = P(N) に対して，x̄ : N −→ {0, 1} は x の特性関数

x̄(n) =

1, n ∈ x

0, n /∈ x

を表すとする．
X には，x, y ∈ X に対して，

1. x = y ならば，x ⊴ y.

2. x ̸= y ならば，x̄(j) ̸= ȳ(j) となる最小の j を n として，

• x̄(n) < ȳ(n) ならば，x ⊴ y,

• ȳ(n) < x̄(n) ならば，y ⊴ x

として定めた順序（辞書式順序）が与えられているとする．

これは，x, y ∈ X に対して，

x ⊴ x′ ⇐⇒
∞∑
n=0

2

(
x̄(n)

3

)n

≤
∞∑
n=0

2

(
ȳ(n)

3

)n

と定めた順序でもあり，Cantor set としてのX の順序，つまり，

1. [0, 1] 上の標準的 cantor set を，3進数での小数表示し，

2. 記号 2 を 1 に書き換えた表示

と解釈しての（普通の実数の大小としての）順序と一致する．
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第4章 Appedix Z. Appendix のAppendix

4.1 補足

4.1.0.1

(??) 式右辺の形では

s ∈
∪
j∈J

aj ⇐⇒ ∃j ∈ J : s ∈ aj

となる．(??) 式の形の “∃a ∈ A” より，添え字についての “∃j ∈ J の方が，なにかと扱いやすい．

(??) 式での A は集合族ではなく単なる集合の集合なのだが，この場合，添え集合 J として A

を選び, aj = j, j ∈ J と定めた集合族 {aj}j∈A を考える．{aj}j∈A = {a}a∈A と書き直せるので，∪
A =

∪
a∈A

a.

4.1.0.2

1. a ∈ A が与えられたとする．

(a) s ∈ a が与えられたとする．

(b)
∪
A の定義

∪
A = {s ∈ S | ∃a ∈ A : s ∈ a } の a としてこの a を選ぶことにより，

(c) s ∈
∪
A.

よって，a ⊏
∪
A.

2. 任意の a ∈ A に対して a ⊏ b であるとする．

(a) s ∈
∪

A が与えられたとする．

(b)
∪
A の定義により，s ∈ a となる a ∈ A が存在する．

(c) したがって，s ∈ b.

よって，
∪

A ⊏ b．
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詳細に書けば書くほど，分かりづらくなる．特に

{s ∈ S | ∃a ∈ A : s ∈ a } の a としてこの a を選ぶ

はひどい表現なのだが，この点については ⇒ Appendix 4.2.0.1

4.1.0.3

この証明を (??) 式の形の定義に戻って書くと，うんざりするほど長くなる；

t ∈
∪

f(A) ⇐⇒ ∃b ∈ Y : (b ∈ f(A)) ∧ (t ∈ b) （⇐ (??) 式の形の定義）

⇐⇒ ∃b ∈ Y :
(
∃a ∈ A : b = f(a)

)
∧ (t ∈ b) （⇐像 f(A) の定義）

⇐⇒ ∃b ∈ Y :
(
∃a ∈ A : (b = f(a) ∧ (t ∈ b)

)
⇐⇒ ∃a ∈ A :

(
∃b ∈ Y : (b = f(a) ∧ (t ∈ b)

)
⇐⇒ ∃a ∈ A : t ∈ f(a)

⇐⇒ t ∈
∪
{f(a) | a ∈ A }

うんざりするほど長くなる理由は，和集合の定義と，像 f(a) の定義の２箇所で「存在する」を用
いていることが原因．f : X −→ Y によるA の像の定義

f(A) = {b ∈ Y | ∃a ∈ A : b = f(a) }

は，a を添え字とする f(a) という発想で

f(A) = {f(a) | a ∈ A }

とすれば，∃ を使わないで済む．そのためには，最初に和集合をとる段階で，a を添え字とする
f(a) に切り替えて，∪

f(A) ⇐⇒
∪
a∈A

f(a)

と書き換えれば良い；

t ∈
∪

f(A) = ∃a ∈ A : t ∈ f(a) .
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4.1.0.4

a ∈ X0 と t ∈ T の順序対を ⟨a, t⟩ を ⟨a|t と表しても良いことにする；

⟨a|t = ⟨a, t⟩.

⟨a|t は，t に関数 ⟨a| が作用した値と考える．

Y = PT , b ∈ P(Y ) に対しても，⟨a|b = ⟨a, b⟩ なのだが，⟨a|b は，b ⊂ Y と考えれば，関数
⟨a| : Y −→ X0 × Y による b ⊂ Y の像と解釈することもできる．この場合，

⟨a|b = {⟨a, t⟩ | t ∈ b } (4.1)

という等式が成立する．一方，等式

⟨a, b⟩ = {⟨a, t⟩ | t ∈ b }

が成立すると主張することは，かなり無理がある．

⟨a| を f と置いてみると等式 (4.1) を主張する根拠は

• f(b) は，f : Y −→ P(X0 × T ) と解釈すれば，f による b の値

• f(b) は，f : Y −→ X0 × T と解釈すれば，f による b の像

という２重解釈が認められているためであり，あまり威張れたものではない．したがって，⟨a|b を
以下なり (4.1) 式で定義して，他の使い方は控えることにした．

4.1.0.5

断面を ⟨a, scanc(a)⟩ と表したくなるのだが，これは，記号の使い方として好ましくない．
例えば，X0 = {0.1}, T = {1, 2, 3, 4, 5, 6} で c = {⟨0, 3⟩, ⟨0, 6⟩, ⟨1, 2⟩, ⟨1, 4⟩, ⟨1, 6⟩} の場合，

scanc(0) = {3, 6}, scanc(1) = {2, 4, 6}

であり，

• 0 での断面は {⟨0, 3⟩, ⟨0, 6⟩},

• 1 での断面は {⟨1, 2⟩, ⟨1, 4⟩, ⟨1, 6⟩},

• c = {⟨0, 3⟩, ⟨0, 6⟩} ∪ {⟨1, 2⟩, ⟨1, 4⟩, ⟨1, 6⟩}
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となる．一方，

⟨0, scanc0⟩ = ⟨0, {3, 6}⟩, ⟨1, scanc1⟩ = ⟨1, {2, 4, 6}⟩.

であり，

c = ⟨0, {3, 6}⟩ ∪ ⟨1, {2, 4, 6}⟩

と解釈するのは無理．
そのため，やむを得ず

{⟨a, t⟩ | t ∈ scanc(a) }

という，少し回りくどい表現を選んだ．すっきりした表現をしたいならば，

a ∈ X0 と b ⊂ Y に対して，

⟨a|b = {⟨a, t⟩ | t ∈ b }

と定めて，新しい記号 ⟨a|b を導入しておけば，

c =
∪

a∈X0

⟨a| slitc(a)

と表すことができる．⟨a|b は，

1. slitc(a) ∈ b を “unpack” してから

2. a とのペアを作り，

3. もう一度 “pack” して，a ∈ X0 を添え字とする集合族を作る

という発想．

4.2 背景と混乱

4.2.0.1

これは，∃a ∈ A : s ∈ a における記号 a はこの文の中だけで意味をもつ「局所的記号」であり，

s を要素として持ちA の要素となるものが存在する
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の「となるもの」に「ここだけの記号 a」を使っているに過ぎない．したがって，「この a として a

を選ぶ」を避けたいならば，

∃a′ ∈ A : s ∈ a′

と書き換えておいてから，a′ としてこの a を選べば良い．この書き換えは，いわゆる「α-変換」
と同じこと（ただし，α-変換は記号列の世界での書き換えであり，意味が同じだから書き換えて
も良い，とはいかないので，α-変換という立派な名前がついている）．

Remark. 　壮大な無駄話をしているようだが，数学の世界の証明は，

常に意味を追っているのであり，記号の使い方，特に記号のスコープについては，恐
ろしいほどルーズ

であることは，心得ておくべき．

4.2.0.2 像と値

括弧ではなく関数の記号を

↑f↓(a)

と変えてしまうのも，１つの考え方だと思う．つまり，

1. 引数として受け取った集合 a（というひとつのもの）を “unpack” してばらばらの要素にし，

2. それらのひとつひとつに f を作用させ，

3. 結果として得た値（というばらばらの要素たち）を “pack” して集合（というひとつのもの）
にまとめる

というイメージ．

4.2.0.3

D に Scott 位相を導入して位相空間とすることもできるので，位相空間論でのコンパクトとの
関係が気になる．もちろん，D の部分集合に対してではなくD の要素に対してコンパクトを定義
しているのだから，位相空間論でのコンパクトと一致するわけはないが，D が特に P(S) のとき
には，次のように言い換えると，かなり類似性が見えてくる；

d は S の部分集合とする．A が S の部分集合から成る任意の有向集合であって d の
被覆ならば（d ⊂

∪
A ならば），d はA に属する有限個の a1, a2, . . . , ak のみで覆われ

ている（d ⊂ a1 ∪ a2 ∪ · · · ∪ ak となっている）．
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さらに，d ⊂ a1 ∪ a2 ∪ · · · ∪ ak ならば A が有向であることにより d ⊂ a となる a ∈ A が存在する
ので（k = 1 としてしまって良いので），かなり似た定義となる．ただし，

• 位相空間論でのコンパクトは，a が開集合であることを要求しているが，

• posetとしてのコンパクトは，A が有向というだけで個々の a ∈ A についての条件は課して
いない

という相違は残る．どちらも

d の被覆Aは有限部分被覆を持つ

ということなのだが，違いをまとめると，以下のようになる；

位相空間 (X,O) poset (X,⪯)
A が d の被覆 d ⊂

∪
A d ⪯ supA

被覆の条件 A は開被覆，つまり，a ∈ A はすべて開集合 A は有向
有限部分被覆 d ⊂ a1 ∪ · · · ∪ an となる a1, . . . , an ∈ A が存在 d ⪯ a となる a ∈ A が存在

位相空間 (X,O) poset (P(S),⊂)
A が d の被覆 d ⊂

∪
A d ⊂

∪
A

被覆の条件 A は開被覆，つまり，a ∈ A はすべて開集合 A は有向
有限部分被覆 d ⊂ a1 ∪ · · · ∪ an となる a1, . . . , an ∈ A が存在 d ⊂ a となる a ∈ A が存在
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