
1 複素関数論（第１回）
このコースでは，主に複素関数論とフーリエ解析の初歩を扱います。
最初は複素関数論です。

1.1 なぜ複素数の関数？

高校数学や１学年の解析学での「関数」（１変数の関数）は

y = f(x)

という形の，

実数 x に実数 y を対応させる関数

でした。

高校数学で既に複素数というものが登場しているので，

1. 実数 s に複素数w を対応させる関数

2. 複素数 z に実数 t を対応させる関数

3. 複素数 z に複素数w を対応させる関数

などを考えることもできます（なぜ，そんなものを考える必要があるかは別としてですが）。
しかし，それらの関数を調べてみても，大して面白いことはありません。

1. 実数 s に複素数 w を対応させる関数 w = f(s) は，w = u + iv と表して u = φ(s),

v = ψ(s) と２つの実数値関数を考えれば済む

2. 複素数 z に実数 t を対応させる関数 t = f(z) は，z = x+ iy と表して，f(z) を x, y

の２変数関数と考えれば済む

3. 複素数 z に複素数 w を対応させる関数 w = f(z) は，z = x + iy, w = u + iv と表
して

u = u(x, y), v = v(x, y)

という２つの２変数関数を考えれば良い
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というだけのことです。

Remark. 関数記号が増えてくると，関数記号と従属変数の対応が分からなくなってき
ます。いっそのこと，

y = f(x) という表記のように関数記号 f を導入するのではなく，y = y(x) と
書いてしまった方が見やすい（つまり従属変数の記号をそのまま関数記号と
して流用してしまった方が見やすい）

というわけで，

u = g(x, y), v = h(x, y)

というふうに新たな関数記号 g, h を導入するのではなく，

u = u(x, y), v = v(x, y)

という書き方をしています。 □

つまり，複素関数というものを考えたところで，特に変わりはないのです。

ところが，単なる「複素関数」ではなく，複素数 z に複素数w を対応される

複素数の関数として微分可能（後で定義します）な関数w = f(z)

を考えると，世界は一変します。

どのように世界が変わるのかと言うと・・・・・・それはこれからの授業で説明しますが，数
学の世界でこれ以上望めないくらい，ものごとがきれいにうまく行く「幸せな世界」が登
場するのです。したがって，これから

複素関数論

と言うときの「複素関数」は，「複素微分可能な複素関数」（別名は正則関数）のことであ
り，これから，オイラーの公式，コーシーの積分定理，コーシーの積分公式，ローラン展
開，留数定理といった強力な計算技法を紹介し，また，

正則関数がそれぞれ “定冠詞付きの関数”であること
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を解析接続という謎めいた原理により，明らかにして行きたいと思います。

さて，ここまで，書いてあることを読み上げて録画しておけば，そのまま授業の形にな
るはずなのですが，それは止めました。おそらく，それぞれ自分で読んだ方が早いし，ま
た，数学記号が多いと読み上げには適さないのです。だから，授業では板書して（もしく
は原稿を指し示して）「この式が」とか「これが」で済ましているわけです。

だいたい，私が（柄にもなく）静かに読み上げる声を聞いたとしたら，すごく眠たくな
ると思います。教室での授業だと興奮気味にしゃべり続けて騒々しいのに，原稿を用意す
ると静かに話すことになる（だろうということ）は，自分でも不思議ですが。

どうしても聴覚に頼りたい人は，適当な読み上げソフトを利用して下さい。
それでは，続きを。

1.2 そもそも，なぜ複素数？

w = f(z) という形の関数では，w と z は（それぞれの実数部と虚数部という２つの実
数としてではなく）それぞれ１つの数として，つまり複素数という１つの数として考えら
れています。
例えば，f(z) が z2 + 3z + 1 という式で表されているならば，これは x2 + 3x+ 1 とい
う式と同じく，１つの数 z についての式となっています。そうなると，複素関数が重要だ
ということは，複素数という数が数学の世界で重要だということも意味するわけですが，
それでは，なぜ複素数は重要なのでしょうか。
これは難しい質問です。一番簡単な答えは，

数学の，そして物理学の歴史の中で，多くの経験により重要性が確認されて
きたから

ということです。簡単に振り返ってみます。

その前に，高校数学での複素数の扱いを思い出してみましょう。最初は

判別式が負の二次方程式は解を持たない

となっていたものが，複素数を導入することにより

判別式が負の二次方程式も解を持つ
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とすることができました。
しかし，これは，複素数の「御利益」と言うにはあまりにもお粗末な「御利益」です。
実際の所，判別式が負の二次方程式が解を持たないからといって，特に困ることはないの
です。したがって，「二次方程式が解を持つ」という単独の理由で，数学の世界に複素数が
市民権を得るという数学史は，あり得ないことです。

負の数の平方根，虚数が役に立つという最初の事例は，３次方程式の解法（カルダーノ
の解法）でした。３次方程式の解法では，最初に二次方程式を建てて解くことが必要にな
ります。そしてその２つの解から３乗根を取る操作を経由して元の３次方程式の解が作ら
れる，というやり方です。ここで，

1. 二次方程式の判別式が負になり「解を持たない」

2. しかし，ルートの記号の中が負であっても，そのまま計算を続けると

3. 元の３次方程式の解となるはずの式まで辿り着き，

4. ３次方程式が３つの実数解を持つ場合には，中身が負のルートはプラスマイナスで
打ち消し合い，

5. ３つの解が得られる（少なくとも１つは実数解）

という幸せな結果になります。こうなると，

ルートの中身が負の場合も，「現実の世界にはない想像上の数」と考えても良
いのではないか

という発想に行き着きます。それから紆余曲折があって，

a+ b
√
−1

という形の複素数というものが生まれたわけですが，それでも，それは

想像上の数（imaginary number）を含む

という，現実（real）ではない数に過ぎませんでした。つまり，複素数は「遠慮しながら
使うもの」だったわけです。

複素数を使う事へのためらいには，

そんなものを使うと矛盾が生じるのではないか
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という疑いもあったと思われます。ただし，これは代数学の一般理論（多項式環での規約
多項式による剰余環）により，完全に取り除かれます。しかも，そのような明確な形で安
全が保証される以前に，フェルマー以降の優れた数学者ならば，複素数が安全なものであ
ることは確信していたと思います。

矛盾が生じるのではないかという杞憂と違って，“imaginary” number は現実の世界の
ものではない，という感性はもっともなものです。しかし，数学史の流れの中で少しずつ，
imaginary number の「real な世界での市民権」は強くなっていきます。極論すると，

real number に拘るのはダサい

のです。
例えば，x5 − 1 という多項式の因数分解を考えてみましょう。

この式は

x5 − 1 = (x− 1)

(
x2 +

1 +
√
5

2
x+ 1

)(
x2 +

1−
√
5

2
x+ 1

)

と因数分解されます。そして，右辺の二次式の判別式は負であり，実数の範囲ではこれ以
上の分解はできません。これはこれで因数分解できたと言って良いのですが，右辺の二次
式の「意味」については，これ以上なにも分かりません（意味がわからないので，本当の
ところ，計算間違いをしていないか自信がありません）。

一方，複素数の範囲で，しかも複素数の極表示を使って因数分解をするならば，

θk = cos

(
k · 2π

5

)
+ i sin

(
k · 2π

5

)
, k = 0, 1, 2, 3, 4

とおいて

x5 − 1 = (x− θ0)(x− θ1)(x− θ2)(x− θ3)(x− θ4)

となります。複素平面の単位円を描いて

θ0(= 1), θ1, θ2, θ3, θ4

をプロットしてみれば，それらが単位円の 5 等分となっていることが分かります。
つまり，x5 − 1 = 0 の解は単位円を 5 等分する点となっていて，x5 − 1 はそれらの点
により因数分解されることが分かります。
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問題 1 簡単なスケッチで良いので，実際に図示してみて下さい。

問題 2 どのようなやり方でも良いので，実際に x5 − 1 を（実数の範囲で）因数分解す
る手段を見つけて下さい（対面授業が再開されたときに，ディスカッションの課題とし
ます）。

問題 3 少なくとも数学に関しては，ウィキペディアはかなり信頼できます。カルダーノ
による３次方程式の解法について，ウィキペディア等を参考にして調べて下さい。

このように，複素数の範囲で考えることにより，代数の問題が幾何的な洞察とも結びつ
き，数学を統一的に扱う入り口が生まれます。さらに，オイラーの公式

eit = cos(t) + i sin(t)

という複素数ならではの公式があり，複素数は解析での基本的関数

三角関数と指数関数

を統一的に扱うことも可能にします。少なくとも，サイン，コサインという２つの関数の
絡みで記述するよりも，指数関数で記述した方が

θk = ek·
2πi
5

と簡単に書き表されます。

このようにして，複素数は数学の世界での地位を確実に上昇させていったわけですが，
決定的な一歩は，これからのテーマ「複素関数論」の完成なのでしょう。この理論により，
複素数の世界での解析学は実数の世界のそれより圧倒的に統一がとれて美しいだけでな
く，（なんと言うのか）

定冠詞付きの “the functions”

を扱う数学となっているのです。われながらわけの意味不明な発言で申し訳ありません
が，実数の世界の解析学に登場する関数が

人為的にいくらでも作られるもの

であるのに対して，複素数の世界の関数（正則関数）は，フェネック，アライグマ，サー
バル，カンザシフウチョウ等の自然界の生き物がそれぞれ研究対象となるのと同じく，
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それぞれ数学の研究対象とする価値のある関数

なのです。

なにはともあれ，十九世紀終わり頃にもなると，数学の世界では，複素数が想像の産物
などではないことは，共通理解となっていたようです。一方，数学の世界を一歩出れば，
例えば回路理論などで便利な道具として使われていたにしても，虚数はやはり，物理的な
世界という real な世界のものではない，と思われていたのでしょう。しかし，二十世紀
前半の量子力学の誕生は，複素数の地位を，物理の世界においても確保することになりま
す。なにしろ，量子力学の基礎方程式に，虚数単位 i が入っているのですから。

それでは，これから複素関数論を紹介して行くにあたって，real な世界と複素数の世界
との “印象”を述べておきましょう（個人の感想ですけど）

海岸の防波堤に立って，次々に押し寄せてくる波を眺めているとしましょう。
「現実の世界」で観測される現象は，海水と大気の境界としての海面の変化で
す。しかし，その海面の変化（波の形）は，その下の海水の運動により形作ら
れるのであって，波について知りたいと思ったら，「現実」として目に映る現象
そのものよりも，それを形作る水面下の現象を調べるべきなのです。つまり，
それが複素数の世界という “real でない世界” なのです。

無駄話はこれで止めにして（本当かな？），複素関数論で使われる基本的な手段を紹介
しましょう。

1.3 基本的な道具

もちろん，複素関数論を勉強して初めて理解できる手段もあるのですが，高校数学から
基本的な考え方として使われてきた道具は，やはり，複素関数論でも中心的役割を果たし
ます。

1.3.1 因数分解

多項式 xn + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0 の因数分解

xn + an−1x
n−1 + · · ·+ a2x

2 + a1x+ a0 = (x− γ1)(x− γ2) · · · · · (x− γn)

は，数学のすべての分野で重要です。「代数学の基本定理」（後で出てきます）によれば，
an−1, . . . , a1, a0 が（実数に限らず）複素数ならば，多項式は必ず因数分解されます（ただ
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し，因数分解を実現する γ1, . . . , γn という複素数が存在することを保証しているだけで，
それらを見つける手段があると言っているわけではありません）。

因数分解が重要であるひとつの理由は，多項式の振る舞いが γ1, γ2, . . . , γn（多項式の根）
を通して理解できるからです。

Remark. 「方程式の解」を「方程式の根」と言うのは，少し古めかしい言い方だと思
います。ただし，解という言葉は，多項式から決まる「方程式の解」と言うことはできて
も，「多項式の解」と言うのは，少し変です。一方，根という言葉ならば，「多項式の根」と
言うこともできます。因数分解という視点からは，多項式の根と言いたいのです。なお，
もっと格好いい用語としては，零点という用語があります。 □

ところで，因数分解は，有限個の根から決まる有限個の積ですが，無限個の根から決ま
る無限個の積を考えてみたらどうでしょうか。無限個の根の最も簡単な配置（整然とした
配置）は，それらが，

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

と等間隔で並んでいる場合です。それでは，

x(x− 1)(x+ 1)(x− 2)(x+ 2)(x− 3)(x+ 3) · · · ·

という「因数分解された形」を考えたら・・・・・・と言うと，これは無謀でしょう（収束しま
せん）。しかし，根の配置を換えずに

x

(
1− x2

12

)(
1− x2

22

)(
1− x2

32

)(
1− x2

42

)
· · · ·

という形にしておくと，この無限積は収束して

sin(πx) = πx

(
1− x2

12

)(
1− x2

22

)(
1− x2

32

)(
1− x2

42

)
· · · ·

という等式が得られます。つまり，正弦関数は，期待される最高の形で因数分解されるの
です。ついでに言うと，右辺の x3 の係数を強引に計算すると

−π
(

1

12
+

1

22
+

1

32
+ · · ·

)
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であり，一方，sin(πx) のテーラー展開での x3 の係数は

−π
3

3!

です。つまり，

1

12
+

1

22
+

1

32
+ · · · = π2

6

無限積による「因数分解」の一般形は，複素関数論のひとつの成果ですが，残念なが
ら，半年の授業でここまで進むことはできません。それでも，例えば三角関数が，

1. 直角三角形という幾何を出発点としているにも関わらず，

2. 「無限個の積の因数分解のなかで最も整然とした形のもの」であり，代数学の視点
から最高の関数となっている

という事実には，感動しておきましょう。

1.3.2 等比級数の和の公式

無限積の形の因数分解などという高級な話題の直後に「等比級数の和の公式」では拍子
抜けすると思いますが，等比級数の和の公式は複素関数論の必殺技です。まず，等比級数
の和の公式

1

1− x
= 1 + x+ x2 + x3 + · · ·

の x を複素数 z に書き換えておきます：

1

1− z
= 1 + z + z2 + z3 + · · ·

収束については，

1− zn+1

1− z
= 1 + z + z2 + z3 + · · ·+ zn

と有限和にして置いてから n 7→ ∞ とすれば，|z| < 1 のとき（そしてそのときのみ）収
束することは明らかです（複素数の絶対値などについては，次回に復習します）：

1

1− z
= 1 + z + z2 + z3 + · · · , |z| < 1

等比級数の和の公式は，次の３つの点で重要です。
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1. 一般のべき級数

a0 + a1z + a2z
2 + a3z

3 + · · ·

が収束するかの判定は，等比級数との比較をうまく使って行うことが多い。これは
複素関数論で大切な技法なのですが，半期の授業（しかも，フーリエ級数まで扱う）
という時間的制約があるので，あまり触れることはできません。

2. 最初に等比級数があって，その和が
1

1− z
というのではなく，逆に，

1

1− z
をべき

級数に展開しているという視点。より一般には，

1

a− z

の展開であり，

(a) |z| < |a| のときは，

1

a− z
=

1

a
·
{
1 +

(z
a

)
+
(z
a

)2
+ · · ·

}
と展開され，

(b) |z| > |a| のときは，
1

a− z
= −1

z
· 1

1− a
z

= −1

z

{
1 +

(a
z

)
+
(a
z

)2
+ · · ·

}
と展開される

と一般化されます。このテクニックは，ローラン展開という形で登場します。

3. 上の２つは，どちらかというと計算技巧という感じですが，今度は，より概念的で
捉えづらい重要性です。今，関数 f(z) が

f(z) = 1 + z2 + z3 + z4 + · · ·

というべき級数の形で定義されているとします。この関数は，右辺で定義されてい
るので，定義域は右辺が収束する |z| < 1 の範囲に限られます。一方で，

1

1− z
= f(z)

という等式（関数等式）が成り立ち，
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関数
1

1− z
は，z = 1 で分母が 0 となり定義されない

という唯１つの例外を除き，すべての複素数で定義されます。複素関数論の重要な定
理「解析接続の一意性」を背景として，複素関数論では次のような捉え方をします：

f(z) は，なんらかの正則関数（一匹の象を想像して下さい）を定めてい
るのであり，

1 + z2 + z3 + z4 + · · ·

という元々の式は，|z| < 1という「狭い範囲でのその関数の姿」（例えば，
象の尻）を見ているに過ぎない。一方，

1

1− z

は，可能な限り広い範囲で成立する式である（全体の姿を見ている）。

解析接続の一意性は，動物さんに喩えると，

「全体の姿は異なるのに，ある程度の部分での姿は一致するよう
な異なる種類の動物は存在しないこと（例えば，象の尻とゾゾの
尻が全く同じということはない）」

という感じのことを保証している。よって，

象の尻

1 + z2 + z3 + z4 + · · · |z| < 1

と，

ゾゾの尻 つまり，
1

1− z
z ̸= 1 · · · · · ·これはゾゾ全体の姿

の尻
1

1− z
|z| < 1

が一致しているのだから，「象はゾゾである」。つまり

f(z)の「全体の姿」が
1

1− z
であることが必然的に，任意性なく

確定する。

これは，あまりにも情緒的でふざけた説明ですが，後で登場する「解析接続」とい
う冷たい見かけの概念は，実は，ちょっと手に余るほど味わい深い魅力をもってい
るのです。
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1.3.3 部分分数展開

1

b− z
という形の式は，べき級数に展開されることがわかりました。分子が 1 でなく，

a

b− z

の形であっても，同じ事です。さらに，

a1
b1 − z

+
a2

b2 − z
+ · · ·+ an

bn − z

という形の式も，それぞれをべき級数展開してから和をとれば，それもべき級数の形にな
るので，べき級数展開が可能です。

問題 4

1

1− z
+

2

3− z
+

3

4− z

を

a0 + a1z + a2z
2 + a3z

3 + · · ·

の形に展開せよ。

つまり，部分分数展開ができるならば，簡単に，べき級数展開が得られることになりま
す。テーラー展開のように高階微分を計算する必要はなく，等比級数の和の公式を使うだ
けのことです。
これは強力な手段ですが，部分分数展開ができる式は，有理式に限られます。

それでは，無限個の項への部分分数展開ならばどうでしょうか。結論を言うと，これこ
そが，複素関数論最強のテクニックです。ただし，この場合，「無限個」は，離散的極限

lim
n→∞

n∑
j=1

aj
bj − z

ではなく，積分∫
at

bt − z
dt

の形で実現されます（コーシーの積分公式）。そして，
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各 tについての
at

bt − z
を（等比級数の和の公式で）べき級数展開してから，べ

き級数の各項を t で積分すれば良い

という発想で理論を展開することになります。　

以上，とりとめの無い形ですが，これからの話の流れの「予告編」をしてきました。
次回からは複素関数の話を始めます。高校で既に習ったこととは思いますが，最初に複
素数についての復習をします。

13



2 複素数（第２回）
以下の記号は，これから断りなく用います。

2.1 記号

N 自然数（正の整数）の集合　 (the set of positive integers) = {1, 2, 3, . . .}
Z 整数の集合 (the set of integers)

Q 有理数の集合 (the set of rational numbers)

R 実数の集合 (the set of real numbers)

C 複素数の集合 (the set of complex numbers)

これらの集合は，単に集合であるだけでなく，和と積という２つの演算をもつ「代数系」
というものになっています。以下，これらの記号はほとんどの場合，（代数系としての意味
も含めての）自然数，整数，・・・を表します。

2.2 可換環としての複素数

大げさのようですが，複素数体C を

可換環，可換体，複素共役

という視点で整理してみます。

2.2.1 可換環

定義 1 ２つの２項演算（“+”と “·” で表す）をもつ代数系 (K,+, · ) が以下の性質をみた
すときK は環 (ring)であるという。

1. ２項演算 “+” について可換群になる：　

結合律 z1 + (z2 + z3) = (z1 + z2) + z3

単位元の存在 “+” についての単位元 0 ∈ K が存在して
z + 0 = z, 0 + z = z

14



逆元の存在 各 z ∈ K に対して，“+” についての逆元−z が存在して
z + (−z) = 0, (−z) + z = 0

可換性 z1 + z2 = z2 + z1

2. ２項演算 “·” について以下が成り立つ（z1 · z2 を z1z2 で表すことにする）：

結合律 z1(z2z3) = (z1z2)z3

単位元の存在 “ ·” についての単位元 1 ∈ K が存在して
z · 1 = z, 1 · z = z

3. 　分配法則が成り立つ：

z1(z2 + z3) = z1z2 + z1z3, (z1 + z2)z3 = z1z3 + z2z3

さらに，積についての可換性

z1z2 = z2z1

が成り立つとき，K は可換環 (commutative ring)であるという。

2.2.2 可換環としての複素数 (C,+, · )

複素数の集合

C = {a+ bi | a, b ∈ R }

に高校で学んだ和と積の演算
z1 = a1 + ib1, z2 = a2 + ib2 ∈ C に対して

z1 + z2 = (a1 + a2) + i(b1 + b2), z1 · z2 = (a1a2 − b1b2) + i(a1b2 + b1a2)

を定めると，(C,+, · ) は可換環になります。このことは，複素数としての和・積の計算は

文字式として計算して i2 が現れたら−1 に置き換えるという計算

をしているに過ぎないと考えれば納得できると思います。ただし，本気で（例えば積につ
いての結合律を）チェックし始めると，ちょっとした作業にはなります。
和についての単位元は 0 = 0+ i · 0, 積についての単位元は 1 = 1+ i · 0 であり，和につ

いての a+ ib の逆元は−1− ib であることは，すぐに分かると思います。
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Remark. 厳密に言うならば，複素数としての実数 a = a+ i · 0 と実数 a は区別した後
に「同一視する」という作業を経て同じものとみなすべきなのですが，このようなうるさ
いことを言うのは止めておきましょう。 □

2.3 可換体としての複素数

2.3.1 可換体

ここまでで，C が可換環であることはわかったのですが，積についての逆元の存在は
示されていません。高校の数学では，あっさりと

1

a+ ib

と書いておいてから，有理化という計算をしたかも知れませんが，

複素数は，実数 a, b を用いて a+ ib と書き表される数

として定義した以上，もう少し言うならば

複素数とは，順序対 (a, b) を a+ ib と書いて，それに和と積を定義したもの

としている以上，いきなり

1

a+ ib

が存在するものと考えることは出来ないのです。

逆元の存在について復習する前に，まず，可換環の一種である可換体 (commutative field)

の定義をしておきます。それから，複素共役というものを定義し，それを用いて逆元の存
在を示すことになります。

定義 2 可換環 (K,+, · ) が条件

z ∈ K, ただし z ̸= 0, に対して積についての逆元 z−1 が存在する

を満たすとき，この可換環K は可換体であるという。

例 1 (R,+, · ) と (Q,+ · ) は可換体（実数体と有理数体）。
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可換環とか可換体とか，「一般代数学」の用語を使っているので難しそうに聞こえます
が，可換環や可換体についての理論を展開しようとしているわけではありません。逆に，
「可換体C」と言ったときは，可換体の性質として仮定した条件以外にはなにも使わない
と宣言していることになるので，むしろ簡単な設定になっているのです。

2.3.2 複素共役

z = a+ ib に対して，a− ib を z の複素共役 (complex conjugate) といい，

z

で表す。複素共役について，次の性質が成り立つことは，直接に計算して確かめることが
出来ます：

z1 + z2 = z1 + z2

z1z2 = z2 · z1

また，

複素数 z の複素共役 z の複素共役 z は z

であることもすぐにわかります。

逆元の存在と関係して大切な式は，z = a+ ib とするとき

z · z = a2 + b2

となる，ということです。そして，a2 + b2 は実数なので，大小関係等の実数の性質を利
用することができます：

1. 実数 xの平方 x2は正の数，もしくは零であり，x2 = 0 となるのは x = 0 のときの
み。したがって，

2. a2 + b2 = 0 となるのは，a = b = 0 のときのみであり，

3. a+ ib ̸= 0 ならば，実数 a2 + b2 は 0 ではなく，逆元を持つ

という流れで

z ∈ C, z ̸= 0 ならば，z · z は逆元をもつ
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ということがわかります。

実は，これで z の逆元の存在は示されています。なぜなら，

1. z ∈ C, z ̸= 0 に対して z ∈ C が決まり，

2. zz は 0 でない実数であり，逆元 (zz)−1 をもつ。

3. したがって，

z (zz)−1 ∈ C

であり，

z ·
(
z(zz)−1

)
= (zz) (zz)−1 = 1

となるので，

4. z(zz)−1 は z の逆元

という理屈です。なにやら入り組んだ議論をしているのですが，z = a+ ib と書いて計算
してみれば，

z(zz)−1 = (a− ib) · 1

a2 + b2

であり，有理化の計算をしているだけです。要点は，

1

a2 + b2

は，0 でない実数 a2 + b2 の（実数体R での）逆元として存在が保証されている，という
ことです。

以上により，(C,+, · ) は，和・差・積という演算が出来る可換環と言うだけでなく，0

以外での複素数による「割り算」も出来る可換体であることがわかりました。

高校数学の復習に過ぎないようなのですが，真面目に扱うと意外にややっこしいのです。
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2.4 回転としての積

2.4.1 線形空間としての複素数

c = a+ ibに対して，a,bをそれぞれ cの実数部分 (real part)，虚数部分 (imaginary part)

といいℜ(c), ℑ(c)で表すことにします。つまり，

c = ℜ(c) + iℑ(c)

Remark. ℜ とℑ は，それぞれドイツ文字のR と I です。他の記号を使うテキストは
いくらでも在り，例えば，Re, Im でも良いのですが，どうせあまり使わないので，ドイ
ツ文字にしてみただけです。 □

複素数 cは，xy座標平面において x = ℜ(c), y = ℑ(c)として表示することもできます。
また，実数 aは，複素数 a+ 0 · iと同一視して，R ⊂ Cと考えることにします。

複素数の和については，複素数独自の特徴があるわけではなく，和に関する限り，複素
数は実数２つの対

(x, y) ∈ R2

と変わるところがありません。さらに，スカラーを実数に限定すれば，C を 2 次元実線
形空間R2 と同一視することも可能です。

2.4.2 複素数の積

複素数体 (C,+, · ) ならではの特徴は，積の演算に現れます。それを掴むためには，R2

と関連付ける実数部・虚数部という表示ではなく，極座標による表示を用いるべきです。

複素数 z = a+ ib ∈ C の a, b を極座標で

a = r cos θ, b = r sin θ

と表したとき，r (=
√
a2 + b2 =

√
zz)を z = a+ biの絶対値 (absolute value)といい |z|で

表し，θを zの偏角 (argument)といいます。
絶対値 |z| は

|z| =
√
zz

として一意に定まる一方，偏角は±2nπを除いて定まることになります。この
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±2nπ を除いて決まる

ということ，逆に言うならば，一意には決まらないということは，後でなにかと困った問
題を発生させるのですが，ここでは，高校での一般角につきまとう±2nπ と同じ事とし
て，これで良いことにしておきましょう。

問題 5 複素数 z1, z2 が

z1 = r1 (cos θ1 + i sin θ2)

z2 = r2 (cos θ2 + i sin θ2)

と表されているとする。このとき，三角関数の加法定理を用いて，

z1z2 = r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2))

と表されることを示せ。

以上により，絶対値と偏角により記述される極座標では，複素数の積は

• 絶対値は積： r1r2

• 偏角は和：θ1 + θ2

として計算されることがわかります。

Remark. 極座標

x = r cos θ

y = r sin θ

の定義で，r として負の値を許している定義もあるのですが，これは

1. 座標は一意に決まるべき

2. r として負の値を許すと，射影幾何（という数学）との区別がわかりづらくなる

という点で，困った定義です。r の値は正の実数に限定します。 □

Remark. また，一意性という観点から，
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座標平面の極座標表示は，座標面から原点を取り除いた残りの部分について
の座標表示である

としておくべきです。原点を除外した理由は，r = 0 のときには偏角 θ の値が何でも良く
なってしまうためです。±2πn という程度の不確定ならばなんとか対処できても，何でも
良いというのでは，さすがに座標として不適なのです。 □

それでは，ここで「数学は厳密な定義と証明により構築される」という原則から外れる
ことにします。次のオイラーの公式を認めてしまうことにしましょう：

eiθ = cos θ + i sin θ （オイラーの公式）

「認めてしまう」と言いましたが，

実数 e の虚数乗の定義はされていないのだから，オイラーの公式の右辺で左
辺を定義していると考えれば，証明は不要

という立場をとることも可能です。確かに，数学の定義は，建前としては理由は要らない
のですが，まともな数学の定義には，必ず背景があります。したがって，「定義だから理由
は要らない」と開き直るぐらいなら，「認めてしまう」と言う方が，まだましなのです。

そうは言っても，背景の説明を全くせずに「認めてしまう」のでは寂しいので，背景の
１つを，つぎの課題にしておきます：

問題 6 ex のテイラー展開

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ x4k

(4k)!
+

x4k+1

(4k + 1)!
+

x4k+2

(4k + 2)!
+

x4k+3

(4k + 3)!
+ · · ·

において，この式の右辺は x に複素数を代入しても計算できることに注意して，x に iθ

を代入してみよ。これが，eiθ を定義していると考える。
また，cosx, sinx のテーラー展開

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ x4k

(4k)!
− x4k+2

(4k + 2)!
· · ·

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ x4k+1

(4k + 1)!
− x4k+3

(4k + 3)!
· · ·
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を用いて，x に θ を代入した cos θ + i sin θ をそれぞれの右辺で計算して，eiθ と比較し，
オイラーの公式が成立することを確認せよ。

上の問題で「確認せよ」と言っているのだから，「認めてしまう」などと謙遜しないで
良さそうに思えるのですが，厳密には，

1. テーラー展開の右辺の最後にある “· · · ” の意味。つまり，収束性の問題。

2. “· · · ” のつくテーラー展開という無限級数で，項を実数部と虚数部にまとめる操作
が可能であることの保証

など，曖昧な点が残されているので，「認めてしまう」と言うのが限界なのです。
ただし，厳密な議論は大切だとは言うものの，一方で，多少乱暴な計算であっても，ど
んどん先に進んで全体像を把握する，というアプローチも必要です。この「わんぱくでも
良い，逞しく」というスローガンは，実際の数学史のなかで過去の偉大な数学者が辿って
きた道筋そのものなのですが，（数学系の）大学初年度での授業では禁じ手です。それは，
十九世紀中頃からの数学を理解するためには厳密な議論に頼る他に道がないからで（そん
なものを必要としない超人もいますが），最初に厳密な論証の感性を養っておくのが効率
が良いからなのでしょう。しかし，情報科学のカリキュラムでは，解析学の基本となる厳
密な論理に割く時間は，残念ながら不足です。情報科学科の場合には，

厳密な論証が必要であることは常に意識しながら

多少乱暴な議論でどんどん先に進み，将来数学を本業とする人は

修士課程修了までに各自で，厳密な論証により展開された理論をマスターする

ということを心がける方針で良いと思います（ただし，確率論を除く。確率論では，危な
そうな計算は，即座に間違った結果につながります）。

2.4.3 オイラーの公式を用いた極表示

オイラーの公式を用いて極座標表示を書き直すと

z = reiθ

となります。この場合，z1 = r1e
ıθ1 , z2 = r2e

ıθ2 の積 z1z2 は

z1z2 = (r1r2)e
i(θ1+θ2)
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であり，i を単なる文字だと思って普通に計算すれば，「指数法則」に過ぎません。

ここで，r1r2 という積と，θ1+ θ2 という偏角の和が出てきますが，r1r2 については，複
素数の積そのものの特徴と言うよりは，実線形空間でのスカラーの積といった面もあり，
複素数の積ならではの特徴は，「偏角の和」にあると思います。
このことは，複素平面の単位円

S1 = {z ∈ C | |z| = 1 }

に限定して考えると，つまり r = 1 の複素数に限定して考えるとはっきりします。

1. S1 は複素数の積について閉じた集合であり，

2. S1 の要素 z ∈ S1 は偏角 θ により表され

3. 積は偏角の和となる

ということです。

一方，R ⊂ C は

1. R は複素数の和について閉じた集合であり，

2. R の要素 z = x+ i · 0 は唯１つの実数 xで表され

3. 和は・・・・・・これは和そのもの

となっているので，

1. 積についての単位円

2. 和についての実数直線

という対比が見えます。

また，Cにおいて，Rと単位円 S1 = {z ∈ C | |z| = 1 } は

z ∈ R ⇐⇒ z = z

z ∈ S1 ⇐⇒ zz = 1

という性質で特徴づけられていることも，印象的です（線形代数のエルミートとユニタ
リーの対比にも，この特徴が現れます）。
また，複素数 zに対して
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1. z + z は実数

2. zz は非負実数

ということも意識しておきましょう。

ところで，何かの間違いで「です。ます。」調の文章にしてしまったのですが，そろそ
ろ飽きてきました。ここからは，「である。」調の文章に変えることにする。
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3 正則関数（第３回）

3.1 関数記号の用法

これから，複素数 z に複素数w を対応させる関数w = f(z) について，その（複素数の
意味での）微分を定義する。

独立変数 z も従属変数w も複素数なのだが，一方で，複素数 z, w は

z = x+ iy, w = u+ iv

と，それぞれ２つの実数で表すことができる。したがって，

1. u = u(x, y), v = v(x, y)

2. w = u(x, y) + iv(x, y)

と考えて，関数w = f(z) の代わりに，実 2 変数の複素数値関数

w = w(x, y)

を考えることもできる。

Remark. f(z) から u(x, y), v(x, y) を式として定義するならば，

u(x, y) = ℜf(x+ iy)

v(x, y) = ℑf(x+ iy)

であり，また，

w(x, y) = f(x+ iy)

ということになる。 □

Remark. w = w(x, y) という書き方だが，これは従属変数w の記号をそのまま関数記
号として流用する表記である。その意味では，

w = f(z)

も

w = w(z)
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と書くことも許される。 □

Remark. 微妙に混乱した表記なのだが，

w = f(x, y)

と表すこともある。これは，w = f(z) が z の関数であることを尊重するならば，

w = f(x+ iy)

でなければならない。しかし，複素関数論では，

w = f(z), w = f(x, y)

という，正確な記号の使用法としては好ましくない両立が許されている。これは便利なの
だが，これから述べる「コーシーリーマンの関係式」を考える際には，誤解の元となりや
すいので注意してほしい。 □

Remark. 正確な記号の使用法という意味では，そもそも，伝統的な表記

y = f(x)

も，好ましくない。実際，コンピュータに理解して貰うためには，こんな

1. 関数 f を表しているのか，それとも

2. 関数 f の x での値が y であることを表しているのか

どちらとも読み取れる表記ではまずい。コンピュータではなく人間相手でも，この表記の
弱点のため，「関数 fn が収束する」ということが自動的に，「関数 fn が各点収束する」と
受け止められてしまう傾向にあるのだろう。このような混乱を招く表記は，情報科学科の
センスとしては論外なのだが，数学（数理論理学を除く）は伝統的に，「数学がわかって
いる人たちの間で成立する厳密さ」のみを要求するので，記号の正しい解釈は前後関係か
ら読み取らなければならない。 □

26



3.2 コーシー・リーマンの等式

3.2.1 （複素関数としての）微分の定義

w = f(z) の z = z0 での微分を定義する式は，実数変数の関数と同じく，

f ′(z0) = lim
△z→0

f(z0 +△z)− f(z0)

△z
(1)

である。ただし，細かい注釈と，定義域についての用語の準備と，そして最後に，本質的
な注釈が必要である。まず，「細かい注釈」を片付けておこう：

1. 高校数学での微分の定義

lim
h→0

f(x0 + h)− f(x0)

h

での記号 h の代わりに△z を用いている。h を使っても良いのだが，後で「僅かに
動かす量」が複数個必要になるので，h, k, ℓ などの記号では「なにを僅かに動かす
のか」という対応が見づらくなってくる。それならば，

z が（z0 から）僅かに変わるならば △z, 同様に，x, y が僅かに変わるな
らば△x, △y

とした方がわかりやすい。

2. ついでに言うと，「僅かに変わる」という「僅かに」は，△z 7→ 0 という気分を先取
りしているだけであり，「極めて小さい量」とか，ましてや，「無限小」といった意味
は（少なくとも建前上は）含んでいない。その（建前ではない）裏の意味を押さえ
て計算を進めることこそが，「微分法」という「無限小解析」のパワーなのだが，定
義に基づく論証をしている限りでは，「裏の意味」は必要ない。

3.2.2 定義域について

定義域についての用語を準備して置く。結論は，関数w = f(z) は

開領域（というC の部分集合）で定義されているとする

ということであり，あまり内容はない。少し長いので，最初は読み飛ばして，必要に応じ
て振り返ることにしても良いと思う。
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1. 関数w = f(z) の定義域は，通常，なんらかの領域の内部であり，z0 はその領域の
内部にあると考える。

(a) ここで，領域の定義は，

高校数学で想定しているような，平面（この場合は複素平面）の曲線
で囲まれた部分

であり，領域の内部は

その曲線で囲まれた部分，ただし，境界は含まない

のことと考えておけば良い。

(b) また，領域を定める曲線としては，ヒルベルト曲線その他の「妙なもの」を考
える必要はなく，「普通に図示できる」曲線を考えるだけで良い。

(c) ただし，ひとつの滑らかな曲線である必要はなく，長方形のように４つの曲線
（線分も曲線のひとつ）を連結したものであっても良い。

(d) 内部の定義を「ただし境界を含まない」とするのは，位相空間論の用語から見
れば乱暴なのだが，複素関数論では大抵の場合，これで通用する。

(e) なお，複素平面での部分集合 D の内部に点 z0 があるということの本来の定
義は

{z ∈ C | |z − z0| < ε } ⊂ D となる ε > 0 が存在する

ということである。

(f) ところで，さすがに領域という言葉をここまで限定して使うのも考え物なので，
複素関数論では，「良い領域」という言い方をする。

(g) つまり，定義域については

w = f(z) は良い領域D で定義されていて，z0 はDの内部にある

と言った言い方をすることになる。

以上で，定義域の問題は片付いている・・・・・・ならば良いのだが，もう少し用語が必要に
なる。
例えば，関数

f(z) =
1

(z − 3)(z2 + 1)

の定義域だが，z = 3, z = i, z = −i をどのように扱えば良いのだろうか：
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1. f(z) の定義域は，C 全体から 3, i,−i を取り除いた残りの集合であるとする。

2. f(z) の定義域はC 全体だが，3, i,−i という「やばい点」を持つと考える。

実感としては，後者なのだが，「やばい点」などという訳のわからない用語はともかく，
「f(z) は 3, i,−i で∞ を値に取る」という解釈すると，危ない。
実数の「無限大」は+∞, −∞ の２つがある「雰囲気」だが，複素数の「無限大」を考
えるとしたら∞ という「唯１つの無限大」しかないと考えた方が良く，実数の場合と解
釈そのものが異なる。この∞ を解釈するためには「リーマン球」という概念が必要にな
るので，今のところ，手が出せない。しかも，リーマン球で解釈したとしても，その∞
は「普通の四則演算できる」という意味での数とはならない。したがって，後者の解釈は，
「これはイメージです」ということにして，前者の解釈を選ぶべきである。

ただし，こうなると，定義域を「良い領域の内部」に限定したのではまずい。そこで，
上の (e) での定義を用いて，C の部分集合D は，D の各点がD の内部にあるとき，言い
換えると

{z ∈ C | |z − z0| < ε } ⊂ D となる ε > 0 が存在する

とき，開領域であるということにしよう。

実は，これは開集合 (open set) の定義になっているのだが，開集合は，かなり複雑怪奇
な図形となることもある。ここでの開領域という用語には，

定義としては開集合なのだが，実際に扱うのは，良い領域からいくつの簡単
な例外（例えば有限個の点）を取り除いた残り，としての簡単な開集合ばかり
なので，心配しなくても良い

という気持ちが込められている。

これから，特に断らない限り，複素関数w = f(z) は

なんらかの開領域で定義されている

と考える。

しかし，どうせ定義域として開領域しか考えないのだから，

領域という用語は，開領域を意味するもの定義し直す

ということにする（これが解析学での普通の用法）．
以上を踏まえて，次のように用語を使い分けることにする．
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1. 良い領域は，（いくつかの）簡単な曲線で囲まれた部分の内部．言い換えると，

曲線で囲まれた図形，ただし，境界を含まない

のこと．

2. 良い領域G に，その境界を付け加えた図形（つまり，「ただし境界も含む」としたも
の）をG で表す．

3. 領域は，正式には平面の開集合のこと．ただし，実際には，良い領域からいくつか
の点を取り除いた程度の簡単な開集合と思って良い．

Remark. 領域の正式な定義には，「連結な」という条件が加わるのだが，実は「連結な」
という定義は意外に面倒なので，気にしないことにしよう． □

3.2.3 本質的な注釈

本質的な注釈は，ここからであり，コーシー・リーマンの等式を導く。
要点は

△z は複素数を動きながら 0 に近づく

ということであり，△z = △x+ i△y と書くならば，

△x と△y は独立に（相互に関係なく）0 に近づく

ということである。それにも関わらず，

lim
△z→0

f(z0 +△z)− f(z0)

△z
が存在することを要求しているわけであり，複素関数としての微分の定義は，収束という
ことに関してかなり厳しい条件となっている。
それでは，この「厳しい条件」を調べてみよう．

まず，微分 f ′(z0) の定義式 (1) を△z = △x+ i△y として書き換えると，

f ′(z0) = lim
△z→0

f(z0 +△x+ i△y)− f(z0)

△x+ i△z
(2)

となる．
△x と△y は独立に動いて良いのだから，まず，どちらかを 0 に固定して，△x, △y の
ひとつだけを動かしてみる：
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• △x→ 0, △y = 0 としてみると，△z = △x であり，

f ′(z0) = lim
△x→0

f(z0 +△x)− f(z0)

△x
.

• △x = 0, △y → 0 としてみると，△z = i△y であり，

f ′(z0) = lim
△y→0

f(z0 + i△y)− f(z0)

i△y
.

さらに，f(z) = f(x+ iy) を x, y の 2-変数関数とし見て

f(z) = f(x, y)

と書くと（ルーズな記号の使い方だが許容範囲），

f(z0 +△z) = f(x0 +△x+ i(y0 +△y)) = f(x0 +△x, y0 +△y)

と表され，

f ′(z0) = lim
△x→0

f(z0 +△x)− f(z0)

△x

= lim
△x→0

f(x0 +△x, y0)− f(x0, y0)

△x
=
∂f

∂x
(x0, y0)

f ′(z0) = lim
△y→0

f(z0 + i△y)− f(z0)

i△y

= lim
△y→0

f(x0, y0 +△y)− f(x0, y0)

i△y
=

1

i
· ∂f
∂y

(x0, y0)

となる．したがって，f が z0 で微分可能であるためには，z0 = x0 + iy0 において

∂f

∂x
=

1

i
· ∂f
∂y

(3)

という等式が成立している必要がある．この等式をコーシー・リーマンの方程式 (Cauchy-

Riemann equation)と言う．
また，f(x, y) = u(x, y) + iv(x, y) と表すと，等式 (3) は

∂u

∂x
+ i · ∂v

∂x
=

1

i
·
{
∂u

∂y
+ i · ∂v

∂y

}
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と書き直され，両辺の実数部と虚数部はそれぞれ等しいので

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
(4)

が得られる．この等式も，コーシー・リーマンの方程式 (Cauchy Riemann equations) と
言う．

定義 3 w = f(z) は領域D で定義された関数とする。D の点 z0 について

lim
△z 7→0

f(z0 +△z)− f(z0)

△z

が存在するとき（収束するとき），f は z0 で（複素）微分可能である，もしくは，正則
(holomorphic) であるといい，

f ′(z0) = lim
△z→0

f(z0 +△z)− f(z0)

△z

と表す。f がD のすべての点 z0 で正則であるとき，f はD で正則であるという。

以上により，次の定理が得られた：

定理 1 w = f(z) は領域 G で定義された関数であり，z0 ∈ D とする。z = x + iy,

w = u(x, y) + iv(x, y) と表すと，f が z0 で正則であるためには，

1. u(x, y), v(x, y) が x, y について z0 = x0 + iy0 で偏微分可能であり，

2. それらの偏微分がコーシーリーマンの関係式を満たす

ということが必要である。

この定理では，

正則ならばコーシーリーマンの関係式を満たす

と言っているだけで，

コーシーリーマンの関係式を満たすならば正則

とまでは主張していない。これは，u(x, y), v(x, y) が偏微分可能であるというだけでは成
り立たず，
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u = u(x, y), v = v(x, y) がC1 級である

という前提で成り立つ。しかし，実際には，

偏微分可能だがC1 級ではない（偏微分可能だが偏導関数が連続関数にならな
い）例は，微積分の教科書以外ではあまり出現しない

という経験則があるので，

正則である条件は，コーシーリーマンの関係式が成立すること

と（偏微分可能性とC1 級であることの区別を曖昧のまま）理解してしまっても，良いこ
とにしよう。

Remark. このような，いい加減な態度をとった言い訳だけは述べておこう：

1. 正則であることが，単に偏微分可能であることと大きく異なることを知っておくこ
とは重要なので，

正則であるためにはコーシーリーマンの関係式を満たすことが必要

ということは大切である。

2. しかし，u(x, y), v(x, y) がコーシーリーマンの条件式を満たすことからw = f(z) が
正則であることを確かめる状況は（試験問題を除けば）少なく，

3. ほとんどの場合，f(z) という z の式の形で（高校で x の式について微分可能性を示
したのと同じやり方で）微分可能性を示すことになる。

4. 正則であることの正確な必要十分条件を得るためには，１学年の「解析学及び演習」
で最もわかりづらかった「全微分」と同じ議論が必要になるので避けた。

□

このような事情で，曖昧な記述で済ませた。また，微分の計算も「高校での微分の計算
と同じ」で済ませてしまうが，これではあんまりだという気もするので，「補充１」を用
意しておいた。これは必須ではないし，また，他のテキストできちんと勉強しても良いと
思う。

それでは，これから

「コーシーリーマンの関係式を用いて，次の関数が正則であるか調べよ」
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というタイプの出題をするが，そこで登場する関数はすべて C1 級のなので，コーシー
リーマンの関係式を満たすことをもって正則であるとして良い。

問題 7 コーシーリーマンの関係式を用いて，次の関数が正則であるかを調べよ。また，正
則となるものについては，f ′(z) を求めよ。

1. u(x, y) = x2 − y2, v(x, y) = 2xy

2. u(x, y) = x2 + y2, v(x, y) = 2xy

3. u(x, y) = x, v(x, y) = −y

4. f(z) = z

5. u(x, y) = ex cos y, v(x, y) = ex sin y

このような問題は，複素関数論の授業の期末試験では定番（⇐ 大切なお知らせ！）であ
るにもかかわらず，複素関数論を展開する際には，コーシーリーマンの関係式はそれほど
使われない。実際には，f(z) を u(x, y) と v(x, y) の式を与える事により定める状況は少

なく，多くの場合，f(z) は z の式，例えば，z2 − 3z + 1,
z − i

z + 1
, ez といった形で現れる。

そして，それらの微分は，これまでと同じように，（i は i2 = −1 となる文字と思って）計
算すれば，正しい答えが得られる。

注意　 z で書かれた式は，多くの場合正則なのだが，重要な例外は

f(z) = z は正則ではなく，したがって，z を含む式は，正則でない場合が多い

ということである。z というものが引き起こす混乱は，虚数単位 i を導入する際の任意性
によるもので，厄介である。

注意　もうひとつ，正則かどうか以前に，実変数の場合には問題なく扱うことの式が，z
の式とした途端に慎重な扱いが要求される場合がある。典型的な例は，

f(x) = x
1
2　を　 f(z) = z

1
2　とした場合

であり，この場合，z の定義域の決め方に慎重な注意が必要になる。

Remark. 「コーシーリーマンの関係式を満たすので正則」というタイプの結果は，複
素関数論の枠内でよりも，
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実数値の２変数関数 u(x, y) が調和関数ならば，つまり

∂2u

∂x2
+
∂2u

∂y2
= 0

を満たすならば，w = u(x, y) + i v(x, y) が正則関数になるような v(x, y) が存
在する

という形で使われることの方が多い。 □

Remark. 複素関数論では，良い領域G の

G で正則

という仮定が頻出する。G は境界となる曲線も含むので，そこでの正則性を要求するた
めには，少し工夫が必要である。実数の関数の微分でも，定義域の端点での微分を定義し
ようとすると，右微分とか左微分とか煩雑になった。平面の境界では，状況は更に煩雑に
なりそうである。そこで，「G を良い領域 とするときG で正則」ということを

1. G を内部に含むような領域D があって，

2. f はD で定義されていて，

3. D で正則

ということとして定義してしまう。このように定義しておけば，領域G の境界（となる
曲線）の点でも正則ということが意味を持つ。 □

以上，正則性を判定する条件としてコーシーリーマンの関係式を導入した。次に，この
条件式の意味について考えてみよう。

3.2.4 線形性

コーシーリーマンの関係式については，しばらく忘れることにして，線形な関数という
ものについて考えてみよう。

35



a, b, c, d ∈ R として

u(x, y) = a11x+ a12y

v(x, y) = a21x+ a22y

w(x, y) = u(x, y) + iv(x, y)

として，関数w = f(z) を定める。つまり，

f(z) = u(x, y) + iv(x, y) = (a11x+ a12y) + i(a21x+ a22y)

このとき，[
x

y

]
7→

[
u

v

]
=

[
a11 a12
a21 a22

][
x

y

]

は，R2 からR2 への実線形写像である。しかし，必ずしも，任意の複素数 c ∈ C に対し
て等式

f(cz) = cf(z) (5)

が成り立つとは限らない。つまり，CからCへの複素線形写像となっているとは限らない。

実際，等式 (5) が成り立つと仮定すると，z ∈ C は任意なので特に z = 1 とすると

f(c) = cf(1)

であり，c も任意なので c を z と書き換えると

f(z) = f(1)z

であり，関数の形は f(1) の値で決まってしまう。つまり，C からC への複素線形写像は，
f(1) = cR + icI として

z 7→ (cR + icI)z

の形に限定される。z = x+ iy の形では

x+ iy 7→ (cRx− cIy) + i(cRy + cIx)
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であり，[
u

v

]
=

[
cR −cI
cI cR

][
x

y

]

となるので，[
a11 a12
a21 a22

]
=

[
cR −cI
cI cR

]
(6)

この等式は，a11, a12, a21, a22 が条件

a11 = a22, −a12 = a21

を満たすときにのみ，複素線形写像となることを示している。

結論
R2 からR2 への実線形写像[

x

y

]
7→

[
u

v

]
=

[
a11 a12
a21 a22

][
x

y

]

は，a11, a12, a21, a22 が条件

a11 = a22, −a12 = a21

を満たすときにのみ，複素線形写像となる。

3.2.5 合成関数の微分

１学年の「解析学及び演習」で学んだ（はずの）2 変数関数の合成関数の微分公式につ
いて，復習しておこう。

定理 2 実 2 変数関数 u = u(x, y) は (x0, y0) の近くでC1 級であり，x, y は実変数 t に

x = x(t), x0 = x(t0)

y = y(t), y0 = y(t0)

と依存し，x(t), y(t) は t0 で微分可能であるとする。このとき，

u = u(x(t), y(t))
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として u を t の関数と考えたときの微分について，合成関数の微分の公式

du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

が成り立つ。

Remark. 煩雑で見づらくなるが，丁寧に書くならば

du

dt
(t0) =

∂u

∂x
(x0, y0)

dx

dt
(t0) +

∂u

∂y
(x0, y0)

dy

dt
(t0)

となる。 □

もう１つのC1級の 2 変数関数 v = v(x, y) を考えると，同じ事で，

dv

dt
=
∂v

∂x

dx

dt
+
∂v

∂y

dy

dt

となる。まとめてベクトルの形で書くと[
du
dt
dv
dt

]
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

] [
dx
dt
dy
dt

]

となる。つまり，行列[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

はベクトル[
dx
dt
dy
dt

]

をベクトル[
du
dt
dv
dt

]

に移しているのであり，この行列が複素線形写像を定めるならば，複素数

dw

dt
=
du

dt
+ i

dv

dt
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は複素数

dz

dt
=
dx

dt
+ i

dy

dt

に対して線形に定まることがわかる。ここで，この行列が複素線形写像を定める行列とな
る条件がコーシーリーマンの関係式の条件式であり，線形写像

z 7→ w = αz

となる比例定数α が f ′(z0) となる・・・・・・という流れで正則性を特徴付けることが出来そう
なのだが，正確には，正則という条件とは少し異なる。正則であるために u(x, y), v(x, y)

がC1 級であることを要求するのは，少し強すぎる（⇐ 補充１）。この辺りの話は，それ
なりに厄介なので，「これはイメージです」ということにして，あまり細かいことは気に
せずに先に進もう。
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4 補充１ （微分についての真面目な話）

4.1 微分の意味

w = f(z) は開領域D で定義された連続関数であり，z0 ∈ D とする。
まず，z0 で正則であることの定義

lim
△z→0

f(z0 +△z)− f(z0)

△z
= f ′(z0)

を，「線形近似と近似の誤差」という観点から，書き換える。

4.1.1 近似と誤差

z0 を固定して，△z を変化させると考えたときの，関数

△z 7→ f(z0 +△z)

を，△z の 1 次関数

△z 7→ a+ c△z

で近似する。まず，定数項 a を a = f(z0) と選ぶ必要があることは，直ちにわかる。
したがって，

f(z0 +△z) ≒ f(z0) + c△z

が最も良い近似になるように，1 次の係数 c ∈ C を選ぶことになる。

しかし，近似という概念 “≒” は，数学として統一して定義された概念ではない。
そもそも，c として何を選んだとしても，f(z) は連続関数なので，一応は近似となって

いる。そこで，厳密な論証が必要なときは，近似の誤差（左辺と右辺の相違）を（例えば）
E(△z) で表すことにして，その大きさを評価することになる：

E(△z) = f(z0 +△z)− f(z0)− c△z

と置いて，△z を変数とする関数E(△z) を定める。

したがって，

f(z0 +△z) = f(z0) + c△z + E(△z)
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であり，近似式という曖昧な記号は，等号に変わる。また，

f(z0 +△z)− f(z0) = c△z + E(△z)

として左辺を近似していると考えれば，1 次式による近似ではなく（1 次と線形を区別し
た厳密な意味で）線形近似となる。
どの形で考えるにせよ，△z = 0 としてみればE(0) = 0 であり，さらに，f(z) は連続
関数なので，

lim
△z→0

E(△z) = 0 (7)

となる。これが，「一応は近似になっている」ということの正確な意味である。この程度
の近似ならば，c = 0 を選んで定数関数にしてしまっても，成り立っている。

4.1.2 微分からの動機

c の値を選ぶ余地があるので，もっと良い近似を探すことにしよう。

微分の定義に戻って，f(z) が z0 で正則であるとき，c の値として f ′(z0) を選んでみる
と，定義により

f(z0 +△z)− f(z0)

△z
→ c

となる。これを

f(z0 +△z)− f(z0)− c△z
△z

→ 0

と書き換えると

lim
△z→0

E(△z)
△z

= 0

となっていることがわかる。これは，

E(△z) の△z に対しての比の値が 0 に近づくこと

を意味し，

E(△z) は，△z が 0 に近づくとき，△z という小さな数と比較してもさらに
小さくなる
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ということである。これが，式 (7) による評価よりも更に良い評価となっていることは，
明らかであろう。

ここで，「小さな数」という「大小関係」に関わる概念を持ち込んでいることに注意し
よう。しかし，複素数には「大小関係」は定められていない。ここで言っている「△z と
いう小さな数」は，正確には「|△z| という小さな数」と言うべきである。

以上を踏まえて，

lim
|△z|→0

|E(△z)|
|△z|

= 0 (8)

が成り立つことをもって，近似式

f(z0 +△z) ≒ f(z0) + c△z

が「線形近似となっている」ということの定義としよう。

Remark. 本当のところ， lim
△z→0

, lim
|△z|→0

のどちらでも同じなのだが，多変数関数（もっと

言うならば，バナッハ空間からバナッハ空間への関数）の微分へ進むためには，今のうち
に |z| → 0 としておいた方が連想が効く。 □

4.1.3 線形近似としての微分

まず，線形近似の一意性を示す：

f(z0 +△z) ≒ f(z0) + c1△z
f(z0 +△z) ≒ f(z0) + c2△z

が共に線形近似となっているとする。このとき，

f(z0 +△z) = f(z0) + c1△z + E1(△z)
f(z0 +△z) = f(z0) + c2△z + E2(△z)

としてE1(△z), E2(△z) を定めると，

0 = (c1 − c2)△z + E1(△z)− E2(△z)
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であり，

lim
|△z|→0

|E1(△z)− E2(△z)|
|△z|

= |c1 − c2|

一方，線形近似であることの定義により，

lim
|△z|→0

|E1(△z)|
|△z|

= 0, lim
|△z|→0

|E2(△z)|
|△z|

= 0

なので，

lim
|△z|→0

|E1(△z)− E2(△z)|
|△z|

= 0

となる。よって，c1 − c2 = 0 □

以上，線形近似の一意性を示したので，次は線形近似となる c が存在するかという問題
だが，これは，

lim
|△z|→0

|E(△z)|
|△z|

= 0 ⇐⇒ lim
|△z|→0

∣∣∣∣f(z0 +△z)− f(z0)

△z
− c

∣∣∣∣ = 0

⇐⇒ lim
|△z|→0

f(z0 +△z)− f(z0)

△z
= c

なので，f(z) が z0 で微分可能ということと同値である（そして，微分可能な場合，f ′(z0)

が c の値となる）。

つまり，

1. 微分可能ということは，線形近似が可能ということであり，

2. 微分という演算は，線形近似となる c の値を求める演算

と解釈することができる。

4.1.4 2変数関数 u = u(x, y) の線形近似

次に，実 2 変数の実数値関数 u = u(x, y) の線形近似について考える。u(x, y) は，複素
関数の実数部に限定する必要はなく，一般の実数値 2 変数関数である。

この場合も，x, y がそれぞれ x0, y0 から△x, △y だけ変化するとして，
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1. x0, y0 は固定し，

2. u(x0 +△x, y0 +△y) を，△x と△y を変数とする 2 変数関数とみなす。

この 2 変数関数を，変数△x, △y の 1 次式で近似する。ここで，△x, △y についての 1 次
関数は

a+ c1△x+ c2△y

の形なので，

1. 定数項 a は a = u(x0, y0) を選び，

2. 誤差を表す関数E(△x,△y) を

u(x0 +△x, y0 +△y) = u(x0, y0) + c1△x+ c2△y + E(△x,△y)

と定め，つまり，

E(△x,△y) = u(x0 +△x, y0 +△y)− u(x0, y0)− c1△x− c2△y

と定義して，

3. |E(△x,△y)| の大きさを評価する

という流れになる。

この場合，(x0, y0) からの変化 (△x,△y) の大きさは√
(△x)2 + (△y)2

とすることが妥当なので，「線形近似となっている」ということ，つまり「誤差が変化の
大きさに比べても小さい」という条件は

|E(△x,△y)|√
(△x)2 + (△y)2

→ 0 (
√

(△x)2 + (△y)2 → 0)

と定義することになる。

定義 4 u = u(x, y) は (x0, y0) の近くで定義された連続関数であるとして，実数 c1, c2 に
対して，

E(△x,△y) = u(x0 +△x, y0 +△y)− u(x0, y0)− c1△x− c2△y
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と定める。条件

|E(△x,△y)|√
(△x)2 + (△y)2

→ 0 (
√

(△x)2 + (△y)2 → 0)

を満たす c1, c2 が存在するとき，1 次関数

(△x,△y) 7→ u(x0, y0) + c1△x+ c2△y

を，関数 u の (x0, y0) における 1 次近似という。1 次近似となるような c1, c2 ∈ R が存在
するとき，u(x, y) は (x0, y0) で微分可能であるといい，線形関数

(△x,△y) 7→ c1△x+ c2△y

を，u(x, y) の (x0, y0) での微分という。

線形近似となる c1, c2 が存在するならば，そのような c1, c2 は一意に定まるという一意
性は，f(z) の場合と同じ議論で証明される（微分の一意性）。

存在についての条件（微分可能性）は，E(△x,△y) を定義に戻って書き直すと

|u(x0 +△x, y0 +△y)− u(x0, y0)− c1△x− c2△y|√
(△x)2 + (△y)2

→ 0 (9)

ということである（
√
(△x)2 + (△y)2 → 0 とした極限）。

微分可能な場合の，偏微分との関連については，

1. 特に△y = 0 と固定して△x を 0 に近づけると，(9) 式は∣∣∣∣u(x0 +△x, y0)− u(x0, y0)

△x
− c1

∣∣∣∣ → 0 (△x→ 0)

となり，これは，u(x, y) が (x0, y0) で x について偏微分可能であり，

c1 =
∂u

∂x
(x0, y0)

であることを意味する。
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2. 特に△x = 0 と固定して△y を 0 に近づけると，(9) 式は∣∣∣∣u(x0, y0 +△y)− u(x0, y0)

△x
− c2

∣∣∣∣ → 0 (△y → 0)

となり，これは，u(x, y) が (x0, y0) で y について偏微分可能であり，

c2 =
∂u

∂y
(x0, y0)

であることを意味する。

したがって，微分可能ならば，線形近似は

(△x,△y) 7→ ∂u

∂x
△x+ ∂u

∂y
△y

という形になるが，偏微分可能というだけでは，条件 (9) を満たすことは保証されない。

Remark. ここで定義した線形近似としての「微分」が，微積分の教科書に現れる「全
微分」という謎めいた言葉の正体である。「微分」は「微分係数」ではなく，線形関数で
あることに注意。その意味では，１変数関数の微分も

h 7→ f ′(x0)h

と定義するべきなのであろう。 □

4.1.5 R2 からR2 への関数の微分

２つの実数 u, v を値にとる実 2 変数関数

u = u(x, y)

v = v(x, y)

について考える。この関数は，R2 の要素を列ベクトルで表して

f : R2 −→ R2, f :

[
x

y

]
7→

[
u(x, y)

v(x, y)

]

と表すこともできる。
R2 からR2 への写像（関数）については，
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1. 線形写像は[
x

y

]
7→

[
c11 c12
c21 c22

] [
x

y

]

2. 1 次関数は[
x

y

]
7→

[
a1
a2

]
+

[
c11 c12
c21 c22

] [
x

y

]

の形なので，近似式も[
u(x0 +△x, y0 +△y)
v(x0 +△x, y0 +△y)

]
≒
[
a1
a2

]
+

[
c11 c12
c21 c22

] [
△x
△y

]
の形になる。この場合にも，a1 = u(x0, y0), a2 = v(x0, y0) とすることが必要。[
u(x0 +△x, y0 +△y)
v(x0 +△x, y0 +△y)

]
=

[
u(x0, y0)

v(x0, y0)

]
+

[
c11 c12
c21 c22

] [
△x
△y

]
+

[
E1(△x,△y)
E2(△x,△y)

]
(10)

により E1(△x,△y), E2(△x,△y) を定め，√
(E1(△x,△y))2 + (E2(△x,△y))2√

(△x)2 + (△y)2
→ 0 (11)

となるような，行列[
c11 c12
c21 c22

]
を探すことになる。ここで，条件 (11) は

|E1(△x,△y)|√
(△x)2 + (△y)2

→ 0,　かつ　
|E2(△x,△y)|√
(△x)2 + (△y)2

→ 0

であることと同値である。

結局，成分ごとに書き直せば，

u(x0 +△x, y0 +△y) = u(x0, y0) + c11△x+ c12△y + E1(△x,△y)
|E1(△x,△y)|√
(△x)2 + (△y)2

→ 0

v(x0 +△x, y0 +△y) = v(x0, y0) + c21△x+ c22△y + E2(△x,△y)
|E2(△x,△y)|√
(△x)2 + (△y)2

→ 0
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となるので，次の結論が得られる：

f : R2 −→ R2, f :

[
x

y

]
7→

[
u(x, y)

v(x, y)

]

は，u(x, y) と v(x, y) が共に微分可能であるときに，そしてそのときのみ，微分可能であ
り，微分可能な場合，

c11 =
∂u

∂x
(x0, y0), c12 =

∂u

∂y
(x0, y0)

c21 =
∂v

∂x
(x0, y0), c22 =

∂v

∂y
(x0, y0)

として行列（ヤコビ行列）[
c11 c12
c21 c22

]

を定めると，1 次近似は[
u(x0 +△x, y0 +△y)
v(x0 +△x, y0 +△y)

]
≒
[
u(x0, y0)

v(x0, y0)

]
+

[
c11 c12
c21 c22

] [
△x
△y

]

であり，(x0, y0) における f の微分は，線形写像[
△x
△y

]
7→

[
c11 c12
c21 c22

] [
△x
△y

]

である。この線形写像を，Df(x0, y0) で表すことにする。行列として表すならば，

Df(x0, y0) =


∂u

∂x
(x0, y0)

∂u

∂y
(x0, y0)

∂v

∂x
(x0, y0)

∂v

∂y
(x0, y0)


となる。

Remark. １学年の微積分で現れたヤコビ行列の意味は，要するに，線形近似である。
2× 2 行列の行列式（の絶対値）が，２つの列ベクトルの作る平行四辺形の面積であるこ
とに気づけば，重積分の変数変換の公式にヤコビアン（ヤコビ行列式）が現れた理由がわ
かると思う。 □
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4.1.6 C1 級の関数

2 変数の実数値関数

u = u(x, y)

の場合，また，2 変数のベクトル値関数[
u

v

]
=

[
u(x, y)

v(x, y)

]
の場合，偏微分可能であっても微分可能であるとは限らない。そのため，微分可能である
ことを確認する作業が必要になるのだが，これは，「式を見れば一目で分かる」といった
ものではない。そこで，C1 級関数という便利な概念に頼ることになる。C1 級であること
の定義は，偏微分可能であって，かつ，

1. u = u(x, y) ならば，∂u
∂x
と ∂u

∂y
が連続関数

2. ベクトル値 (u, v)T ならば，∂u
∂x
, ∂u
∂y
, ∂v
∂x
, ∂v
∂y
が連続関数

となることである。なお，1 変数実数値関数 y = f(x) がC1 級であるとは，微分可能であ
り f ′(x) が連続関数となることである。

C1 級という性質は，簡単で実用的な性質である。関数が式で与えられている場合には，
よほど怪しげな式でない限り連続なので，偏微分を計算してみてそれが「普通の」式な
らば，C1 級である。と言うよりは，微積分の教科書に登場する「偏微分可能だが C1 級
でない」例を除けば，だいたいの場合，C1 級である。もっと言うならば，だいたいの場
合，「普通の」式で書かれている関数ならば，C1 級どころか「何回でも偏微分できる関数」
（C∞ 級関数）である。

定理 3 C1 級の関数 u = u(x, y) は，微分可能である。

この定理の証明は，後にまわす。理由は，単純な誤差評価だけでは証明できないからで
ある。

系 1 C1 級の関数

f :

[
u

v

]
=

[
u(x, y)

v(x, y)

]
は微分可能である。
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［証明］　 u(x, y) と v(x, y) が微分可能なときに f は微分可能なので，定理 3 から明らか。

系 2 f(x, y) はC1 級であり，また，x = x(t), y = y(t) は微分可能であるとする。このと
き，合成関数 f(x(t), y(t)) は微分可能であり，

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

［証明］　定理 3 により，f(x, y) は微分可能なので

f(x+△x, y +△y) = f(x, y) +
∂f

∂x
△x+ ∂f

∂y
△y + Ef (△x,△y)

|Ef (△x,△y)|√
(△x)2 + (△y)2

→ 0 (
√
(△x)2 + (△y)2 → 0)

であり，また，

x(t+△t) = x(t) + x′(t)△t+ E1(△t)
|E1(△t)|
|△t|

→ 0 (|△t| → 0)

y(t+△t) = y(t) + y′(t)△t+ E2(△t)
|E2(△t)|
|△t|

→ 0 (|△t| → 0)

ここで，

△x = x′(t)△t+ E1(△t), △y = y′(t)△t+ E2(△t)

と置くと，

f
(
x(t+△t), y(t+△t)

)
= f

(
x(t) +△x, y(t) +△y

)
= f(x, y) +

∂f

∂x
△x+ ∂f

∂y
△y + Ef (△x,△y)

= f(x, y) +
∂f

∂x
x′(t)△t+ ∂f

∂y
y′(t)△t

+
∂f

∂x
E1(△t) +

∂f

∂y
E2(△t) + Ef (△x,△y)

なので，

E(△t) = ∂f

∂x
E1(△t) +

∂f

∂y
E2(△t) + Ef (△x,△y)
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と置いて

E(△t)
△t

=
∂f

∂x
· E1(△t)

△t
+
∂f

∂y
· E2(△t)

△t

+
Ef (△x,△y)√
(△x)2 + (△y)2

·
√
(△x)2 + (△y)2

△t

が 0 に収束することを示せば良い。最後の項だけが気になるが，これも，√
(△x)2 + (△y)2

△t
=

√(
x′(t) +

E1(△t)
△t

)2

+

(
y′(t) +

E2(△t)
△t

)2

→
√

(x′(t))2 + (y′(t))2

となるので，

Ef (△x,△y)√
(△x)2 + (△y)2

·
√

(△x)2 + (△y)2
△t

→ 0 (
√

(△x)2 + (△y)2 → 0)

□

4.2 コーシーリーマンの関係式

それでは，複素関数w = f(z) に戻って，

c = f ′(z0), c = cR + i cI

z0 = x0 + i y0, △z = △x+ i△y

f(z) = u(x, y) + i v(x, y)

と置き，微分可能性（正則性）を実数の世界での評価に書き換える。

まず，E(△z) を実数の世界に書き換える：

E(△z) = f(z0 +△z)− f(z0)− c△z
= u(x0 +△x, y0 +△y) + i v(x0 +△x, y0 +△y)

−u(x, y)− i v(x, y)

−(cR + icI)(△x+ i△y)
= u(x0 +△x, y0 +△y)− u(x0, y0)− (cR△x− cI△y)

+ i · {v(x0 +△x, y0 +△y)− v(x0, y0)− (cI△x+ cR△y)}
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なので，

E(△z) = ER(△x,△y) + i EI(△x,△y)

と置くと，

ER(△x,△y) = u(x0 +△x, y0 +△y)− u(x0, y0)− (cR△x− cI△y) (12)

EI(△x,△y) = v(x0 +△x, y0 +△y)− v(x0, y0)− (cI△x+ cR△y) (13)

と表される。

したがって，

|E(△z)|
|△z|

=
|ER(△x,△y) + i EI(△x,△y)|√

(△x)2 + (△y)2

であり，また，

|ER(△x,△y)| ≤ |ER(△x,△y) + i EI(△x,△y)|
|EI(△x,△y)| ≤ |ER(△x,△y) + i EI(△x,△y)|

なので，

lim
|△z|→0

|ER(△x,△y) + i EI(△x,△y)|√
(△x)2 + (△y)2

= 0

となる必要十分条件は，ER(△x,△y), EI(△x,△y) についての条件

lim
|△z|→0

|ER(△x,△y)|√
(△x)2 + (△y)2

→ 0 (
√

(△x)2 + (△y)2 → 0)

lim
|△z|→0

|EI(△x,△y)|√
(△x)2 + (△y)2

→ 0 (
√

(△x)2 + (△y)2 → 0)

が両方とも成り立つことである。これらの条件は，それぞれ，(12), (13) により，

1. u(x, y) が (x0, y0) で微分可能

2. v(x, y) が (x0, y0) で微分可能

であることを意味し，また，(12), (13) により

∂u

∂x
= cR =

∂v

∂y
, −∂v

∂x
= cI =

∂u

∂y

となるので，w = f(z) が z0 で正則であるための必要十分条件は，
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1. u = u(x, y) が (x0, y0) で微分可能

2. v = v(x, y) が (x0, y0) で微分可能

であり，かつ，コーシーリーマンの関係式を満たすことであることが示された。

以上，正則であるための必要十分条件を実数の世界で言い表すことができたのだが，こ
れは，あまり使わない：

1. 正確な必要十分条件でなくても，

(a) f(z) が正則ならば u(x, y), v(x, y) は偏微分可能でありコーシーリーマンの関係
式を満たし，

(b) u(x, y), v(x, y) が C1 級でコーシーリーマンの関係式を満たすならば f(z) は
正則

という形の方が使いやすい。

2. そもそも，f(z) の形（z の式で書かれた f(z)）から正則であることを確かめ，z の
式で計算するのが，複素関数論の本筋。

それでは，複素関数論の本筋「z の関数としての微分法」について，「実数 x の関数と
同じ計算をすれば良い」というサボった説明ではなく，きちんと展開してみよう。

4.3 微分の公式

高校数学で（なんとなく）導かれた微分の公式を，定義に基づいて証明してみよう。高
校数学で導かれた公式とは言っても，変数は実数ではなく複素数の場合について導く。そ
こから実数の場合に書き直す作業は，z を x に変えて，「正則」を「微分可能」に直すだけ
である。

4.3.1 微分の線形性

1. f : z 7→ f(z), g : z 7→ g(z) が共に z0 で正則ならば，

f + g : z 7→ f(z) + g(z)

も z0 で正則であり，(f + g)′(z0) = f ′(z0) + g′(z0)
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2. f(z) が z0 で正則ならば，任意の α ∈ C に対して，

αf : z 7→ α f(z)

も z0 で正則であり，(αf)′(z0) = αf ′(z0)

［証明］　 z0 で f(z), g(z) は正則なので，

f(z0 +△z) = f(z0) + f ′(z0)△z + Ef (△z)
g(z0 +△z) = g(z0) + g′(z0)△z + Eg(△z)

lim
|△z|→0

|Ef (△z)|
|△z|

= 0

lim
|△z|→0

|Eg(△z)|
|△z|

= 0

である。

E(△z) = Ef (△z) + Eg(△z)

と置くと，

f(z0 +△z) + g(z0 +△z) = f(z0) + g(z0) +
(
f ′(z0) + g′(z0)

)
△z + E(△z)

また，

|E(△z)| ≤ |Ef (△z)|+ |Eg(△z)|

なので

lim
|△z|→0

|E(△z)|
|△z|

= 0

よって，f(z) + g(z) は z0 で微分可能であり，

(f + g)′(z0) = f ′(z0) + g′(z0)

同様に，αf(z) の微分可能性については，

E(△z) = αE(△z)

と置けば良い。 □
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4.3.2 積と微分

f(z)g(z) の微分可能性と，公式

{f(z)g(z)}′ = f ′(z)g(z) + f(z)g′(z)

は，「微分の線形性」の証明と同じくEf (△z), Eg(△z) を定めて計算すれば良い。計算は
少し複雑になるが，単純な計算である：

f(z0 +△z)g(z0 +△z)
=

(
f(z0) + f ′(z0)△z + Ef (△z)

)
·
(
g(z0) + g′(z0)△z + Eg(△z)

)
= f(z0)g(z0) +

(
f ′(z0)g(z0) + f(z0)g

′(z0)
)
△z

+f ′(z0)g
′(z0) (△z)2

+
(
f(z0) + f ′(z0)△z + Ef (△z)

)
Eg(△z)

+Ef (△z)
(
g(z0) + g′(z0)△z + Ef (△z)

)
なので，

E(△z) = f ′(z0)g
′(z0) (△z)2

+
(
f(z0) + f ′(z0)△z + Ef (△z)

)
Eg(△z)

+Ef (△z)
(
g(z0) + g′(z0)△z + Ef (△z)

)
と置いて，

lim
|△z|→0

|Ef (△z)|
|△z|

= 0

となることを示せば良い。これは，

|Ef (△z)|
|△z|

≤ |f ′(z0)g
′(z0)| · |△z|

+|f(z0) + f ′(z0)△z + Ef (△z)| ·
|Eg(△z)|
|△z|

+
|Ef (△z)|
|△z|

· |g(z0) + g′(z0)△z + Eg(△z)|
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であることと，|△z| → 0 とするとき

|f ′(z0)g
′(z0)| · |z| → 0

f(z0) + f ′(z0)△z + Ef (△z) → f(z0)

|Ef (△z)|
|△z|

→ 0

g(z0) + g′(z0)△z + Eg(△z) → g(z0)

|Eg(△z)|
|△z|

→ 0

であることから明らか。 □

しかし，このように誤差評価を行っての証明は，単純作業だが煩雑である。

次の，
1

f(z)
の微分となると，さすがに嫌になる。この辺りの証明にまで誤差評価を持

ち出すのは，ちょっとやり過ぎであり，積の微分の証明も

f(z0 +△z)g(z0 +△z)− f(z0)g(z0)

△z

=
f(z0 +△z)− f(z0)

△z
· g(z0 +△z) + f(z0) ·

g(z0 +△z)− g(z0)

△z

としておいてから，

f(z0 +△z)− f(z0)

△z
→ f ′(z0)

g(z0 +△z) → g(z0)

g(z0 +△z)− g(z0)

△z
→ g′(z0)

なので明らか，とすれば良い。

4.3.3 1
f(z)
の微分

1
f(z)
の微分も，(

1

f(z0 +△z)
− 1

f(z0)

)
· 1

△z
=

f(z0)− f(z0 +△z)
△z

· 1

f(z0 +△z)f(z0)
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としておいてから，

f(z0)− f(z0 +△z)
△z

→ −f ′(z0)

1

f(z0 +△z)f(z0)
→ 1

(f(z0))2

を使えば，{
1

f(z)

}′

= − f ′(z)

(f(z))2

であることが示される。

4.3.4 合成関数の微分

w = g(z) は z = z0 で正則，w 7→ f(w) はw0 = g(z0) で正則であるとする (関数 f の従
属変数にどの文字を使うか迷ったあげく，使わないことにした)。

g(z0 +△z) = g(z0) + g′(z0)△z + Eg(△z)

lim
|△z|→0

|Eg(△z)|
|z|

= 0

f(w0 +△w) = f(w0) + f ′(w0)△w + Ef (△w)

lim
|△z|→0

|Ef (△w)|
|w|

= 0

を使って，強引に計算すると（△w = g′(z0)△z + Eg(△z) と置いて考える）

f
(
g(z0 +△z)

)
= f

(
g(z0) + g′(z0)△z + Eg(△z)

)
= f

(
g(z0)

)
+ f ′ (g(z0)) (g′(z0)△z + Eg(△z)

)
+Ef

(
g′(z0)△z + Eg(△z)

)
= f

(
g(z0)

)
+ f ′ (g(z0)) g′(z0)△z

+f ′ (g(z0)) Eg(△z) + Ef
(
g′(z0)△z + Eg(△z)

)
となるので，

Ef◦g(△z) = f ′ (g(z0)) Eg(△z) + Ef
(
g′(z0)△z + Eg(△z)

)
とおき，

lim
|△z|→0

|Ef◦g(△z)|
|z|

= 0
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であることを確かめれば良い。
これは，

Ef◦g(△z)
△z

= f ′ (g(z0)) Eg(△z)△z

+
Ef
(
g′(z0)△z + Eg(△z)

)
g′(z0)△z + Eg(△z)

· g
′(z0)△z + Eg(△z)

△z

と書き直しておけば，

|Ef◦g(△z)|
|△z|

≤
∣∣f ′ (g(z0))∣∣ · |Eg(△z)||△z|

+

∣∣Ef (g′(z0)△z + Eg(△z)
)∣∣

|g′(z0)△z + Eg(△z)|
·
(
|g′(z0)|+

|Eg(△z)|
|△z|

)
であることから明らか。

以上，高校での微積分以来の「微分の公式」は，正則関数についても成り立つことが示
された。
具体的な関数の微分についても，同様：
zn の微分については，

1. {zn}′ = nzn−1 を仮定すれば，積の微分の公式により

2. {zn+1}′ = {z · zn}′ = 1 · zn + z · nzn−1 = (n+ 1)zn

と帰納法を用いて示され，
1

zn
についても，

1

zn+1
=

1

z
· 1

zn
と積の形にして微分すれば，帰

納法により

{z−n}′ = −nz−n−1

であることが導かれる。したがって，多項式関数や有理式の形で書かれた関数の微分も，
すべて計算することができる。

Remark. 微分の計算は安全なのだが，

微分すると
1

z
となる関数は log z

と言えるのかというと，これは微妙な問題を含んでいるので，取りあえず考えないことに
しよう。 □
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4.4 定理 3の証明

4.4.1 なにが難しいのか

誤差評価（E(△z) の評価）で微分可能であることを証明する式変形は，その見かけの
長さに惑わされ，慣れないと難しく感じる。しかし，数学でごく普通に使われる不等式の
処理に慣れれば，後は単純な式計算の作業に過ぎない。一方，定理 3 の証明は，不等式で
の誤差評価だけでは（たぶん）無理だと思う。

まじめな微分積分学の教科書になら証明は載っているし，微積分の授業（「解析学及び
演習」）を（先生が）ちゃんとやるならば，証明も話すことになるのだが，面倒なので，40

年の間で授業で証明まで話したことは，一度もない。この資料を作るために「まあ，この
辺りの証明なら楽勝！」と思って進んできて，定理 3 の証明で，見事に行き詰まった。つ
まり，学生の頃に証明を読んでも，「そんなものか」で済ませて，何が難しいのかを捉え
ていなかったわけだ。

それでは，「何が難しいのか」を検討するが，せっかくなので，証明にはなっていない
「証明」も含めて，雑な「証明」をまとめておこう。

結果も違ってくる「証明」：　まず，

f(a+△x, b+△y)− f(a, b) = f(a+△x, b+△y)− f(a, b+△y)
+ f(a, b+△y)− f(a, b)

としておく。この式変形は，基本中の基本のテクニックであり，もちろん，正しい。なお，
普通の教科書の記号に近づけるため，u(x, y) ではなく f(x, y) とし，x0, y0 は a, b に変え
た。 ここからが，あまりにも雑なので正しい結果が得られない「証明」になる：

f(a+△x, b+△y)− f(a, b+△y)

では y は変化させず x だけ変化させているので x についての偏微分であり，また，y の
値 b+△y の△y は 0 に近づくので y = b としてよく，

f(a+△x, b+△y)− f(a, b+△y) → ∂f

∂x
(a, b)△x

である。また，

f(a, b+△y)− f(a, b) → ∂f

∂y
(a, b)△y
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よって，

f(a+△x, b+△y)− f(a, b+△y) → ∂f

∂x
(a, b)△x+ ∂f

∂y
(a, b)△y

であり，微分可能である。 □

この「証明」では f(x, y) が C1 級であることは使っていないので，これが正しい証明
ならば「偏微分可能ならば微分可能」という結論が得られてしまうのだが，これは誤り。
「y の値 b+△y の△y は 0 に近づくので y = b としてよく」と言っているのだが，まった
く「よく」ない。

修正版：結果は正しい： 「y の値 b+△y の△y は 0 に近づくので y = b としてよく」の
部分から修正する：
また，y の値 b+△y は b+△y に固定しているので

f(a+△x, b+△y)− f(a, b+△y) → ∂f

∂x
(a, b+△y)△x

となるが，∂f
∂x
(x, y) はC1 という仮定により連続関数なので，

∂f

∂x
(a, b+△y) → ∂f

∂x
(a, b)

であり，

f(a+△x, b+△y)− f(a, b+△y) → ∂f

∂x
(a, b)△x

となる。また・・・・・・以下同じ。

ちゃんと偏微分の連続性も利用しているので正しい証明に見えるのだが，かなり雑な議
論である。これが「雑な議論」だと見抜ける感覚を養成することは大切であり，数学科で
生き残るためには，この感覚は必須である。しかし，情報科学科を含めて多くの学科で
は，この辺りがあやふやでも，なんとかならないこともないと言えないでもない（ただし
確率論を除く）。したがって，諦めモードが主流である。

それでは「雑な議論」である理由だが，それは，

2 変数の微分の定義では，
√
(△x)2 + (△y)2 → 0 という極限をとっているの

であり，△x と△y は同時に変化しながら 0 に近づく。y を b+△y と固定し
て（△y を固定して）△x を 0 に近づけると限定した極限の取り方のみでは不
十分

60



ということである。

修正版の修正　そこで，これをクリアーするように証明を工夫するのだが，その前に，

f(a+△x, b+△y)− f(a, b) → ∂f

∂x
△x+ ∂f

∂y
△y

という形は，雑な議論と厳密な論証の差が見えづらいという問題がある。誤差評価をする
ことにしよう：

E(△x,△y) = f(a+△x, b+△y)− f(a, b)− ∂f

∂x
(a, b)△x− ∂f

∂y
(a, b)△y

と置き，

|E(△x,△y)|√
(△x)2 + (△y)2

→ 0
(√

(△x)2 + (△y)2 → 0
)

となることを示す。
まず，

E(△x,△y)√
(△x)2 + (△y)2

=

(
f(a+△x, b+△y)− f(a, b+△y)

△x
− ∂f

∂x
(a, b)

)
· △x√

(△x)2 + (△y)2

+

(
f(a, b+△y)− f(a, b)

△y
− ∂f

∂y
(a, b)

)
· △y√

(△x)2 + (△y)2

と書き直す。

|E(△x,△y)|√
(△x)2 + (△y)2

≤ |右辺の第１項 |+ |右辺の第２項 |

であり

|△x|√
(△x)2 + (△y)2

≤ 1

f(a, b+△y)− f(a, b)

△y
− ∂f

∂y
(a, b) → 0 (

√
(△x)2 + (△y)2 → 0)

|△y|√
(△x)2 + (△y)2

≤ 1
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なので，

f(a+△x, b+△y)− f(a, b+△y)
△x

→ ∂f

∂x
(a, b) (

√
(△x)2 + (△y)2 → 0)

を示せば良い。

ここまでの対処の仕方では，

f(a+△x, b+△y)− f(a, b+△y)− ∂f

∂x
(a, b)△x

と置いて，この大きさを評価したのだが，これが

△x と△y の両方に依存する

ということがネックになって，難しい。そこで登場するのが平均値の定理である。

4.4.2 平均値の定理

1 変数関数 y = f(x) のケースでの平均値の定理を振り返って，その「利用価値」を見
てみよう。

近似式

f(a+△x) ≒ f(a) + f ′(a)△x (14)

を正確な等式にするために，

f(a+△x) = f(a) + f ′(a)△x+ E(△x)

として，近似の誤差 E(△x) を評価するという発想は，文句なしに自然な発想である。1

次近似に限らず，テーラー展開という n 次式による近似

f(a+△x) ≒ f(a) +
f (1)(a)

1!
(△x)1 + f (2)(a)

2!
(△x)2 + · · ·+ f (n)(a)

n!
(△x)n

についても，

f(a+△x)

= f(a) +
f (1)(a)

1!
(△x)1 + f (2)(a)

2!
(△x)2 + · · ·+ f (n)(a)

n!
(△x)n + E(△x) (15)
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という誤差項E(△x) を導入して誤差を評価すること，この場合は，

E(△x)
(△x)n

→ 0

であること，を確かめるという発想は，自然である。

一方，平均値の定理では近似式 (14) を

f(a+△x) = f(a) + f ′(a+ θ · △x)△x (16)

と，f ′(a) の a に「誤差のしわ寄せ」を引き受けさせることで等式に変える。θ の値は，
0 < θ < 1 という条件を課せられているとは言うものの，△x に依存し，しかも，どのよ
うに依存するかの情報はなにも得られない。

テーラー展開では，平均値の定理に対応するものは「ラグランジュの剰余項の存在」で
あり，ここでも，近似式 (15) の最後の項

f (n)(a)

n!
(△x)n

に「誤差のしわ寄せ」を引き受けさせ，等式

f(a+△x)

= f(a) +
f (1)(a)

1!
(△x)1 + f (2)(a)

2!
(△x)2 + · · ·++

fn−1(a)

(n− 1)!
(△x)n−1

+
f (n)(a+ θ△x)

n!
(△x)n (17)

を満たす 0 < θ < 1 の存在を主張する。
平均値の定理でも，そのテーラー展開版でも，θ については，0 < θ < 1 ということ以
外には何の情報も得られないのであり，これでは，θ は「役立たずな子」という感じだが，
実は，0 < θ < 1 という条件は，f ′(x) が連続関数であることと（テーラー展開では fn(x)

が連続関数であることと），むちゃくちゃ相性が良い：

△x → 0 のとき，θ△x → 0 であり，f ′(x) が連続関数ならば，f ′(a + θ△x)
は f ′(a) に近づく。

それでは，定理 3 の証明を完成させよう：
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△y を固定して，関数 φ(x) を

φ(x) = f(x, b+△y)

と定める。f(x, y) は C1 級なので，φ(x) は微分可能であり，φ′(x) =
∂f

∂x
(x, b+△y) は，

x を変数とする連続関数である。したがって，平均値の定理により，

φ(a+△x)− φ(a) = φ′(a+ θ△x)△x

を満たす 0 < θ < 1 が存在し，

f(a+△x, b+△y)− f(a, b+△y) = ∂f

∂x
(a+ θ△x, b+△y)△x

を満たす。ここで，θ は△x と△y の両方に依存して決まる（正確には存在が保証されて
いる）のだが，常に 0 < θ < 1 を満たす（ここまでは△y は固定されている）。
よって，

f(a+△x, b+△y)− f(a, b+△y)
△x

− ∂f

∂x
(a, b)

=
∂f

∂x
(a+ θ△x, b+△y)− ∂f

∂x
(a, b) → 0 (

√
(△x)2 + (△y)2 → 0)

□

Remark. 最後の等式に現れる θ は，△x に依存しているだけでなく，それまで固定さ
れていた△y にも依存し，しかも，どのように依存しているか不明である。しかし，そ
もそも依存関係についての情報は必要なく，0 ≤ θ ≤ 1 という条件だけで，収束は保証さ
れる。 □

Remark. この証明の最後で，
∂f

∂x
(x, y) が (a, b) で連続，ということが，△x, △y が両

方とも動いて 0 に近づく，という意味で捉えられていることに注意。「修正版」の証明で
は，△x を a に固定して△y だけ動いて 0 に近づけるという連続性しか使わずに証明し
ようとしているので，無理筋であろう。 □
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4.4.3 w = ez の定義

実変数の三角関数 cosx, sinx と指数関数 ex は，改めて定義をせずに，これまでに学ん
だ計算も含めて既知とする。

w = ez は

u(x, y) = ex cos y, v(x, y) = ex sin y

として定義する。これはコーシーリーマンの判定条件を満たし，C1 級なので，正則関数
となる。

cos z, sin z は

cos z =
ez + e−z

2

sin z =
ez − e−z

2

と定義する。

Remark. 複素数の世界での指数関数や三角関数の導入を，実数の世界に頼って行うと
いうやり方は，美しくない。複素数の世界が実数の世界より根本的なものと主張したいの
だから，複素数の世界のなかで，指数関数や三角関数を定義したいところである。これ
は，最初に（複素数の世界での）テーラー展開の理論を確立し，テーラー展開でそれらの
関数を定義すれば可能である。このようなアプローチは，複素関数論の格好いいテキスト
で選ばれる流れなのだが，労力との兼ね合いで妥協して，採用しない。

なお，最も格好いいアプローチは

1. 多項式（実係数でも複素係数でも良いが，ここでは複素係数）

a0 + a1x+ a2x
2 + · · ·+ anx

n

の文字 x は「不定元」と呼ばれる「単なる記号」であり，多項式の実体は係数

a0, a1, a2, . . . , an

という有限数列である。多項式に対する和と積，スカラー倍の演算は，この有限数
列に対して行われる。
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2. n で終わらせた有限数列ではなく，

a0, a1, a2, . . .

という無限数列を考えて

a0 + a1x+ a2x
2 + · · ·

という形にしても，和と積，スカラー倍を，（収束の問題に関与することなしに）定
義できる（例えば多項式の積の k 次の係数は，それぞれの多項式の k 次以下の係数
だけで決まることに注意）。

3. ただし，文字xは数を表しているわけではないので，無限級数（べき級数）を考えて
いるわけではない。このような「無限次数の多項式」を「形式的べき級数」という。

4. 「形式的べき級数の代数学」を十分に展開してから，

5. 形式的べき級数の文字 x に複素数 z を代入した無限級数

a0 + a1z + a2z
2 + · · ·

が収束するかどうかの判定法を確立し，

6. 指数関数や三角関数の値を，すべての複素数で収束する無限級数の値として定義
する。

□
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5 線積分（第４回）
線積分∫

γ

f(z)dz

というものを定義する。

5.1 φ(t) についての線積分

5.1.1 定義

w = f(z) は，なんらかの領域D ⊂ C で定義された正則な関数であるとする。
D に値を取るC1 級関数 z = φ(t), a ≤ t ≤ b に対して，∫

φ

f(z)dz

を ∫
φ

f(z)dz =

∫ b

a

f(φ(t))φ′(t)dt

と定義し，それを φ に沿っての f の線積分 (integral of f along φ) という。この右辺は，
f(z) とφ′(t) が連続関数であることにより，定積分として定まる（複素数値だが，実数部
と虚数部を別々に積分するだけのこと）。この右辺で，左辺を定義している。

Remark. この式を「右辺で左辺を定義している」のではなく，合成関数の微分の公式と
解釈したくなると思うが，この段階では，あくまでも定義であって，公式とは考えない。
□

5.1.2 計算例

それでは，計算練習をしておこう。微分や積分の計算は，これまで通りの計算でどんど
ん進めてしまう。
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次の問題では，f(z) は，1 次の係数と定数項を c, c0 ∈ C として定めた１次関数

f(z) = cz + c0

とする。

例題 1 a1, a2, b ∈ R, a1 < a2 に対して，

φ(t) = a1 + t+ ib, 0 ≤ t ≤ a2 − a1

と定める。
φ による f の線積分∫

φ

f(z)dz

を計算せよ。この値を I+b と置く。

［解］　 f(φ(t)) = c(a1 + t+ ib) + c0, φ
′(t) = 1 なので，∫

φ

f(z)dz =

∫ a2−a1

0

f(φ(t))φ′(t)dt

=

∫ a2−a1

0

(
c(a1 + t+ ib) + c0

)
· 1 dt

=

∫ a2−a1

0

ct+ c(a1 + ib) + c0 dt

=

[
c
t2

2
+
(
c(a1 + ib) + c0

)
t

]a2−a1
0

=
c(a2 − a1)

2

2
+
(
c(a1 + ib) + c0

)
(a2 − a1)

例題 2 a1, a2, b ∈ R, a1 < a2 に対して，

φ(t) = a2 − t+ ib, 0 ≤ t ≤ a2 − a1

と定める。
φ による f の線積分∫

φ

f(z)dz

を計算せよ。この値を I−b と置く。
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［解］　 f(φ(t)) = c(a2 − t+ ib) + c0, φ
′(t) = −1 なので，∫

φ

f(z)dz =

∫ a2−a1

0

f(φ(t))φ′(t)dt

=

∫ a2−a1

0

(
c(a2 − t+ ib) + c0

)
· (−1) dt

=

∫ a2−a1

0

ct− c(a2 + ib)− c0 dt

=

[
c
t2

2
−
(
c(a2 + ib) + c0

)
t

]a2−a1
0

=
c(a2 − a1)

2

2
−
(
c(a2 + ib) + c0

)
(a2 − a1)

例題 3 b1, b2 ∈ R, b1 < b2 とする。このとき，

I+b1 + I−b2

の値を求めよ。

［解］　上の結果により，

I+b1 =
c(a2 − a1)

2

2
+ (a2 − a1)

(
c(a1 + ib1) + c0

)
I−b2 =

c(a2 − a1)
2

2
− (a2 − a1)

(
c(a2 + ib2) + c0

)
なので，

I+b1 + I−b2 = c(a2 − a1)
2 + (a2 − a1)c(a1 − a2) + i(a2 − a1)c(b1 − b2)

= ic(a2 − a1)(b1 − b2)

問題 8 b1, b2, a ∈ R, b1 < b2 に対して，

φ(t) = a+ ib1 + it, 0 ≤ t ≤ b2 − b1

と定める。
φ による f の線積分∫

φ

f(z)dz

を計算せよ。この値を J+
a と置く。J

+
a の値を計算せよ。
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問題 9 b1, b2, a ∈ R, b1 < b2 に対して，

φ(t) = a+ ib2 − it, 0 ≤ t ≤ b2 − b1

と定める。
φ による f の線積分∫

φ

f(z)dz

を計算せよ。この値を J−
a と置く。J

−
a の値を計算せよ。

問題 10 a1, a2, b1, b2 ∈ R, a1 < a2, b1 < b2 とする。このとき，

J+
a2
+ J−

a1

の値を求めよ。

問題 11

I+b1 + I−b2 + J+
a2
+ J−

a1

の値を求めよ。

問題 12 以下の各設定において，線積分∫
φ

f(z)dz

を計算せよ。

1. f(z) = z2, φ(t) = eit, 0 ≤ t ≤ 2π

2. f(z) = z2, φ(t) = eit, 0 ≤ t ≤ π

3. f(z) = zr, φ(t) = eit, 0 ≤ t ≤ 2π, r = 0, 1, 2, . . .

4. f(z) = 5z3 + z + 1, φ(t) = eit, 0 ≤ t ≤ 2π

5. f(z) = z−r, φ(t) = eit, 0 ≤ t ≤ 2π, r = 2, 3, 4, . . .

6. f(z) = z−1, φ(t) = eit, 0 ≤ t ≤ 2π

7. f(z) = z−1, φ(t) = e−it, 0 ≤ t ≤ 2π
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5.1.3 曲線に沿っての線積分

関数 t 7→ φ(t), a ≤ t ≤ b は，

パラメータ t によりパラメータ表示（媒介変数表示）された曲線

を表す。この「パラメータ表示された」ということを忘れてしまえば，

C の図形（部分集合）としての曲線

が得られるのだが，この曲線の

始点 φ(a) から終点 φ(b) に向かう向き

だけは忘れないでおくと，

向き付けされた曲線 γ

が得られる。

線積分は，パラメータ表示 t 7→ φ(t) に対して定義したのだが，次の命題は，この線積
分の値は曲線により決まり，パラメータの関数形や t の範囲の取り方には依存せずに決ま
ることを示している：

φ(t) と ψ(s) が同じ曲線の２つの媒介変数表示ならば線積分が一致するということを，

ψ(s(t)) = φ(t)

となるように s を s = s(t) と表すことができるならば線積分は一致する，という形で主
張する：

命題 1 区間 [a, b] から区間 [c, d] へのC1級の写像

t ∈ [a, b] 7→ s(t) ∈ [c, d]

が存在して

ψ(s(t)) = φ(t)

s(a) = c, s(b) = d

を満たすならば，∫
ψ

f(z)dz =

∫
φ

f(z)dz

である。
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［証明］　∫
ψ

f(z)dz =

∫ d

c

f(ψ(s))ψ′(s)ds （ s = s(t)と置換積分 ↓）

=

∫ b

a

f(ψ(s(t))ψ′(s(t))
ds

dt
dt

=

∫ b

a

f(ψ(s(t)){ψ(s(t))}′dt

=

∫ b

a

f(φ(t))φ′(t)dt

=

∫ b

a

f(z)dz

□

この命題により，

媒介変数表示された曲線 φ に沿っての線積分∫
φ

f(z)dz

は，

「媒介変数表示された曲線」から決まる向き付けされた曲線 γ についての線
積分 ∫

γ

f(z)dz

を定義していると考えることができることになる。「向き付けされた」という限定は重要
である。実際，

ψ(s(t)) = φ(t)

s(a) = d, s(b) = c

と逆向きの場合で計算してみると，∫
ψ

f(z)dz = −
∫
φ

f(z)dz
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と符号が反転することが確かめられる。この「逆向きに取ると符号が反転する」という事
実も，これからよく使う。そこで，向きづけられた曲線 γ に対して，逆向きに向きづけら
れた曲線を−γ で表すことにする。∫

−γ
f(z)dz = −

∫
γ

f(z)dz

また，曲線 γ1, γ2 が

γ1 の終点は γ2 の始点

という条件を満たすときには，γ1 と γ2 をつなげた曲線を考えることができる。この曲
線を

γ1 + γ2

で表すことにする。

1. γ1 が φ1(t), a1 ≤ t ≤ b1 とパラメータ表示され，

2. γ2 が φ2(t), a2 ≤ t ≤ b2 とパラメータ表示

されているならば，γ1 + γ2 の（ひとつの）パラメータ表示は

φ(t) =

{
φ1(t) if a1 ≤ t ≤ b1

φ2(t− b1 + a2) if b1 ≤ t ≤ b1 − a2 + b2

なのだが，実際には，そんな面倒くさいことは考えない（t = b1 で微分不可能ということ
も気にしない）。理由は，この（面倒くさい定義の）γ(t) で計算すると∫

γ

f(z)dz =

∫ b1−a2+b2

a1

f(φ(t))φ′(t)dt

=

∫ b1

a1

f(φ(t))φ′(t)dt+

∫ b1−a2+b2

b1

f(φ(t))φ′(t)dt

=

∫ b1

a1

f(φ1(t))φ
′
1(t)dt+

∫ b1−a2+b2

b1

f(φ2(t− b1 + a2))φ
′
2(t− b1 + a2)dt

=

∫ b1

a1

f(φ1(t))φ
′
1(t)dt+

∫ b2

a2

f(φ2(s))φ
′
2(s)ds （⇐置換積分）

=

∫
γ1

f(z)dz +

∫
γ2

f(z)dz
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となるからであり，それならば，最初から∫
γ1+γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz

と計算すれば良いわけだ。

Remark. こうなると，γ1 + γ2 を定める際の条件「γ1 の終点と γ2 の始点は一致」も
要らなくなる。これからは，この条件も無視する。 □

問題 10 の結果は，C の４点

a1 + ib1, a2 + ib1, a2 + ib2, a1 + ib2

により作られる長方形の辺を，この順に向き付けした曲線（線分だが）を γ1, γ2, γ3, γ4 と
して，長方形の境界を γ = γ1 + γ2 + γ3 + γ4 と表すと，

任意の 1次関数 f(z) = c1z + c2 の，長方形の境界に沿っての線積分の値は零

であることを保証している：∫
γ

(c1z + c2)dz = 0

この結果は，後でコーシーの積分定理の証明で用いる。
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6 Cauchy の積分定理 （第５回）
正則関数 f(z) = zn n = 1, 2, 3, . . . の線積分∫

γ

f(z)dz, γ(t) = eit, 0 ≤ t ≤ 2π

の値は，前回に計算したように零になる．積分経路を単位円としてのこの線積分を，他の
曲線，例えば単位円ではなく楕円を積分経路としたもの，長方形を積分経路としたもの等
で計算してみても，やはり値は零である（面倒な計算になるので，やってみないこと）．
次の Cauchy の積分定理 (Cauchy’s integral theorem) は，線積分が零となるような一般
的ケースについて述べている：

定理 4 (Cauchy の積分定理) f は，G を良い領域としてG で定義された正則関数とす
る．このとき，領域G の境界 ∂G に沿っての線積分の値は，零である：∫

∂G

f(z)dz = 0.

まず定理を提示したが，証明は後の回で行う．先に複素関数論をこの定理から展開し，
その威力を確認することにしよう．

しかし，証明がどうのこうのと言う以前に，

1. 記号の使い方について

2. 領域の境界について

の説明が必要であり，また，

この定理が成り立っても良さそうな気がする程度の背景

についての説明も必要だと思う．

6.1 記号・領域の境界・背景について

6.1.1 記号

例えば f(z) = z2 として，次の文について考えてみよう；
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γ(t) = eit, 0 ≤ t ≤ 2π についての線積分∫
γ

f(z)dz.

このような表現をこれから使うことになるのだが，真面目に考えると引っかかるのは，
ここでの記号 γ が

1. パラメータ表示された曲線なのか

2. 幾何的な，向き付けされた曲線なのか

ということである．

前回までの話の流れを振り返ると，

1. パラメータ t で表示された曲線 φ(t) = eit があって，

2. パラメータ表示は忘れて単なる幾何的な図形としての（向き付けされた）曲線を γ

とあらわすと，

3. γ をパラメータ表示された曲線 φ で表すやり方は色々あるが，

4. 線積分
∫
φ

f(z)dz の値は共通なので，

5.

∫
γ

f(z)dz と書いても良いことにする

という流れであり，γ は，図形としての曲線を表す記号である．
したがって，γ をパラメータ表示を実現する関数であるかのように扱って γ(t) = eit と
書くのは，記号の混同である．

確かにそうなのだが，

1. パラメータ表示は，φ(t) = eit ではなく z = eit と書いても良く，

2. そうすれば，φ という記号は要らなくなる．

3. しかし，線積分する曲線が同時に γ1, γ2, . . . , γm と複数個現れると，どの曲線にどの
z = · · · が対応しているのかわかりづらくなってくる．
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4. それならば，曲線 γj のパラメータ表示（を与える関数）も同じ記号を流用して γj(t)

と書いておけば，わかりやすい，

5. というわけで，多少の混同ではあるが「良いではないか！」

ということである．

他にも色々な書き換えが登場するが，これらについては，特に問題はない．

例えば，
∫
γ

f(z)dz を

∫
γ

z2dz

と書いても良い．また，∫ 2π

0

(eit)2 · ieitdt

を ∫ 2π

0

z2 · izdt

と書くこともできる．

6.1.2 G の境界について

次に，良い領域G の境界を表す記号 ∂G について：

領域G は「良い領域」であるとしているので，G は

簡単な曲線（線分も曲線とみなす）γj をいくつか連結しでできる簡単な曲線

γ = γ1 + · · ·+ γm

で囲まれた図形

なので，それをパラメータ表示することもできると考えて良い．ここで，二つの注意が
必要：

1. G = {z ∈ C | 2 ≤ |z| ≤ 3 } のような，「穴の空いた図形」も良い領域と考える．つ
まり，
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良い領域を芝生の公園（の芝生の部分）とイメージすると，芝生の公園に
はいくつかの池があっても良い（公園は自由に立ち入ることができる場所
だが，池は立ち入り禁止）

ということである．

2. 境界を形作る曲線の向きを指定する必要がある．この向きは，

公園の境界を，子供が（もしくはいい年の大人が）飛行機のまねをして両
手を拡げながら走るとせよ．ただし，左手が芝生の上になる向きに走る．
池の縁（も芝生の境界である）に沿って走るときにも，左手が（水の上で
はなく）芝生の上になるような向きに（水に落ちないように気をつけて）
走る

という設定での「走る向き」により，境界の向きを決定する．この向きをもった境
界を

∂G

で表すことにする．

Remark. レミングの右手の法則（だったかな？）に限らず，この手の規則は，左手だっ
たか右手だったかがわからなくなり，多くの場合，役立たずである．しかし，この場合に
は，「数学では時計と逆回りに（一般角 θ が）進む」という数学ならではの方向性が身に
ついている思うので，そこから「左手が芝生の上」が浮かぶはず． □

問題 13 (やってみましょう) 良い領域と見立てられる場所があったら，想像で正しい向
きに走ってみましょう．ただし，「この非常事態に・・・・・・」と呆れられるので，絶対に現実
には走らないこと．

6.1.3 背景について

背景だが，まず，実１変数の定積分∫ b

a

f(x)dx
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は，a と b の「向きを反対」にすると∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

と値の正負が逆転することを思い出しておこう．つまり，定積分は，区間 [a, b] について
の積分∫

[a,b]

f(x)dx

ではなく，（1 次元直線R の向きにより）向きづけられた区間での積分である．また，複
数個の向きづけられた区間を連結して元に戻るようにすると，積分は零になる：∫ a1

a0

f(x)dx+

∫ a2

a1

f(x)dx+ · · ·+
∫ a0

an

f(x)dx = 0

理由は簡単で，f(x) の不定積分（のひとつ）を F (x) とすると，

F (a1)− F (a0) + F (a2)− F (a1) + · · ·+ F (a0)− F (an) = 0

となるからである．

この類推で，
∫
γ

f(z)dz についても，

F ′(z) = f(z)

となる正則関数 F (z) が存在すると仮定してみよう．その上で，

f(z(t))
dz

dt
= F ′(z(t))

dz

dt

を合成関数 F (z(t)) の微分とみなして∫
γ

f(z)dz = F (γ の終点)− F (γ の始点)

が成り立つと考えるならば，γ の始点と終点が一致するケースで値が零になることも納得
できる．

これが「なんとなく背景と言えそうな感じの背景」である．
しかし，これは危険な類推であり，これを真に受けると，γ を単位円としての線積分∫
γ

1

z
dz の値も零という結論になってしまう．しかし，前に求めたように，この値は 2πiで

あり，零ではない．

実は，
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F ′(z) = f(z) となる正則関数が存在するのか

ということが最大の問題であり，ここが Cauchy の積分定理の証明での核心となる．

また，これは本質的な難しさではないのだが，合成関数の微分についても，偏微分可能
とC1 級の違いについての留意する必要があり，しかも，この場合にはC1 級を持ち込む
のは少し回りくどい．
要するに，なにかと微妙なのだが，このような微妙な点については，この段階では触れ
たくない．

以上により，この「背景」は，あくまでも「背景のようなもの」であり，今はこれ以上
立ち入らないことにする．

6.1.4 適用例

例題 4 c, c0 ∈ C に対して f(z) = cz + c0 と定め，a1, a2, b1, b2 ∈ R, ただし，a1 < a2,

b1 < b2 から決まる点

a1 + ib1, a2 + ib1, a2 + ib2, a1 + ib2

を頂点とする長方形の領域をG とする．このとき，線積分∫
∂G

f(z)dz

の値を求めよ．

［解］　 f(z) はC 全体で正則であり，したがってG で正則なので，Cauchy の積分定理
により 0． □

前回，例題 2 で途中まで計算をして続きを課題としたのだが，Cauchy の積分公式を使
えば，そのような計算は不要である．ただし，線積分の定義だけで直接に計算した結果
は，あとでCauchy の積分定理の証明をする際に必要になる．したがって，複素関数論を
展開するためには，１回は直接に計算しておく必要がある．一方，試験では，（明確に禁止
されていない限り）Cauchy の積分定理を始めとする複素関数論の定理は，どんどん使っ
た方が格段に楽．
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例題 5 例題 4 と同じ長方形の領域をG として，線積分∫
∂G

zrdz, r = 0, 1, 2, . . .

の値を求めよ．

［解］　この場合も，zr は正則なので Cauchy の積分定理により 0． □

例題 6 例題 4 と同じ長方形の領域をG として，線積分∫
∂G

1

zr
dz, r = 2, 3, 4, . . .

の値を求めよ．

この設定でも線積分の値は 0 なのだが，f(z) = z−r は z = 0 で定義されないので，
a1, a2, b1, b2 になにも条件を付けずに「G で正則なので・・・・・・」という訳にはいかない．G
の境界に原点 z = 0 があるときには，∂G での線積分そのものが定義できないので，この
ケースは除外する．本当は，例題の問題文そのものを修正するべき．

［解］　 0 ̸∈ G のときは（つまり，原点が長方形の外にあるときには），f はG で正則な
ので，Cauchy の積分定理により線積分の値は 0.

0 ∈ G のときには，領域G は開集合なので，

{z ∈ C | |z| ≤ ε } ⊂ G

となるような ε > 0 が存在する．このような ε を選び，

G1 = G− {z ∈ C | |z| ≤ ε }

と定めると，G1 も良い領域であり，f はG1 で正則．したがって，Cauchy の積分定理に
より，∫

∂G1

f(z)dz = 0．

G1 の境界は，G の境界 ∂G と，原点の周りの半径 ε の円周 γε から成るが，この場合に
は γε の向きは通常の向きの逆にとることになるので，

0 =

∫
∂G1

f(z)dz =

∫
∂G

f(z)dz +

∫
−γε

f(z)dz

=

∫
∂G

f(z)dz −
∫
γε

f(z)dz
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であり，∫
∂G

f(z)dz =

∫
γε

f(z)dz (18)

となる．右辺の線積分は，γε(t) = εeit (0 ≤ t ≤ 2π) として計算すると∫
γε

z−rdt =

∫ 2π

0

z−r · izdt

=

[
ε−r+1ei(−r+1)t

−r + 1

]2π
0

(19)

であり，ei(−r+1)t は 0, 2π で等しい値をとるので，∫
γε

z−rdt = 0.

□

Remark. f が領域G で「やばい点」（定義できない点，もしくは正則にならない点）を
もつとき，その点を含む小さな円板をくり抜いた領域に変えるというテクニックは，線積
分の計算での常套手段である．f が良い領域G の点 z0 を除いて正則ならば，

1. z0 を囲みG に含まれる小さな円板をG から取り除けば，

2. f は残りの領域で正則なので Cauchy の積分定理を用いることができ，

3. ∂G での線積分と，取り除いた小さな円板の円周での線積分は等しい

というテクニックである． □

Remark. この解答では γε での線積分を直接計算したが，ε を ε < 1 の範囲で選んでお
けば，zr の単位円での線積分に帰着させることができる (上の Remark でのG として単
位円の内部を選べば良い)． □

このような「小さな円板をくり抜く」テクニックは，複数個の点に対しても使うことが
できる．
これから頻繁に，
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z0 を中心とする半径 r の閉円板

が出てくるので，記号

Dr(z0) = {z ∈ C | |z − z0| ≤ r }

を用意しておく．また，Dr は，中心が 0 ∈ C の閉円板Dr(0) を表すとする．開円板（閉
円板から境界を取り除いたもの）はDr(z0)，Dr で表す：

Dr(z0) = {z ∈ C | |z − z0| < r }.

例題 7 G = {z ∈ C | |z| ≤ 4 } とする．∫
∂G

z

(z − 2)(z − 3)
dz

の値を求めよ．

［解］　 f(z) = z
(z−2)(z−3)

と置く．f(z) は z = 2, 3 で定義されず，2, 3 ∈ G なので，2, 3

をG から隔離するために

Dε(2) ⊂ G, Dε(3) ⊂ G, Dε(2) ∩Dε(3) = ϕ

となるように，ε > 0 を十分小さくとり，

G1 = G− (Dε(2) ∪Dε(3))

と置く．f(z) はG1 で正則なので，Cauchy の積分定理により∫
∂G1

f(z)dz = 0.

一方，

∂G1 = ∂G− ∂Dε(2)− ∂Dε(3)

なので（芝生の公園G の池として，Dε(2) とDε(3) の境界は通常の向きと逆向きである
ので，“−” が付く），

0 =

∫
∂G1

f(z)dz =

∫
∂G

f(z)−
∫
∂Dε(2)

f(z)dz −
∫
∂Dε(3)

f(z)dz,∫
∂G

f(z) =

∫
∂Dε(2)

f(z)dz +

∫
∂Dε(3)

f(z)dz.

後は，
∫
∂Dε(2)

f(z),
∫
∂Dε(3)

での線積分を計算すれば良いのだが，二通りのアプローチが
ある：
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部分分数展開をする

z

(z − 2)(z − 3)
=

−2

z − 2
+ · 3

z − 3

なので，∫
∂Dε(2)

f(z)dz = −2

∫
∂Dε(2)

1

z − 2
dz + 3

∫
∂Dε(2)

1

z − 3
dz.

右辺の第２項は，
1

z − 3
がDε(2) で正則であることにより，値は零．また，第１項

は，z − 2 を z にする変数変換により，もしくは，γ(t) = εeit + 2 (0 ≤ t ≤ 2π) と
して直接計算することにより，値は (−2) · 2πi = −4πi.

同様に，∫
∂Dε(3)

f(z)dz = 3 · 2πi = 6πi

なので，∫
∂G

f(z)dz = −4πi+ 6πi = 2πi.

極限を考える γ(t) = 2 + εeit, 0 ≤ t ≤ 2π として ∂Dε(2) での線積分を計算すると∫
∂Dε(2)

f(z)dz =

∫ 2π

0

1

γ(t)− 2
· γ(t)

γ(t)− 3
γ′(t)dt

=

∫ 2π

0

1

εeit
· γ(t)

γ(t)− 3
εieitdt

= i

∫ 2π

0

γ(t)

γ(t)− 3
dt.

最後の項の非積分関数は，ε→ 0 のとき，
2

2− 3
= −2 に収束するので，

∫
∂Dε(2)

f(z)dz → i(−2)

∫ 2π

0

1dt = −4πi ε→ 0.

Cauchy の積分定理により，線積分の値は ε を 0 に近づけて行く過程で変化しない
ので，ε→ 0 の極限をとらなくても，線積分の値は−4πi.

Dε(3) での線積分も同じやり方で計算できる．
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□

部分分数展開が簡単にできる場合には，部分分数展開をした方が間違えない（計算間違
いは覚悟するにしても）．極限を考えるやり方は

極限をとるとこうなるので，Cauchy の積分定理により極限をとらなくてもこ
うなる

という不思議な論法であり，これこそが Cauchy の積分定理の魔力なのだが，取り扱い
注意！
ひどい間違いをしてみる：

γε(t) = εeit (0 ≤ t ≤ 2πi) での線積分∫
γε

g(z)

z2
dz

を求める（g は連続関数）．∫
γε

g(z)

z2
dz =

∫ 2π

0

1

ε2e2·it
· g(εeit) · iεeitdt

= i

∫ 2π

0

1

εeit
· g(εeit) dt

ここで，g(εeit) → g(0) (ε→ 0) なので，g(εeit) は g(0) に置き換えることが
でき，また，

i

∫ 2π

0

1

εeit
· g(0)dt = i · 1

ε
· g(0)

[
e−it

−i

]2π
0

= i · 1
ε
· g(0) · 0 = 0

となるので，

lim
ε→0

∫
γε

g(z)

z2
dz = 0.

これは，g(z) = z としてみればわかるように，間違った推論である．「g(0) に置き換える
ことができ」と言っているが，ε が小さくなって g(εeit) が g(0) に近づいても，その隣の
項 1

εe−it は限りなく大きくなるので，置き換えることはできない．一般に，式の一部分の
みで極限をとる操作は危険．
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問題 14 次の線積分の値を求めよ．∫
γ

3z2 + 2iz − 14i+ 3

(z2 + 1)(z − 7)
dz, γ(t) = 5eit (0 ≤ t ≤ 2π)
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7 計算例 （第６回）
今回は，ただひとつの計算の説明をする．かなり難しいので達成度評価の対象には含め
ないが，このタイプの計算で現れる典型的な難しさが良くわかる例なので，少し丁寧に説
明している．一読して「そんなものか」と感じるだけで良い．

7.1 設定

7.1.1 問題の設定

I =

∫ ∞

0

sinx

x
dx

の値を求める．

Remark. この段階では，複素関数は現れておらず，微積分の枠組みに収まる問題であ
る．積分区間が有界ではないので，これは広義積分であり∫ ∞

0

sinx

x
dx = lim

R→+∞

∫ R

0

sinx

x
dx

が正式な定義． □

Remark. 広義積分である以上，収束を確認する必要があるのだが，この広義積分の収
束は，かなりデリケートである．sinx が正負の値を振動し，ある程度の打ち消しをして

くれるために
sinx

x
の積分が収束するのであり，絶対値をとって

| sinx|
x

とすると，この

関数の広義積分は収束しない．広義積分の収束を証明するための簡単な方法は，部分積分
をして分母が x2 になるようにするというトリックであり，１学年の「解析学及び演習」
で触れたとは思うが，おそらく完全に忘れているはずだ．幸いなことに，勉強し直す必要
はない．これから Cauchy の積分定理を利用して計算するが，そのときに収束も確かめら
れる． □
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Remark. 分母と分子は奇関数なので，したがって　
sinx

x
は偶関数であり，

2I = lim
R→0

∫ R

−R

sinx

x
dx.

□

7.1.2 関数 f(z) と積分路の選択

これから，複素関数論により，この積分の値を求める．まず，

f(z) =
eiz

z

と置く．

なぜこのような f(z) を考えるのかという必然性はない．

計算を進めるとうまく行くから

としか言いようがない．「計算を進めるとうまく行く」というのは失言で，うまく行くか
どうかは，積分路（線積分する曲線 γ ）の選び方と関係する．つまり，

どのような複素関数を考えて，どのような積分路を選ぶか

が大切なのである．

Remark. そのため，経験に支えられたセンスと閃きに頼ることになる．複素関数論で
の百年以上に渡る経験値蓄積から得られた典型的な計算のいくつかは定理の形になってい
るのだが，それを越える困難な計算は，名人芸の世界なのだろう（もしかすると，計算し
ようとしている複素関数への深い洞察に基づくのかも知れないが）． □

関数は f(z) =
eiz

z
を選んだので，次は積分路を選ぶ．そのために，最初に，f(z) が定

義できない点を調べると，これは z = 0 のみである．f(z) が正則になる良い領域G は，
z = 0 を含まないように選ぶことになる．
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ε > 0（後で 0 に近づける） とR （後で限りなく大きくするが，ここではR > ε だけ
を要求する）を選び，曲線（パラメータ表示された曲線）γ1, γ2, γ3, γ4 を

γ1(t) = t (−R ≤ t ≤ −ε)
γ2(t) = εei(π−t) (0 ≤ t ≤ π)

γ3(t) = t (ε ≤ t ≤ R)

γ4(t) = Reit (0 ≤ t ≤ π)

と定め，

γ = γ1 + γ2 + γ3 + γ4

と置く（こちらは，図形としての曲線）．

γ2 と γ4 では，t は π までしか動かないことに注意．つまり，半径 ε, R の円周の上半分
だけを動く．また，γ2 は e−it とマイナスが付くので，通常と逆向きに（つまり，x = −ε
から x = ε に）動くことに注意．

問題 15 γ1, γ2, γ3, γ4，及び γ を図示せよ．

この問題は，図を描くのが面倒なので課題にしたのであって，出題の動機はとても不純．
せめてものお詫びで「提出不要」とする．大抵の「複素関数論」の教科書に例として記載
されているはずなので，不要不急の外出ができるようになったら本屋で立ち読みすること
も可能．

Remark. せっかくの機会なので，「不純な動機による設問」について．
数学の専門書では，

「・・・・・・については読者の演習として残す」

というお気軽な設問が頻出し，多くの場合，「簡単なので」とか「単純なので」，「同じよう
に解決できるので」といったニュアンスを伴う．しかし，常に，簡単だったり，単純だっ
たり，同じようであるとは限らない．その場合，考えられる可能性は

1. 考え方や計算は簡単なのだが，書くと長い（ので書きたくなかった）．

2. アイデアは簡単なのだが，文章で（正確に）書こうとすると表現が難しくなる（の
で書きたくなかった）．
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3. 著者にとっては簡単でも，読者には途方もなく難しい．

4. 著者がその本で準備していない知識が必要．

5. 著者の思い違いで，実は難しい．

6. 著者の思い違いで，実は間違っている（難しいことを考えていると簡単な思い違い
をするもので，専門書でも良いある事態）．

結論は，専門書を読むときには粘り強く考えるのは大事だが，諦めて先に進むことも必
要，ということだろうか． □

7.2 線積分の計算

7.2.1 γ1 と γ3 での積分

まず，Euler の公式

eit = cos t+ i sin t

と，この式の t に−t を代入した

e−it = cos t− i sin t

から，

eit − e−it

2i
= sin t

となることを思い出しておこう．

γ1(t) と γ3(t) では，共に，γi(t) = t (i = 1, 3) と実数値をとり，γ′i(t) = 1 (i = 1, 3)

なので，∫
γ1

f(z)dz =

∫ −ε

−R

eit

t
· 1 dt (20)∫

γ3

f(z)dz =

∫ R

ε

eit

t
· 1 dt (21)
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であり，(20) は t = −s と変数変換してから，s を t に書き換えると，∫
γ1

f(z)dz =

∫ ε

R

e−is

−s
· (−1) ds = −

∫ R

ε

e−it

t
dt

なので，∫
γ1

f(z)dz +

∫
γ3

f(z)dz =

∫ R

ε

eit − e−it

t
dt

= 2i

∫ R

ε

sin t

t
dt (22)

7.2.2 ここからのストーリー

ここまで来ると，f(z) =
eiz

z
と置いた効果が見えてくる．γ1 + γ3 での線積分に目標の

積分（(22) 式の右辺）が現れているので，後は，

1. 曲線 γ = γ1 + γ2 + γ3 + γ4 を境界とする領域G は良い領域であり，G において f は
正則なので，

2. γ = ∂G での線積分は，Cauchy の積分定理により 0 となる．

3. したがって，

γ1 + γ3　での線積分と　γ2 + γ4　での線積分の和は零なので，

4. γ1 + γ3 での線積分の代わりに，γ2 + γ4 での線積分∫
γ2

f(z)dz +

∫
γ4

f(z)dz

の符号を変えたものを求めれば良い．

もちろん，γ2 と γ4 での線積分が求められないことには，何の解決にもならないのだが，
これから見るように，うまく行く．
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7.2.3 γ2 での線積分

γ2 での線積分は∫
γ2

eiz

z
dz =

∫ π

0

ei·εe
i(π−t)

εei(π−t)
· (−i)εei(π−t) dt = −i

∫ π

0

ei·εe
i(π−t)

dt

= −i
∫ π

0

ei·εe
it

dt

であり，指数関数の肩に指数関数が乗っているという絶望的な形をしている．間違っても，
計算しようなどと考えてはいけない．これを乗り越えるポイントは

いきなり ε→ 0 とした極限を考える

ということであり，入試問題で良くある，模範解答では

小問 (3) 辺りで煩雑な計算を要求し，そこで求めた数値の極限を小問 (4) で
問う

という流れのはずが，実は

小問 (3) を経由せずに極限を考えるとすぐに答えがわかる

というパターンである．
それでは，

△z = εeit

と置いてみよう．

|△z| = ε|eit| = ε · 1 = ε

であり，z 7→ ez は連続関数なので，

ei△z → e0 = 1 (ε→ 0)

となる．よって，

−i
∫ π

0

ei△zdt→ −i
∫ π

0

1dt = −iπ.

であり，∫
γ2

f(z)dz → −iπ (ε→ 0). (23)

簡単な理屈であり，これで済めば幸せなのだが，おそらく，これで済ましている教科書
はないと思う．理由は，
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ei△z → 0 という収束は，△z = εeit の t を固定して ε を動かしたときの収束
であり，収束の仕方が t にどのように依存しているかの評価なしに，「ゆえに，
積分しても収束する」と言う「ゆえに」は乱暴だ

と叱られてしまうからである．

叱られても良いことにして，これで済ましてしまうのも，１つの生き方であるが，それ
では不満な人のために，こういったケースでの仁義の通し方を書いておく；

フォーマルな議論

g(z) = eiz

は z = 0 で微分可能であり，g′(z) = ieiz, g′(0) = i なので，微分の定義により

lim
△z→0

g(△z)− g(0)

△z
= i.

これは，

1. △z がどのような仕方で 0 に近づいても，g(△z)−1
△z が i に近づくということであり，

2. 言い換えると，|△z| が小さくなれば i に近づく，ということである．

3. |△z| = ε なので，

4. ε が 0 に近づくときの収束の仕方は t に依存しない

ということを意味する．ε− δ 論法で言うならば（ただし，文字 ε を既に使ってしまって
いるので，α− β 論法），微分の定義により

任意の α > 0 に対して（したがって，例えば α = 1 に対して），ある β > 0

が存在して，

|△z| < β　ならば　

∣∣∣∣g(△z)− g(0)

△z
− g′(0)

∣∣∣∣ < α

となる．
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よって，ε < β ならば（したがって，|△z| < β ならば）∣∣∣∣∫ π

0

ei△z − 1 dt

∣∣∣∣ ≤
∫ π

0

∣∣∣∣ei△z − ei·0

△z

∣∣∣∣ · |△z| dt
=

∫ π

0

∣∣∣∣g(△z)− g(0)

△z
− i+ i

∣∣∣∣ · ε dt
≤

∫ π

0

∣∣∣∣g(△z)− g(0)

△z
− i

∣∣∣∣ · ε dt+ ∫ π

0

|i · ε| dt

≤
∫ π

0

α · βdt+
∫ π

0

βdt

= αβπ + βπ

= 2πβ (α = 1　を選んだ場合)

となる．β として，いくらでも小さな値を選び直すことができるので，∫ π

0

ei△z − 1 dt→ 0 (ε→ 0)

であり，

−i
∫ π

0

ei△zdt = −i
(∫ π

0

1 dt+

∫ π

0

ei△z − 1 dt

)
→ −i

∫ π

0

1 dt (ε→ 0)

= −iπ.

□

7.2.4 γ4 での線積分

γ4 での線積分∫
γ4

eiz

z
dz =

∫ 2π

0

ei(Re
it)

Reit
(
iReit

)
dt (24)

= i

∫ 2π

0

ei(Re
it)dt (25)

も γ2 での線積分と同様に，そのまま計算しようとしたのでは，絶望的に手が付かない形
をしている．γ2 との違いは，ε がR になって，向きが逆転しているだけなのだから，計
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算できるかという意味では違いはない．したがって，R → +∞ の極限をとることにして
初めて，手がつけられる設定になる．
結論から言うと，R → +∞ のとき，γ4 での線積分は 0 に収束する．これを確かめよう．

Remark. (24) の式変形だが，これは∫
γ4

eiz

z
dt =

∫ 2π

0

eiz(t)

z(t)
· z′(t)dt

と書いた方がわかりやすいと思う．z(t) の部分は

1. Reit であり，他にも

2. γ4(t)（厳密には，曲線とそのパラメータ表示を混同して記号を使っていることにな
る）とか,

3. φ(t) （線積分の導入の頃に使っていた記号） などの記号でも表すことができるが，

4. どれを使うにしても，例えば γ4(t) ならば z = γ4(t) と書けるので，

5. 従属変数の記号をそのまま関数記号として使って，z = z(t)としても良いではないか

という理由で用いている． □

Remark. (25) の式変形では，
eiz(t)

z(t)
の分母と，z′(t) = iz(t) の z(t) がうまく打ち消し

合って i だけが残っている．これは，z(t) が

z(t) = rect

の形のときに生じるパターンであり，求める線積分が∫
γ

f(z)

z
dz

の形ならば，これを∫
γ

f(z) · dz
z
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と書き換えておいて，
dz

z
に注目した方がわかりやすい：

z(t) = rect のときは z′(t) = c · z(t) なので，

dz

z
=
z′(t)dt

z(t)
=
cz(t)

z(t)
dt = c dt

であり，∫
γ

f(z) · dz
z

= c

∫ b

a

f(z(t))dt．

□

Remark. dz = z′(t)dt と考えているのだが，これは，dz に正式な数学的意味を与えた
結果ではない．単に，

線積分をパラメータでの積分に直すときに，式の dz の部分が z′(t)dt に置き
換わると考えると便利

というだけのことで，深い意味はない（微分形式というものを定義すると，きちんと意味
を与えることも可能だが，これには触れない）． □

Remark. γ が半径 r の円周や半円周の場合に∫
γ

f(z)

z
dz

の収束について考えてみよう．

1. r → +∞ のとき

(a) 積分路は r に比例して長くなる．この効果は z(t) = reit （t の範囲は [0, 2π] や
[0, π] のように r に依存せずに選ぶとする）の微分 z′(t) = ireit が r に比例し
て大きくなるという形で（長い曲線を高速で通り抜けるという形で）現れる．

(b) 一方，
f(z)

z
の分母の z は，r に比例して大きくなる．

(c) 結局，両者の効果は打ち消し合う．
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2. r → 0 のとき

(a) 積分路は r に比例して短くなる．この効果は z(t) = reit の微分 z′(t) = ireit が
r に比例して小さくなるという形で（短い曲線を低速で通り抜けるという形で）
現れる．

(b) 一方，
f(z)

z
の分母の z は，r に比例して小さくなる．

(c) 結局，両者の効果は打ち消し合う．

以上により，r → +∞，r → 0 のどちらについても，積分路が長くなる（短くなる）とい
う効果は，非積分関数の分母の z と打ち消し合う． □

Remark. 積分路の長さの考察をすることは，線積分の計算をしていく上での大切な感
性を養う．ただし，

dz

z
= i dt

とみなせることを使えば，既に打ち消し合う効果の処理は済んでいるので，この場合に限
れば，要らない考察なのかも知れない． □

本題に戻る．等式 (25) に戻って，∫
γ4

eiz

z
dz = i

∫ π

0

ei(Re
it)dt (26)

の非積分関数の大きさを評価する．これが r → +∞ で 0 に収束することを示さないこと
には，∫

γ4

eiz

z
dz → 0 R → ∞ (27)

を導けない．

z = Reit を Eulerの公式 eit = cos t+ i sin t を用いて x+ iy の形で表すと，

z = R cos t+ iR sin t
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であり，

eiz = eiR cos t−R sin t

= e−R sin t · eiR cos t

となる．eiR cos t の絶対値は，R cos t が実数なので 1 であり，したがって，

|eiz(t)| = e−R sin t. (28)

こうして，R が大きくなるとき |eiz| が小さくなるという結論を得る道筋が見えてくる：

1. (26) が 0 に収束を示すためには，絶対値が収束することを示せば良く，∣∣∣∣∫
γ4

eiz

z
dz

∣∣∣∣ =

∣∣∣∣i ∫ π

0

eiz(t)dt

∣∣∣∣ （⇐ (26)）

≤
∫ π

0

∣∣eiz(t)∣∣ dt
=

∫ π

0

∣∣e−R sin t
∣∣ dt （⇐ (28)）

2. 積分路 γ4 は上半面（複素平面の上半分 {z = x+ iy | y > 0 }）を通るので，sin t > 0

であり，R が限りなく大きくなると |e−R sin t| は限りなく小さくなる．

ただし，これだけでは論証として不十分である．|e−R sin t| が小さくなるためにどの程度R

が大きい必要があるかは t に依存し，しかも，t が 0, π に近いときには sin t は 0 に近い
ことを考えると，この依存関係はかなり心配な依存性である．少し，テクニックが必要に
なる．

まず，y = sin θ のグラフを考えると，グラフ上の 2点 (0, 0) と (π
2
, 1) を結ぶ割線よりも

グラフが上にあるので，

sin θ ≥ 2

π
θ (0 ≤ θ ≤ π

2
).

したがって，非積分関数 e−R sin t の sin t を 2
π
t に置き換えてしまうと，不定積分が計算で
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きる式に変わり，∫ π

0

e−R sin tdt = 2

∫ π
2

0

e−R sin t

≤ 2

∫ π
2

0

e−R· 2
π
tdt

= 2

[
e−R· 2

π
t

−R · 2
π

]π
2

0

= 2 · e
−R − 1

−R · 2
π

→ 0 (R → +∞).

以上により，∫
γ4

eiz

z
dz → 0 (R → 0) (29)

であることが示された．

7.2.5 結論

ここまでで得られた結論をまとめると：

1. 積分路 γ1 + γ2 + γ3 + γ4 の囲む領域G は良い領域であり，

f(z) =
eiz

z

はG で正則なので，Cauchy の積分定理により，∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz +

∫
γ4

f(z)dz = 0.

よって，∫
γ1

f(z)dz +

∫
γ3

f(z)dz = −
∫
γ2

f(z)dz −
∫
γ4

f(z)dz.

2. γ1 + γ3 での線積分は∫
γ1

f(z)dz +

∫
γ3

f(z)dz = 2i

∫ R

ε

sin t

t
dt （⇐ (22)）
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3. γ2 での線積分は ε→ 0 で収束し∫
γ2

f(z)dz → −iπ (ε→ 0) （⇐ (23)）

4. γ4 での線積分はR → +∞ で収束し∫
γ4

f(z)dz → 0 (R → +∞) （⇐ (29)）

後は，これらの結果を組み合わせるだけのことで，∫
γ1

f(z)dz +

∫
γ3

f(z)dz = −
∫
γ2

f(z)dz −
∫
γ4

f(z)dz

→ −(−iπ)− 0 = iπ (ε→ 0, R → +∞)

なので，∫ ∞

0

sinx

x
dx = lim

ε→0
lim
R→∞

∫ R

ε

sinx

x
dx

= lim
ε→0

lim
R→∞

1

2i

(∫
γ1

f(z)dz +

∫
γ3

f(z)dz

)
=

1

2i
· iπ =

π

2

長かったし，難しかったと思う．確かに難しいのだが，その難しさには

1. 巧妙な解法なので，解法の基本的な流れも，やさしくはない．

2. それに加えて，基本的な流れを厳密な論証にするための技巧が入ってきていて，む
しろ，こちらが難しい（なぜそれが必要なのかも含めて難しい）

と二種類の難しさが混じっている。最初は，基本的な部分を理解することが大切で，厳密
な論証に関する職人的技巧を身につけるのは，後でも良いと思う（数学を本気で勉強する
ならば，最初から厳密な論証になれてしまう方が早いのだが）．

とにかく，色々と面倒な説明だったと思う．複素関数論の教科書をいくつか見てみると
わかるが，ここまで長々と説明はしていない．ただ，それらの教科書での比較的すっきり
とした説明には，さりげなく「厳密な論証のための技巧」が織り込まれているので，逆に
基本的なアイデアを分離して捉えるのが難しくなりがちである．また，なぜそのような技
巧を持ち込む必要があったのかも，捉えづらいと思う．一生のうち一度くらいは，徹底し
た解説をがまんして読むのも無駄ではないかと・・・・・・
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8 Cauchy の積分公式 （第７回）

8.1 Cauchy の積分公式

ここでは，Cauchy の積分公式の簡単なバージョンを扱う：

定理 5 G は良い領域であり，f はG で正則な関数とする．このとき，任意の z ∈ G に
対して，次の等式が成立する：

1

2πi

∫
∂G

f(ζ)

ζ − z
dζ = f(z). (30)

等式 (30) をCauchy の積分公式 (Cauchy’s integration foumula) という．

Remark. 簡単なバージョンと言った以上，一般形があり，そこでは良い領域の境界と
なる曲線に限らず，自己交差（“8” の字や “α” のような曲線の交差）があったり，原点の
周りを何周も回ってから戻るといった複雑な曲線（ただし，始点と終点は一致）を積分経
路としての公式になる．ここまで一般化するためには，「まつわり数」などの準備が必要
で，どうせそこまでやるならば，野口先生に「ホモトピー理論」というむずい数学の話を
聞いてからで良いと思うので，簡単なバージョンに留める． □

8.1.1 定理の証明

この形の Cauchy の積分公式を導くことは難しくなく，Cauchy の積分定理からすぐに
導かれる：

1. G は良い領域であり，f はG で正則であるとする．

2. z0 をG の任意の点として，関数 g を

g(z) =
f(z)

z − z0

と定める．

3. この関数は，z = z0 で定義されないが，それ以外のG のすべての点において正則
である．

4. g に対して Cauchy の積分定理を使うために，g が正則となる良い領域G1 を以下
のように作る：
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(a) G は開領域（開集合）なので，

Dr(z0) ⊂ G

となる r > 0 をとることができる．ここで，Dr(z0) は z0 を中心とする半径 r

の閉円板， Dr(z0) = {z ∈ C | |z − z0| ≤ r }.

(b) G から閉円板Dr(z0) = {z ∈ G | |z − z0| ≤ r } を取り除いた領域をG1 とする．

5. この領域G1 は以下の条件を満たす：

(a) g はG1 で正則．

(b) G1 の境界 ∂G1 は，

i. G の境界 ∂G，

ii. Dr(z0) の境界（ただし通常と逆向き）

から成る．

6. g はG1 で正則なので，Cauchy の積分定理により∫
∂G1

g(z)dz = 0

であり，

7. 左辺は∫
∂G1

g(z)dz =

∫
∂G

g(z)dz +

∫
−∂Dr(z0)

g(z)dz

=

∫
∂G

g(z)dz −
∫
∂Dr(z0)

g(z)dz

と表される．

8. 以上により，∫
∂G

g(z)dz =

∫
∂Dr(z0)

g(z)dz

である．
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したがって，∫
∂G

f(z)

z − z0
dz

を求めるためには，∫
γr

f(z)

z − z0
dz, γ(t) = z0 + reit, 0 ≤ t ≤ 2π

を計算すれば良い：∫
γr

f(z)

z − z0
dz =

∫ 2π

0

f(z0 + reit)

(z0 + reit)− z0
·
(
i · reit

)
dt

= i

∫ 2π

0

f(z0 + reit) dt

この値自身は計算できないのだが，r はいくらでも小さく選び直して良いので r → 0 と
すると，

i

∫ 2π

0

f(z0 + reit) dt → i

∫ 2π

0

f(z0)dt (31)

= 2πif(z0).

以上により，∫
∂G

f(z)

z − z0
dz =

∫
∂Dr(z0)

f(z)

z − z0
dz → 2πif(z0) (r → 0) (32)

なので，∫
∂G

f(z)

z − z0
dz = 2πif(z0). (33)

左辺の z はどんな文字を使っても良いので ζ に書き直し，z0 はG の任意の点なので，
それを z で表すことにより，Cauchy の積分公式

1

2πi

∫
∂G

f(ζ)

ζ − z
dζ = f(z)

が得られる． □

Remark. 式 (32), (33) は不思議ちゃんの雰囲気が漂う．式 (32) の等号の左辺に r は
現れず，一方，その値を右辺で r → 0 として計算している．このような変な計算ができ
る事こそ Cauchy の積分定理の威力であり，
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1. r はDr(z0) の境界がG の境界に触れなければどのように選んでも良く，

2. そのような r が１つでも存在するならば，

3. いくらでも小さく選び直すことが可能

ということに由来している．上の論証で r を選んでいるのは，「そのような r が１つでも
存在すれば」という条件がクリアーできることを証明しているのであり，後では r を動か
して 0 に近づける．これは，複素関数論で頻繁に現れる手法である． □

Remark. 式 (31) の収束は，厳密な議論としては少しギャップがある．このギャップを，
埋めてみよう：
z0 を固定して ψ(z) = |f(z0 + z) − f(z0)| と置くと，これは連続関数なので，任意の

ε > 0 に対して，ある δ > 0 が存在して

|z| ≤ δ ⇒ ψ(z) < ε. (34)

したがって， r が δ 小さいならば，∣∣∣∣∫ 2π

0

f(z0 + reit)dt−
∫ 2π

0

f(z0)dt

∣∣∣∣
=

∣∣∣∣∫ 2π

0

(
f(z0 + reit)− f(z0)

)
dt

∣∣∣∣
≤

∫ 2π

0

|f(z0 + reit)− f(z0)|dt （ ここで (34)を使うと ↓）

≤
∫ 2π

0

εdt = 2πε

であり，∣∣∣∣∫ 2π

0

f(z0 + reit)dt−
∫ 2π

0

f(z0)dt

∣∣∣∣ → 0 (r → 0)

要点は，「ここで，(34) を使うと」という所にあり，積分をする変数 t に依存しない r → 0

での収束を評価していることが大切．これは，「一様性」と呼ばれる性質．この場合は簡
単に評価できたのだが，一般論は少し面倒なので，「補充２」（これは到達度評価には含ま
れない）で扱うことにした． □
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Remark. ζ はギリシャ文字のゼータ．ギリシャ文字を使うときに，数学では，x, y, z に
は ξ, η, ζ を対応させる傾向がある．おそらく必然性は無いのだが，x に ζ, z に ξ と逆転
させて使うと，変な人かと思われる．y については，本当のところ，傾向があるかどうか
も怪しいのだが，

a b d e i k l m n p r s t u

α β δ ε ι κ λ µ ν π ρ σ τ υ

と対応させるのは，ほぼ決まりのようだ．c, g のどちらに γ を対応させるかは，“Gaius

Julius Caesar” が “C.Julius Caesar” となるくらいなので，数学の業界に限らずなんとも
言えない．f , g に φ, ψ が対応するのは，おそらく，数学でのその場の勢い．
o には，明らかに omicron（ランダウの記号で使うやつ） が対応するのだがTEXには
用意されていない．謎なのだが，学のあるあのクヌース先生のしたことなので，理由があ
るのだと思う．ついでに，「学のある」という事に関して，ヨーロッパの良い大学（もしか
すると良い中・高校）の出身者の一部は，半端でなくラテン語に精通している（科挙の生
員が四書五経に精通しているくらい）．ラテン語については極力知らんぷりすること．デ
ウスエクスマギナは絶対の禁句．Canis lupus familiaris（イエイヌ）くらいにしておきま
しょう． □

8.2 正則関数の特徴 １

8.2.1 正則関数の「堅さ」

もう一度，Cauchy の積分公式

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z
dζ

をよく見てみると，大変なことに気づく：

左辺の f(z) は，G の任意の点 z での f の値なのに，右辺で f に関係する唯
一の項 f(ζ) の ζ は，G の境界しか動かない．

これがなぜ「大変なこと」なのかと言うと

G での f の値は，G の境界での f の値というデータだけで完全に決まってし
まう

からなのであり，
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G の境界での f の値を固定すると，G の内部で f を別の正則関数に変えるこ
とは一切できない

ということを意味するからである．これが，

正則関数は「堅い」(rigid) だ

ということの，ひとつの現れである．

比較の対象としてC∞ 関数（無限回微分できる関数）y = f(x) を考えると，それを例
えば区間 [−1, 5] では全く変えることなしに，区間 [7, 8] で別の C∞ 級関数に好きなよう
に変えてしまうことが可能である．言い換えると，C∞ 級関数は「柔らかい」．

Remark. C∞ 級関数を部分的に変えるための基本的テクニックは，関数

φ(x) =

{
0 x ≤ 0

e−
1
x 0 < x

をうまく使うことである（ついでに言うと，1 の分解というテクニックも必須）．この関
数 φ(x) は x = 0 でも無限回微分可能であり，

φ(k)(0) = 0, k = 0, 1, 2, 3, . . .

なので，φ(x) のテーラー展開の係数はすべて 0 であり，当然，すべての x で収束する．
しかし，x > 0 では φ(x) と一致しない（テーラー展開と言っても，等号は成立しない）．
これから正則関数のテーラー展開を考えるが，正則関数ではこのような変なことは起き
ず，テーラー展開は，等号を成り立たせるという意味での展開になる． □

8.2.2 部分分数展開の一般化

Cauchy の積分公式と部分分数展開の類似を辿るために，積分公式の右辺

1

2πi

∫
∂G

f(ζ)

ζ − z
dζ

の非積分関数 f(ζ)
ζ−z を z の関数として見る．
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積分の最後には dζ が付いているのだが，実体はパラメータ表示をしている実数で積分
をしているのであり，∂G を ζ = ζ(t) (a ≤ t ≤ b) の形でパラメータ表示して

1

2πi

∫ b

a

f
(
ζ(t)

)
ζ(t)− z

· ζ ′(t)dt = 1

2πi

∫ b

a

f
(
ζ(t)

)
ζ ′(t)

ζ(t)− z
dt

の形で考えるならば，ct = f
(
ζ(t)

)
ζ ′(t), dt = ζ(t) と置いて

1

2πi

∫ b

a

ct
dt − z

dt

の形になる．こうして，a ≤ t ≤ b に対して決まる

z 7→ ct
dt − z

という形の関数を，つまり ct, dt の値が異なるだけで全く同じ形の簡単な関数を

「重ね合わせている」（t で積分している）

という様子が見えてくる．

これは，部分分数展開が

c1
d1 − z

+
c2

d2 − z
+ · · ·+ cn

dn − z

つまり，

n∑
t=1

ct
dt − z

と離散的な t についての有限個の項の重ね合わせであってものを，連続的な t についての
積分に置き換えた形をしている．そして，部分分数展開では，例えば不定積分を求めるな
どの演算をする場合に，部分分数展開された各項に対して演算した後に重ね合わせれば良
かったのと同様，

非積分関数に演算を行ってから重ね合わせれば（積分すれば）良いだろう

というアプローチが生まれる．

Remark. 微積分での部分分数展開では，各項に対して不定積分という演算をしてから
重ね合わせたのだが，不定積分という演算は，複素数のケースでは問題が多い．実数値関
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数の場合には「定義域は正の実数」という点だけ注意していれば良かった log x という関
数は，複素数になると，なにかと厄介な問題を引き起こす． □

各項に微分という演算をする場合には，
ct

dt − z

という z の関数は，とても良い性質を持っている：

関数 z 7→ ct
dt − z

は無限回微分可能．

このことから，

f が良い領域G で正則ならば（１回だけ微分可能ならば），f はG で何回で
も微分可能であり

f (k)(z) =
1

2πi

∫
∂G

k! f(ζ)(
ζ − z

)k+1
dζ (35)

という結果が予想できる．

また，この形の非積分関数は，
f(ζ)

ζ − z
=

f(ζ)

ζ − z0 − (z − z0)

=
f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

と変形することができ，

|z − z0| < |ζ − z0| (36)

という条件が満たされていれば，等比級数の和の公式により

1

1− z−z0
ζ−z0

= 1 +
z − z0
ζ − z0

+

(
z − z0
ζ − z0

)2

+

(
z − z0
ζ − z0

)3

+ · · ·

と展開することが可能である．

Cauchy の積分公式の「部分分数展開」では，条件 (36) の不等式を満たす設定は，簡単
に実現できる．実際，

Dr(z0) ⊂ G

を満たす r > 0 を選べば（これはG が開領域なので常に可能），
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1. G の境界上の点 ζ ∈ ∂G と z0 との距離は r 以上：

r ≤ |ζ − z0| (ζ ∈ ∂G)

2. Dr(z0) の点 z と z0 との距離は r より小さい：

|z − z0| < r (z ∈ Dr(z0))

3. したがって，

|z − z0| < |ζ − z0|.

以上により，z0 ∈ G を選んで固定し，Dr(z0) ∈ G を満たすように r > 0 を選んでおくと，
任意の z ∈ Dr(z0) に対して

1

2πi

∫
∂G

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂G

f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

dζ (37)

=
1

2πi

∫
∂G

f(ζ)

ζ − z0
·

(
1 +

z − z0
ζ − z0

+

(
z − z0
ζ − z0

)2

+ · · ·

)
dζ (38)

=
1

2πi

∫
∂G

∞∑
k=0

f(ζ)

(ζ − z0)k+1
· (z − z0)

k dζ (39)

=
∞∑
k=0

{
1

2πi

∫
∂G

f(ζ)

(ζ − z0)k+1
dζ

}
(z − z0)

k (40)

という式変形が可能である．これは，f(z) の z0 の周りでのテーラー展開を与える．

ただし，この「・・・・・・を与える」は，厳密には，やはり謙虚に「・・・・・・を与えると予想さ
れる」と言うべき．積分と極限（無限級数は有限級数の極限をとっていることに注意）の
順序交換可能性など，色々とチェックをする必要があるので，上の式変形は少し乱暴なの
である．これに付いては「補充２」に押し込めて，結果としての定理だけ述べておこう．

8.2.3 積分公式から導かれる定理

定理 6 G が良い領域で，f はG で正則であるとする．このとき，f はG で無限回微分
可能（何回でも微分可能）であり，

f (k)(z) =
k!

2πi

∫
∂G

f(ζ)

(ζ − z)k+1
dζ k = 0, 1, 2, 3, . . . .
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定理 7 G が良い領域で，f はG で正則であるとする．z0 ∈ G に対して，Dr(z0) ⊂ G と
なるような r > 0 を選んでおく．このとき，

ak =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)k+1
dζ, k = 0, 1, 2, . . . (41)

と定めると，z ∈ Dr(z0) に対して，テーラー展開の等式

f(z) =
∞∑
k=0

ak(z − z0)
k (z ∈ Dr(z0)). (42)

を満たす．

Remark. 定理 7 は，定理 6 と通常の微積分でのテーラー展開の公式から得られるよう
に見えるが，そうではない．微積分でのテーラー展開の公式は，収束半径については何も
言っていない．定理 7 の主張する「z ∈ Dr ならば収束」はCauchy の積分公式を経由し
ないと得られない．
定理 7を証明した後ならば，テーラー展開の係数 an を (41) 式の積分により求めるので
はなく，高階微分により求めることも可能． □

Remark. 線積分の記号で

1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)k+1
dζ

と書いたが，これは

|ζ − z0| = r で決まる曲線（中心が z0 で半径が r の円周）に通常の向きを与え
た曲線での線積分

を意味し，パラメータ表示にするならば，例えば

γ(t) = z0 + reit (0 ≤ t ≤ 2π)

として

1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

と書くことになる． □

110



Remark. テーラー展開を与える式をみると，どこにもG や ∂G は表れていない．線積
分の経路はDr(z0) の境界であり，∂G ではない．G は，r をどのくらい小さくとる必要
があるのかという点でのみ関係しているのであり，z0 からの始点で見ると，r は最大で

「z0 から ∂G までの距離，つまり，z0 からG上の点までの距離の最小値」

までは大きくとることができる．また，f が正則となる，G よりも更に大きな良い領域
があるならば，r も更に大きく選ぶことができる．簡単に言うならば，

z0 から見て，べき級数展開（テーラー展開）の収束を保証する半径 r（収束半
径） は，f が正則でなくなる点に触れてしまうギリギリまで大きくとること
ができる

ということであり，これは，テーラー展開の係数を不等号で評価して収束半径を決めると
いう発想とは全く異なる． □

Remark. 収束半径 r より小さい範囲でのテーラー展開の収束は，単に収束するという
だけでなく，

やっても良さそうな計算は，すべてやっても良い

という意味で，望む限り最良の収束となる．要するに，どんどん計算して良いというこ
となので，これから，厳密な論証は「補充２」に押し込めて，どんどん計算することにし
よう． □

テーラー展開について成り立つ重要な性質を，証明の概略と共に述べておこう（詳細は
「補充２」）：

命題 2 べき級数

∞∑
k=0

akz
k = a0 + a1z + z2z

2 + z3z
3 + · · ·

に対して，次の条件を満たす実数 r ≤ 0 が存在する．この r を，このべき級数の収束半径
(radius of convergence) という：

1. |z| < r を満たす z に対して，
∑∞

k=0 akz
k は収束する．
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2. |z| > r を満たす z に対して，
∑∞

k=0 akz
k は発散する．

命題 3 べき級数
∑∞

k=0 akz
k　は，収束半径が正のべき級数であるとする．条件

1. zn → 0 (n→ ∞)

2. 0 < |zn| < r

3.
∑∞

k=0 akz
k の z = zn での値は 0.

を満たす点列 {zn} が存在するならば，このべき級数は恒等的に零のべき級数（すべての
係数 ak が 0 のべき級数）である．

［証明］　（概略）aj ̸= 0 となる係数が存在するならば，その中で j が最小のもの（次数
が最小の係数）を am とする．このとき

∞∑
k=0

akz
k = amz

m + am+1z
m+1 + · · ·

= amz
m

(
1 +

am+1

am
z +

am+2

am
z2 + · · ·

)

であり，z → 0 のとき

lim
|z|→0

(
am+1

am
z +

am+2

am
z2 + · · ·

)
= 0

なので，十分小さな z = zn に対して

1 +
am+1

am
z +

am+2

am
z2 + · · · ̸= 0.

数列 zn の条件により，zn → 0, zn ̸= 0 なので，十分大きな番号 n では，このべき級数の
z = zn における値は 0 ではない：

amz
m

(
1 +

am+1

am
z +

am+2

am
z2 + · · ·

)
̸= 0

これは仮定に反する．よって，aj ̸= 0 となる係数は存在しない． □
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Remark. このままで証明になっているように見えるが，

am+1

am
z +

am+2

am
z2 + · · ·

の収束半径について，また，このべき級数が定める関数の連続性についてチェックする必
要がある（「補充２」）． □

テーラー展開の係数 an は，(41) 式により与えられるのだが，実際に正則関数のテー
ラー展開をするときにこの式を用いることは，まず無い．積分の計算をするよりも，高階
微分を計算する方がまだしも簡単というケースが多いからである．しかし，これでは寂し
いので，テーラー展開

f(z) =
∞∑
k=0

ak(z − z0)
k (z ∈ Dr(z0)). (43)

の係数 ak を積分で求める等式

ak =
1

2πi

∫
|ζ−z0||=r

f(ζ)

(ζ − z0)k+1
dζ, k = 0, 1, 2, . . . (44)

が活躍する定理を紹介しておこう：

定理 8 (Liouvile の定理) f は C 全体で定義された正則関数とする．f が有界ならば，
つまり，ある実数M が存在して

|f(z)| ≤M (z ∈ C)

を満たすならば，f は定数関数である．

［証明］　
f は，原点を中心とする任意の半径R の円 {z ∈ C | |z| < R } で正則なので，任意の

R1, 0 < R1 < Rを収束半径として（z0 = 0 で）テーラー展開される：

f(z) =
∞∑
k=0

akz
k |z| < R1

ak =
1

2πi

∫
|ζ|=R1

f(ζ)

ζk+1
dζ
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ここで，R は任意に大きく選べるので，R1 も任意に大きく選べる．
ζ = R1e

it, 0 ≤ t ≤ 2π として |ak| を評価すると，k ≥ 1 に対して

2π |ak| =

∣∣∣∣∫ 2π

0

f(ζ(t))

(R1eit)k+1
· iR1e

itdt

∣∣∣∣
≤

∫ 2π

0

|f(ζ(t))|
(|R1eit|)k

dt

≤
∫ 2π

0

M

Rk
1

dt

= 2π
M

Rk
1

→ 0 (R1 → +∞)

となるので，a0 以外はすべて 0.

よって，f(z) = a0 であり，f は定数関数． □

定理 9 (代数学の基本定理) 複素係数の定数でない多項式は，少なくとも１つの零点を
もつ．

［証明］　
P (z) を，定数でない複素係数の多項式により定められた関数とする：

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n, an ̸= 0, n ≥ 1

これは，C 全体で定義された正則関数であり，P (z) = 0 となる z が存在しないと仮定す
ると，

f(z) =
1

P (z)

もまた，C 全体で定義された正則関数になる．
f が有界であること，つまり，f(z) ≤M (z ∈ C) を満たすM ∈ R が存在することを
示す：まず，

1.
∣∣∣a0
zn

+
a1
zn−1

+ · · ·+ an−1

z
+ an

∣∣∣→ |an| なので，

2. 十分に大きなR に対して，

|z| > R ⇒
∣∣∣a0
zn

+
a1
zn−1

+ · · ·+ an−1

z
+ an

∣∣∣ ≥ |an|
2

であり，
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3. |z| > R となる z に対して

|P (z)| =
∣∣∣zn (a0

zn
+

a1
zn−1

+ · · ·+ an−1

z
+ an

)∣∣∣ > Rn |an|
2∣∣∣∣ 1

P (z)

∣∣∣∣ <
2

Rn |an|

となるので，

R を十分大きくとれば，すべての |z| > R を満たすすべての z ∈ C に対して，

|f(z)| < 1

Rn |an|

であることがわかる．
また，|P (z)| はDR(0) において最小値をもつので，f(z) は有界．
以上により，f(z) は有界であり，Liouvile の定理により定数関数となり，矛盾． □

Remark. n 次多項式関数が少なくとも１つの零点 z0 を持つならば，１次式 z − z0 と
n− 1 次多項式に因数分解をすることができる．この n− 1 次多項式も少なくとも１つの
零点を持つので・・・・・・と続けることにより，n 次多項式は複素数の範囲で必ず n 個（重複
度も含めて n 個）の 1 次式に因数分解されることがわかる． □

Remark. 上の証明で，「Dr(0) で最小値を持ち」と言っている．「有界閉集合上での連続
関数は最大値と最小値をもつ」という辺りが予備知識となっているならば良いのだが，そ
うでない場合には証明が必要である．これを証明しようとすると「補充２」の Boltzano-

Weierstrass の定理（の 2 次元版）が必要になる．そんなことならば，Liouvile の定理の
「簡単な」応用などと言わずに，（Liouvile の定理に頼らず）多項式ということをもっと活
かした証明の方が簡単，という（明石先生が言っていた）説は正論だと思う（多項式相手
に Liouvile の定理を持ち出すのは，海賊相手に F22 ラプターを持ち出すようなものか）．
だが，この段階では Liouvile の定理という正則関数ならではの定理の「有り難み」を示
す例を探すのは難しので，（兵器ショーのようなものと思って）妥協しておこう． □

問題 16 ここまでの説明を，ノートになるべく沢山の絵を描きながら辿れ．
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9 補充２

9.1 実数

9.1.1 実数論のスタート地点

実数についての厳密な議論（実数論）を展開しようとすると，どうしても実数の基本性
質，即ち「解析学および演習」の授業で登場するつかみ所のないあの話，に戻ることにな
る．これは，

1. デーデキント切断の性質

2. 有界単調列が収束すること

3. 基本列（コーシー列）が収束すること（実数の完備性）

4. 縮小閉区間の列に共通に含まれる点の存在

5. 有開な数列が収束する部分列をもつこと（Bolzano-Weierstrass の定理）

6. 有界閉区間の開被覆が有限部分被覆をもつこと（コンパクト性）

など，色々な形での公理として与えることができ，これらのどれかを公理とすれば，残り
は定理として証明される（本当かな？実は，ちょっと違う）．
最初は苦労するのだが，まともに解析学を勉強しようとするならば，必ず一度は通らな
ければならない障壁である．これが障壁となる最大の理由は，

なぜここまで証明をしなければならないのか．直感的には明らかなのに！

という抵抗感なのかも知れない．しかし，「実数直線」の代わりに「有理数直線」を「数直
線」と考えると，これらの性質は満たされず，また，「直感的に明らか」と思えることも，
常に成り立つわけではない．
まじめに考えなければいけないという覚悟を決めるために，「直感的に明らかなのに有
理数直線では成り立たない」例に触れておくのが良さそう：

例 2 「実数直線」の代わりに有理数のみからなる「有理数直線」を考える．高校数学で
の実数直線と同じ感覚で，有理数直線の絵を描くと・・・・・・実数直線と同じ絵を描くしかな
い．見かけは全く同じである．それでは，区間の記号は，有理数のみからなる集合を意味
し，例えば

(a, b] = {x ∈ Q | a < x ≤ b }

116



であるとしよう．
この有理数直線での測度（長さの一般化）について考えてみよう：

1. 区間 (a, b], ただし a ≤ b，の測度を

µ((a, b]) = b− a

と定義する．

2. 区間 (aj, bj], j = 1, 2, 3, . . . の和集合（合併集合）

∞∪
j=1

(ai, bi]

は区間 (0, 1] を覆っているとする：

(0, 1] ⊂
∞∪
j=1

(aj, bj].

3. このとき，直感的には，

µ((0, 1]) ≤
∞∑
j=1

µ((aj, bj])

となっていることは明らか

のはずなのだが，証明できるだろうか．これを三日ほどまじめに考えてみると良いと思う
（区間 (0, 1] は有理数のみからなる，という設定を忘れずに．証明できたら，お米券を進
呈します．）

結局証明はできず，三日間の努力は，無駄に終わる．反例が作れるのだから，証明でき
るはずがない．なお，長期的には，この努力は報われることを保証する．

例 3 (反例) 要点は，有理数の集合は可算集合であり，したがって，(0, 1] に含まれる有
理数の集合も可算集合，ということにある．つまり，

(0, 1] = {x1, x2, x3, . . .}

と要素を列挙できるということが，トリックになる．

117



1. aj = xj −
1

7j
, bj = xj +

1

7j
として区間 (aj, bj] を定める．このとき，

(a) µ
(
(aj, bj]

)
= (xj +

1

7j
)− (xj −

1

7j
) =

2

7j
.

(b) (0, 1] ⊂
∞∪
j=1

(aj, bj] であることは，xj ∈ (aj, bj] であり，(0, 1] = {x1, x2, x3, . . .}

であることから明らか．

2. しかし，

∞∑
j=1

µ
(
(aj, bj]

)
=

∞∑
j=1

2

7j

= 2 · 1
7

∞∑
j=0

1

7j

=
2

7
· 1

1− 1
7

=
1

3
.

よって，

∞∑
j=1

µ
(
(aj, bj]

)
< µ

(
(0, 1]

)
.

□

Remark. 1
7
を選ぶ必然性はなく，1

4
でも良い．だが， 1

1000
と選んでみるのは印象的で，

結果は

2

1000
· 1

1− 1
1000

=
2

999

となる．つまり，すごく「長さの合計（無限和）」の少ない区間たちで (0, 1]（ただし，有
理数の区間）を覆うことができるわけだ．結論は，

実数というものは有り難い

ということであり，しかも，
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その「有り難み」はまじめに勉強しないとお姿を顕さない

ということである． □

Remark. もうひとつわかることは

可算と非可算の違いはすごく重要

ということ． □

Remark. 測度論では，(a, b] の形の区間，閉区間 [a, b] でも (a, b] でもない形の区間を
好む．理由は，共通部分のない和集合に分解するときに便利な形だからであり，あまり意
味はない．一方，これから後の議論で閉区間や開区間が登場するときには，多くの場合，
本質的な意味を持つので注意． □

Remark. せっかくここまで，意欲を引き起こそうと努力して解説してきたのに，ぶち
壊しにするようなことを言ってしまおう．このような実数の微妙な性質を捉えることがで
きたのは，十九世紀半ば以降なので．実数論を勉強しなくても，十九世紀以前の数学なら
ば，なんとかなる・・・・・・はずではある．また，複素関数論とフーリエ級数の話も，厳密な
論証を要求しなければ，なんとかなる．とにかく使ってみて，「結果オーライ」で良いと
いう立場ならば，いまさら実数論まで戻る必要はない． □

Remark. もうひとつ残念なことを言うと，ここで言っている実数論は，

なんらかの公理を設定して実数論を展開する

という立場だが，本格的な実数論では，

有理数から実数を構成する段階からスタートする

ので，もっと面倒くさい．
有理数から実数を構成するために，「同値関係での剰余を考える」という手法が用いられ
る．これは，整数から有理数を構成したり，自然数から整数を構成したりするときなど，
数学で頻繁に用いられる手法なので，時間をかけて勉強する価値はあるのだが，実数を構
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成するときの議論は，この手法を用いる事例のなかで煩雑な部類に入ると思う．あまり薦
めたくない．
もっともっと本格的に扱うならば，数理論理としての考察まで絡んでくる．おそらく，
高校数学でいつの間にか通り過ぎた障壁

2
m
n が定義されていることから，2x という式で表される関数 x ∈ R → 2x の存
在を導く

という辺りは，式で表される関数ということに絡んで難しい問題なのだと思う．しかし，
数理論理の（ちゃんとした）知識が必要になり，勉強するのは大変． □

結論きちんとやるのだが，公理をスタート地点として，それ以上立ち入らないことにする．

9.1.2 縮小区間列

それでは，出発点としてどれを公理として選ぶかだが，複素関数論で使い心地の良い
「閉区間の縮小列の共通点の存在」を公理とする・・・・・・としたいのだが，他の公理を選ぶ：

公理 1 上に有界な単調増加数列は収束する．

an の代わりに−an を考えれば，下に有界な単調減少数列が収束することも，すぐに導
かれる．また，数列 {1/2n} が 0 に収束することも，すぐに証明される．

定理 10 R の有界閉区間 In = [an, bn] (n = 1, 2, 3, . . .) は，条件

1. In+1 ⊂ In, n = 1, 2, 3, . . .

2. bn − an → 0 (n→ ∞)

を満たすとする．このとき，すべての In の共通の要素となる点がただ１つ存在する．

［証明］　
{an}, {bn} は，それぞれ有界な単調増加数列，単調減少数列なので，それぞれ実数α, β

に収束する．α = β であることは，bn− an が 0 に近づくことから明らか．an ≤ α, β ≤ bn
なので，α(= β) は区間 [an, bn] に含まれる． □
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本当は，この定理を公理としたかったのだが，やむを得ず，有界単調増加列の公理を採
用し，定理として証明した．しかし，実質的には，定理 10 が公理であるかの如く，すべ
ての結果をこの定理と，1/2n → 0 という「当たり前の結果」を元に導く．

Remark. 他にも演算 “+”, “ · ” に関する公理（可換体の公理）と，順序関係 “≤” が演
算とうまく関係しているという公理も設定されているのだが，これらはQ と共通． □

Remark. これから，[a, b] と書いたときには，a ≤ b であることを前提とする．a = b の
可能性は排除していないので，[a, b] は１点だけの区間の可能性もある．なお，単に閉区
間と言うと，[a,∞) = {x ∈ R | a ≤ x } も含めることもあるので，「有界」を付けておく．
□

Remark. だいたい，いくらなんでもリマークが多すぎる！ ・・・・・・と言うこのリマーク
がその典型であり，無限自己増殖をしかねない．言い訳を：

数学のテキストは，歴史や小説のようにどんどん読めるものではない．専門書
ともなると，一日でほんの数ページしか進まない．大変に空しい．このレベル
の資料でも，（真面目に読むと）90分どころか，かなりの負担になるはずであ
る．一方，ほとんどのリマークは，大したことは書いていないので，時間的負
担にはならない．それならば，たくさんページがあった方が，勉強する側にも
（講義に相当するはずの資料を用意しなければならない側にも）達成感があっ
て居心地がよい．

でも，本当のことを言うと，余計なことを言わずに居られないのは，生まれつきの性格な
のです． □

9.1.3 区間についての記号

これから，区間の端点，区間の長さ，与えられた区間の２等分が頻出するので，記号を
用意しておこう（ここだけの記号だが）．

1. 区間 I = [a, b], (a, b], [a, b), (a, b) に対して，

ℓ(I) = a, r(I) = b
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と定める．

2. 区間 I に対して，

|I| = |r(I)− ℓ(I)|

と定める．

3. 区間 I = [a, b] に対して

L(I) =　 [ a,
a+ b

2
], R(I) = [

a+ b

2
, b ]

と定める．

L(I) とR(I) は共通部分として中点 (a+ b)/2をもつので分割にはならないが，

I ⊃ L(I), I ⊃ R(I), |L(I)| = |R(I)| = |I|
2

ということしか使わないので，これで良い．

9.1.4 Dedekind 切断

R の部分集合A とB が次の条件を満たすとき，A,B をDedekind 切断 (Dedekind cut)

という：

1. A ∪B = R, A ∩B = ϕ, A ̸= ϕ, B ̸= ϕ

2. (a) a ∈ A, a′ < a ならば，a′ ∈ A

(b) b ∈ B, b′ > b ならば，b′ ∈ B

要するに，イメージとしては実数直線をどこかで切って，左側をA，右側をB とした
感じなのだが，問題は「どこかの点を切っているのか」ということである．R の代わりに
有理数直線Q を

A = {x ∈ Q | x2 < 2 }
B = {x ∈ Q | x2 > 2 }

と分けると，これは Dedekind 切断なのだが，切られて痛がっている点は存在しない．
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定理 11 A, B がR のDedekind 切断ならば，A に最大値が存在するか，もしくは，B に
最小値が存在する．

［証明］　
以下，Ik を帰納的に定める（数値解析の２分法と同じ手続き）．

1. A ̸= ϕ, B ̸= ϕ なので，A, B から a ∈ A, b ∈ B を選んで，I0 = [a, b] と定める．こ
のとき，ℓ(I0) ∈ A, r(I0) ∈ B．

2. Ik が既に定められていて ℓ(Ik) ∈ A, r(Ik) ∈ B であるとする．

Ik+1 =

{
L(Ik) if ℓ(Ik)+r(Ik)

2
∈ B

R(Ik) if ℓ(Ik)+r(Ik)
2

∈ A

と定める．

3. したがって，ℓ(Ik+1) ∈ A, r(Ik+1) ∈ B, Ik+1 ⊂ Ik, |Ik+1| = |Ik|
2

この手続きにより，

1. ℓ(Ik) ∈ A, r(Ik) ∈ B

2. Ik+1 ⊂ Ik

3. |Ik| = b−a
2k

となる有界閉区間の縮小列が得られたので，定理 10により，すべての Ik に含まれる c ∈ R

が存在する．

1. A ∪B = R なので，c ∈ A もしくは c ∈ B であり，

2. c ∈ A ならば，c はA の最大値になる．なぜならば，c < a′ となる a′ ∈ A が存在す
ると，I0, I1, I2, . . . が縮小区間列であることにより，|Ik| < a′ − c となる Ik が存在
するはず．しかし，

(a) c は I0, I1, I2, . . . すべてに含まれるので，c ∈ Ik,

(b) |Ik| < a′ − c なので，r(Ik) < a′ ∈ A, したがって，

(c) Dedekind 切断の定義により，r(Ik) ∈ A

となるのだが，区間列の構成手続によれば r(Ik) ∈ B となるはずなで，矛盾．
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3. 同様に，c ∈ B ならば，c はB の最小値．

□

9.1.5 コンパクト性

一般に，集合X の部分集合族 {An}n=1,2,3,... が部分集合A を覆っているとは，

A ⊂
∞∪
n=1

An

であることを言う．ここで，{An}n=1,2,3,... を，

集合N = {1, 2, 3, . . .} にX の部分集合を対応させる写像

n ∈ N → An

と解釈してみよう．
そして，これを一般化する：

定義 5 集合X と，空でない任意の集合 J が与えられたとき，

J の要素 j ∈ J にX の部分集合Aj ⊂ X を対応させる写像

を J を添え字集合とする集合族といい，

{Aj}j∈J

と表す．

このように，添え字の集合 J に（空集合でないという他は）なんの条件をつけなくて
も，集合演算を一般化できる．例えば，共通部分・和集合は∩

j∈J

Aj = {x ∈ X | x ∈ Aj がすべての j ∈ J で成り立つ }∪
j∈J

Aj = {x ∈ X | x ∈ Aj となる j ∈ J が存在する }

と定義でき，J が有限集合の場合（有限個の和集合・共通部分）やN の場合での集合演
算は，そのまま成立する．被覆も，一般の集合族として定義する：
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定義 6 A はX の部分集合，{Aj}j∈J はX の部分集合族とする．

A ⊂
∪
j∈J

Aj

であるとき，{Aj}j∈J はA の被覆 (cover) であるという．

定義 7 {Aj}j∈J がA の被覆であるとき，J の部分集合 J ′ に対して {Aj}j∈J ′ もA の被
覆になっているならば，{Aj}j∈J ′ を被覆 {Aj}j∈J の部分被覆 (subcover)という．特に，J ′

が有限集合のときには，有限部分被覆 (finite subcover)という．

「{Aj}j∈J がA の被覆である」という代わりに，「A は被覆 {Aj}j∈J を持つ」と言って
も良いことにする．

定理 12 (コンパクト性) {Aj}j∈J は有開閉区間 [a, b]の被覆であり，各Aj は開区間 (cj, dj)

であるとする．このとき，[a, b] は被覆 {Aj}j∈J の有限部分被覆を持つ．

［証明］　
有限部分被覆を持たないと仮定する．
区間の列 In = [an, bn] を帰納的に定義する：

1. I0 = [a, b] と定める．I0 は，仮定により有限部分被覆を持たない．

2. In が有限部分被覆をもたないならば，

(a) L(In) とR(In) の少なくともどちらか一方は，有限部分被覆を持たない．

(b) そこで，

i. L(In) が有限部分被覆をもたないときは，In+1 = L(In),

ii. そうでないときは，（R(In) が有限部分被覆をもたないので）In+1 = R(In)

として，In+1 を定める．

3. このとき，

(a) In+1 は有限部分被覆を持たない．

(b) In+1 ⊂ In
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(c) |In+1| = |In|
2

こうして，有界閉区間の縮小列 I1, I2, I3, . . . が作られ，定理 10 により，すべての In に共
通に含まれる α が存在する．このとき，

1. α ∈ In, n = 0, 1, 2, . . . であり, 特に α ∈ I0 = [a, b].

2. {Aj}j∈J は [a, b] の被覆なので，α ∈ Aj となる j ∈ J が存在する．

3. このAj は開区間 (cj, dj) なので，cj < α < dj.

4. したがって，cj < α− ε < α < α + ε < dj を満たす ε > 0 が存在し，

[α− ε, α + ε] ⊂ (cj, dj).

5. In = [an, bn] は縮小区間なので，十分大きな n では bn − an < ε となる．

6. α ∈ [an, bn] なので，

[an, bn] ⊂ [α− ε, α + ε] ⊂ (cj, dj)

となるのだが，これは In = [an, bn] が {Aj}j∈J の有限被覆をもつこと（それどこ
ろか，たった１つのAj = (cj, dj) で被覆されること）を意味し，In の構成に反し，
矛盾．

背理法により，有限部分被覆が存在するが示された． □

9.1.6 その他すべて

ついで，「実数の公理」として登場する「その他」を証明してみよう．

その前に，解析学（と言うか，極限の絡む数学すべて）を効率よく学ぶための心得をひ
とつ：

|a− b| が，a と b との距離という意味を持っているときには，なるべく，距離
を示す記号 d(a, b) に置き換えて考えること．
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R とC について議論している限りでは，メリットはないかも知れない．しかし，例え
ばR2 での収束を考えるときには，a = (a1, a2), b = (b1, b2) の距離

d(a, b) =
√
(a1 − b1)2 + (a2 − b2)2

を評価することになるが，左辺が実数や複素数の場合と同じ記号である一方，右辺のまま
の式を使うと，それが「絶対値で書かれていた “あれ”」と同じ意味をもつことが捉えづ
らいのだ．ましてや関数解析ともなると，ノルム（絶対値のようなもの）から定められて
いるわけではない距離での収束まで登場する．それならば，最初から距離と捉えておいた
方が効率がよい．

しばらくの間，距離で書けるものは，なるべく距離で書いておこう．例えば，絶対値で
お馴染みの式変形

|a− c| = |a− b+ b− c|
≤ |a− b|+ |b− c|

は

d(a, c) ≤ d(a, b) + d(b, c) （三角不等式）

となる（回り道をすると距離は伸びる，もしくは，三角形の２辺の和は他の１辺より大
きい）．

また，x0 を中心とする長さ 2r の閉区間 [x− r, x+ r]. を I(x0; r) で表すことにすると，
これは，距離を用いて

I(x0; r) = {x ∈ R | d(x0, x) ≤ r }

と表すことができる．
これが，R2 やC での閉円板

D(a; r) = {b ∈ R2 | d(a, b) ≤ r }
D(z0 : r) = {z ∈ C | d(z0, z) ≤ r }

と対応することは，すぐわかると思う．このような類似を見抜いておけば，例えば次の定
理の証明が，もっと一般の距離に対して成り立つだろうと予想できるはずだ．
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定理 13 (Bolzano-Weierstrass の定理) 有界閉区間 [a, b]に含まれる数列{an}は，[a, b]
の点に収束する部分列を持つ．

［証明］　
Ik と nk を帰納的に定める．

1. I0 = [a, b], n0 = 1 と定める．an ∈ I0 となる番号 n ≥ n0 は無限個ある（当たり前）．

2. Ik と nk は既に定められていて，an ∈ Ik となる番号 n ≥ nk は無限個あるとする．
このとき

Ik+1 =

{
L(Ik) · · · · · · an ∈ L(Ik) となる番号 n ≥ nk が無限個あるとき

R(Ik) · · · · · · それ以外

と定めると，an ∈ Ik+1 となる番号 n ≥ nk は無限個あるので，そのなかから nk よ
り大きな番号を選び，それを nk+1 とする．この nk+1 に対しても，an ∈ Ik+1 とな
る番号 n ≥ nk+1 は無限個ある．

こうして，有界閉区間の縮小列

I0 ⊃ I1 ⊃ I2 ⊃ · · · , |Ik| =
b− a

2k
, k = 0, 1, 2, . . .

と数列

n0 < n1 < n2 < · · ·

が得られ，定理 10 により，すべての Ik に含まれる α が存在する．
部分列 {anm}m=0,1,2,... が α に収束することを確かめる．

与えられた ε > 0 に対して
b− a

2k
< ε となる k を選んでおけば，

1. α ∈ Ik

2. |Ik| =
b− a

2k
< ε

3. n ≥ nk ⇒ an ∈ Ik

であり，

n ≥ nk ⇒ d(an, α) ≤ |Ik| < ε.

□
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Remark. 区間を２等分して都合の良い方を選ぶことを繰り返している．直線上の区間
でなく平面上の長方形ならば，それを縦横に等分して４つの長方形 LL, LR, RL, RR に
分けて都合の良いものを選ぶ，とすれば，類似の結果を導くことができる．また，立方体
についても，縦横高さで等分して８個の立体に分割すれば同じことである．ただし，

1. 区間の長さが ℓ ならば，その区間に含まれる２点の距離は ℓ 以下であったのだが，
それを

2. 長方形の縦と横が ℓ1, ℓ2 ならば，長方形に含まれる２点の距離は
√
ℓ21 + ℓ22 以下

3. 立方体の縦横高さが ℓ1, ℓ2, ℓ3 ならば，立方体に含まれる２点の距離は
√
ℓ21 + ℓ22 + ℓ23

以下

という具合に，不等式の評価に少し補正を加える必要は出てくる． □

定義 8 数列 {an} が条件

任意の ε > 0 に対してある番号N ∈ N が存在して

n,m ≥ N ⇒ d(an, am) < ε

を満たすとき，{an} はCauchy 列（基本列）であるという．

定理 14 (完備性) 数列 {an} がCauchy 列ならば {an} は収束する．また，収束する数列
はCauchy れつである．

［証明］　
{an} が収束するならばCauchy 列であることは明らか．しかし，証明の書き方に慣れ
るために，一応，証明する：
{an} は収束する数列であるとする．limn→∞ an = a と置く．ε > 0 が与えられたとし
て，ε′ = ε/2 と置く．このとき，

n ≥ N ⇒ d(an, a) < ε′

となるN ∈ N が存在し，任意の n,m ≥ N に対して

d(an, am) ≤ d(an, a) + d(a, am)

< ε′ + ε′ = ε
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となる．よって，{an} はCauchy 列．

Cauchy 列は収束することを示す．{an} は Cauchy 列であるとする．
まず，Cauchy 列の定義により，各 k = 1, 2, 3, . . . に対して，条件

すべての n,m ≥ nk に対して，d(an, am) <
1

2k+1

を満たす nk ∈ N が存在するので，そのような nk を選んでおく．数列 {nk} は単調増加と
は限らないので，単調増加数列になるように変更を加える；

1. N1 = n1

2. Nk+1 = max{Nk, nk+1}.

と帰納的に定義する．したがって，数列 {Nk} は条件

1. すべての n,m ≥ Nk に対して，d(an, am) <
1

2k+1

2. N1 ≤ N2 ≤ N3 ≤ · · ·

を満たす．
各 k = 1, 2, 3, . . . に対して

Jk = I(aNk
; 1/2k+1)

と定める．このとき，

n ≥ Nk ⇒ d(an, aNk
) <

1

2k+1
（⇐ m として Nk を選んでいる）

⇒ an ∈ Jk

なので，Ai = {ai, ai+1, ai+2, . . .} と置くと，

ANk
⊂ Jk

こうして，

1. ANk
∈ Jk

2. |Jk| ≤ 1/2k

を満たす閉区間の列 J1, J2, J3, . . . が得られたのだが，Jk+1 ⊂ Jk であることは保証されて
いない．そこで，縮小閉区間の列 I1, I2, . . . を，帰納的に
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1. I1 = J1

2. Ik+1 = Jk+1 ∩ Ik

と定める．このとき，

1. AN1 ⊂ I1

2. ANk
⊂ Ik ならば，

(a) ANk+1
⊂ Jk+1,

(b) ANk+1
⊂ ANk

⊂ Ik,

なので，ANk+1
⊂ Jk+1 ∩ Ik = Ik+1.

以上により，k = 1, 2, 3, . . . に対して，

1. ANk
⊂ Ik

2. Ik+1 ⊂ Ik

3. |Ik| ≤ |Jk| ≤ 1
2k

を満たす．したがって，定理 10 により，すべての Ik に共通に含まれる α が存在し，ま
た，ANk

⊂ Ik (k = 1, 2, 3, . . .).

{an} が α に収束することは，与えられた ε > 0 に対して， 1
2k
< ε となる k を選べば，

1. α ∈ Ik （⇐ α はすべての Ikに含まれる）

2. n ≥ Nk ⇒ an ∈ Ik （⇐ ANk
⊂ Ik）

3. |Ik| = 1
2k
< ε

であることから明らか（an, α ∈ Ik なので距離は 1/2k 以下）． □

Remark. n1, n2, n3, . . . からN1, N2, N3, . . . を作る過程は，普通はわざわざ述べること
はなく，

n1, n2, n3, . . . は単調増加数列になるようにとれるので，
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と言う程度で済ます．記号をN1, N2, N3, . . . に取り直すことも，普通はしないと思う．最
初なので，少し丁寧に書いてみたのだが，余り丁寧だと読む気が無くなるので，少しずつ
「通常スタイル」に近づけて行く． □

Remark. 数列{an}と集合{a1, a2, a3, . . .}は同じものではない．数列{(−1)n}は振動し，
一方，数列−1, 1, 1, 1, 1, . . .は 1に収束するのだが，両者共に {a1, a2, a3, . . .} = {−1, 1}で
あり，集合としては等しい（なお，ここでは，{−1, 1,−1, 1, . . .} のように，集合の要素を
複数回記述しても良いとしている）．数列の絡む証明では，

数列として扱っているのか，それとも，単なる集合として扱っているのか

という違いを意識しておくと良いと思う．上の証明では，Ak という記号をわざわざ定め
ることにより，集合 {aNk

, aNk+1
, aNk+2

, . . .} を考えているということを強調してみた．□

それでは，この勢いで公理として採用した結果も証明しよう．もちろん，この公理から
導かれた定理 10 を使って元の公理を証明するのはナンセンスなのだが，

定理 10 を実数の公理としたらどうなるのか

という視点から，意味がある．

定理 15 上に有界な単調増加数列は収束する．

［証明］　 {a}n は上に有界な単調増加数列，つまり，

1. すべての n に対して an ≤M，という条件を満たすM ∈ R が存在し，

2. すべての n に対して an ≤ an+1

とする．
有界閉区間の Ik を帰納的に定義する．

1. I0 = [a1,M ] と定める．このとき，I0 はある番号から先のすべての an を含む（実際
にはすべての an を含んでいる）．

2. Ik は既に定められていて，ある番号から先のすべての an を含むとする．このとき

Ik+1 =

{
R(Ik) · · · R(Ik) が少なくとも１つの an を含むとき

L(Ik) · · · R(Ik) が１つも an を含まないとき
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と定める．R(Ik) を選ぶときには，R(Ik) に含まれる an より後の番号のものも，単
調増加であることからすべて含み，また，L(Ik) を選ぶときには，R(Ik) には anは
１つも含まれないので，いずれにせよ，Ik+1 は，ある番号から先のすべての an を
含む．

I1, I2, I3, . . . は有界閉区間の縮小列なので，定理 10 により，すべての Ik に含まれる点 α

が存在する．
{an} が α に収束することは， |M−a1|

2k
< ε を満たす k を選んでおけば，

1. Ik ⊂ (α− ε, α + ε)

2. Ik はある番号から先のすべての an を含む

ということから明らか． □

これで，定理 10 を公理として実数論を展開することも可能，という結論が得られたよ
うに見えるのだが，実は，それは無理．定理 10 を公理としたのでは，「当たり前の結果」
であるはずの，

1,
1

2
,
1

22
,
1

23
,
1

24
, . . .→ 0

が証明できない．これについては，三日ほどじっくりと話したいところだが，「これは個
人の感想です」に過ぎないので，次の（安心して読み飛ばせる⇐ ここが大切！）「実数と
いうもの」に押し込めておく．

9.2 実数というもの

実数に関するものでも，また，整数のみに関するものでも，数学のほとんどの分野で
「帰納的な定義」というものが不可欠である．

9.2.1 帰納的な定義

n! の定義について考えてみよう．

再帰的 (recursive)定義：

1. 0! = 1 と定める（停止条件）．
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2. n! = n · (n− 1)!.

帰納的 (inductive)定義：

1. 0! = 1 と定める：

2. (n+ 1)! = (n+ 1) · n!.

「両者に違いはない」と言えば，ない．また，再帰的と帰納的という言葉の使い分け，
recursive と inductive の対応も，ここで取りあえずそうしてみただけで，一般的かどうか
わからない．ただ，両者には，気持ちの違いがある．
再帰的定義では，

n が具体的に与えられたとき，n! を求めるために (n − 1)! を求め，(n − 1)!

を求めるために (n− 2)! を求め，と繰り返すとそのうちに 0! まで辿り着いて，
手続きは終了する

というだけ．

一方，帰納的定義では，0!, 1!, 2! と次々に計算していく．具体的な n が与えられている
という設定ならば，n! まで計算して終わりなのだが，数学のだいたいの使用法は，

0!, 1!, 2!, . . .

と

すべての n ∈ N に対して n! が計算でき，関数

n 7→ n!

という新たなモノが手に入る

という流れである．つまり，ある性質 P (n) が

1. 0 で成り立つ

2. n で成り立つならば，n+ 1 で成り立つ

ということから

すべての n ∈ N で成り立つ

が導かれるという「数学的帰納法の原理」とセットになっている．
数学で帰納的な定義，帰納的な構成が必須の道具である以上，数学的帰納法は絶対に放

棄できない．
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9.2.2 保母さんの実数

十九世紀半ばに実数の理論が完成する以前，さらに，微積分の登場と共に実数が純粋数
学の不可欠の一部となる以前の古き良き時代には，実数はいい加減なものであった・・・・・・
と思う．つまり，実数は，木の高さや橋の長さを測るためのものであり，

13.54m

の小数点３桁以降は「どうでも良い」のである．それが塔の高さなら（単位がメートルだ
から塔の高さにしておこう），小数点３桁目の数値は測定精度の問題が原因で「わからな
い」のではなく，塔の高さを 0.1mm の精度で問題にすること自体，「あんたバカー！？」と
言われてもしょうがない．「どうでもいい」ことであろう．そうなると，直径と円周の比

3.14159265358979 · · ·

も，

「Ｂ.Ｂ. ジョーカー ４」（にざ かな）ISBN4-592-13224-6

の裏表紙にあるように，

「ほぼ３」でいいんだよ！保母さんよーーー！！

と整数部分だけで済ませるのは行きすぎとしても，円周率の使い道が，都市を囲む円形の
城壁の長さと直径のような，現実の世の中の事物ばかりなら，適当なところで「ほぼこれ
くらい」で良いわけだ．

Remark. これは，裏表紙を埋める４コマ漫画．保育園に侵入した不審者が幼児を人質
にして，保母さんに円周率を言わせるという設定．４コマのうちの２コマを，保母さんが
答える円周率の数値に費やしている．今では「保母さん」は「保育士」に変わってしまっ
たので，その内に意味不明になる．延々と π の数値を貼り付けた編集の労をねぎらう意
味で引用した． □

Remark. 同じ本に「このアタイを求めなさい！」という頭に染みこむ名台詞がある．
だいたいにおいて，数学はジョークと相性が悪く，今までで気に入ったジョークは，本当
に少ない．最高と思われるものは

今日，微積分のクラスで分母が 0 になる極限を教えてたんだ．例として

lim
x→+8

1

x− 8
= +∞
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を説明した後で，簡単な応用で

lim
x→+5

1

x− 5

を求めさせたんだ．ところが，これが答案さ！

lim
x→+5

1

x− 5
= + 5

他には，ドイツジョークで，怠け者の息子（いわゆるブタむすこ）とお父さんの会話で，
ブタをインプットするとアウトプットでソーセージが出てくる機械（機能，function）と
その逆関数，及び「お前のお母さん」についての話があるのだが，2020 年代の倫理規定
では大学で紹介すべきジョークではない．引用は控える．と言うか，元の「ドイツジョー
ク集」が家にあるはずなのに見つからない．少し前に，論文のでっち上げを疑われた教授
が，引用元を提出できなかったために，でっち上げと認定されて処分された件があったが，
資料をきちんと整理して残しておくのは，本当に難しい． □

ふざけていると思われるだろうが，それなりに，真面目である．機能 (function) と逆関
数の問題には，操作可能性という重要な概念が潜んでいる．機械や機能は，操作可能と
いうことが前提となる．一方，近代的な関数概念は，操作可能というニュアンスを排除し
て，インプットとアウトプットの対応だけを捉えている．例えば，ジューサーは（うん！
きれいな例で良いです！），オレンジ，バナナ，パパイヤをそれぞれのジュースに変換す
る（操作可能性をもつ関数）だが，その逆関数はオレンジジュースにオレンジ，バナナ
ジュースにバナナ，パパイヤジュースにパパイヤを対応させるだけで実際の変換機能（操
作可能性）は持たなくて良い．
ただし，操作可能性を完全に排除できるのは，数学の世界だけであり，例えば経済学で
は，通貨供給量，取引量，流通速度（だったかな）の関係とか，利子率と通貨供給量との
関係などで，常に操作可能性が問題になるようだ．

操作可能性の問題は，実数の話には絡まないのだが，「ほぼ３でよい」という「実数を
柔らかく捉える」姿勢は，真面目に考慮すべきだと思う．

その立場から言うと，

0.999999999 · · · = 1 ですか？

という質問への対処も違ってくる．
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常識的には，少なくとも数学関係者の常識では，1 に等しいに決まっている．微積分の
演習の途中で質問されたら，内心では

そんなものは lim
n→∞

n∑
k=1

9 · 1

10k
= 1に決まっています．すぐわかることです（我々

は賢いので）．さっさと先に進みやがれなのです．

と言いたいのを押さえて，やさしく説明することになるのだろう．しかし，そうとも言い
切れない気がする．0.99999 · · · の “· · · ” の意味を，

どの桁から「その先はどうでも良い」とするにしても，その桁までは 9 が続
いている

と捉えているならば，0.99999 · · · は 9 が無限個並んでいるのではなく有限個並んで，そ
れに「どうでも良い」を表す+εが漂っているという感じであり，それならば「でもちょっ
とは違うのでは」という気持ちもわかる．

おそらく，立場の相違は，極限をとったものを実体と考えているかどうかであり，現実
の実数のフニャラかな使い道に立つならば，極限をとったものは「数学屋の頭の中にしか
ないもの」と思われているのかも知れない．これは虚数の導入と似た状況で，それなら
ば，「微積分学を展開するためには，こうするしかない」とした上で，実際に，有理数か
ら実数を構成する（という数学の世界での操作）を実行してみせて，これが「頭の中身で
すよ」と見せてしまうのが一番なのだが，残念ながら，構成のプロセスは煩雑である．そ
れならば，「微積分学を展開するためにはこうするしかない」と諦めてもらった上で，ひ
たすら公理からの論証で進むよりない．

と言うわけで，公理論的展開に終始するのだが，それだけでは寂しいので，背景の説明
を補うことにしよう．

もう一度，「ほぼ３で良いんだ」というフニャラかな実数に戻る．「ほぼ」でしかないも
のに等式を使うのは気が引ける場合には，近似の記号を用意して近似式

a ≒ b

を持ち出すことになる．こうして数式で表現すると，いっそのこと “≒” という近似式を
数学の世界で定義された概念にできないか，という望みがでてくる．極限をもちだして
定義するという手はあるのだが，今は，それよりも緩い「ほぼ等しい」で解釈したい．も
し，“≒” を等号 “=” のように使うことができたら，すばらしい．ところが，残念なこと
に，「ほぼ等しい」という柔らかな概念は，数学的帰納法との相性が恐ろしく悪い．
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まず，

( a1 ≒ a2 であり，かつ b1 ≒ b2 ) ⇒ a1 + b1 ≒ a2 + b2

であって欲しいものだ．これを認めた上で，帰納法の論理に従うと，
ε ≒ 0 となる ε に対して

1. 1 · ε = ε ≒ 0

2. n · ε ≒ 0, ε ≒ 0 ならば，(n+ 1) · ε = n · ε+ ε ≒ 0

なので，

すべての n ∈ N に対して，n · ε ≒ 0

となってしまうのだが，これで良いのだろうか．

「これはまずいだろう」というのが普通の感性だと思う．こんなことを認めてしまった
ら，解析学を展開するのは不可能だと思われるのだが，実はそうでもないということが
1960 年代にわかっている．数理論理の成果（特にモデル理論）を用いると，超準実数と
いう普通の実数よりも大きな世界を構成することができ，その中では，このような ε も
存在する．超準解析 (non-standard analysis) では，このような ε を無限小として用いて，
誤差が ε 以下であることをもって「ほぼ等しい」と解釈する路が開ける．このやり方の方
が概念的には自然なので，一時は「これからの解析学は超準解析を教えるべき」という主
張もあったのだが，半世紀経過しても主流になることはなかった．おそらく，これからも
ない．

超準解析が Cauchy より前の時代に発見されていたならば，数学史は変わったのかも知
れないが，ε− δ 論法という戦術が磨き上げられた後からでは，超準実数の世界は「無駄
に大きい」と言われても仕方がない．数学史では，「世界を拡げる」は「よくあること」な
のだが，必ず「世界を拡げたから，今まで得られなかった結果が得られるようになった」
という成果を伴っている．無闇に拡張しているわけではないのだ．

したがって，「これはまずいだろう」という普通の感性を認めることになる．どのくら
い普通の感性なのかというと，2000年以上前に Archimedes が言っているのだから，文
句なしに普通の感性であろう．と言うわけで，超準解析ではない伝統的な解析学，現在主
流となっている解析学では，Archimedes の公理と呼ばれる性質を要求する：
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アルキメデスの公理

あるいは無限小なる数の完全なる否定にして
無限大なる数の完全否定

注． 昔の数学の本は，こういう大げさな表題が付いていたらしい．でも，これはまねしただけ．こんな本

はない．

基本性質 1 (Archimedes の公理) 任意の ε > 0 に対して，n · ε > 1 となる n ∈ N が存
在する．

Remark. n · ε は ε を n 個足し合わせたものと解釈することができる．ε という塵は n

個積もると 1 を越えてしまうので，塵であっても無限小と呼ぶに値しない．同様に，次の
系のR も，1 が n 人集まると負けてしまうので，無限大と呼ぶに値しない．つまり，実
数の中には無限小も無限大も存在しない． □

系 3 任意のR ∈ R に対して，R < n · 1 となる n ∈ N が存在する．

［証明］　
R ≤ 0 のときは，n = 1 とすれば良いので，R > 0 として ε = 1

R
とおくと，ε > 0 なの

で公理 1 により，n · ε > 1 を満たす n ∈ N が存在し，n · 1 > 1
ε
= R. □

系 4 任意の ε > 0 に対して，2n · ε > 1 となる n ∈ N が存在する．

これは，n < 2n であることから明らか．
1
2n
< ε であることから， 1

2n
が 0 に収束することが証明される．

以上，実数論（現在主流の実数論）を公理的に展開するために，アルキメデスの公理
（という性質）が必要であることがわかった．ただし，ここで採用した有界単調列の収束
を公理として採用する場合には，アルキメデスの「公理」は証明され定理になる．
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9.2.3 ε− δ 論法

帰納法を放棄しない以上，

(a1 ≒ a2 であり，かつ b1 ≒ b2) ⇒ a1 + b1 ≒ a2 + b2 (45)

を要求することは，諦めなければならない．それだけでなく，

(a ≒ b であり，かつ b ≒ c) ⇒ a ≒ c

も諦めなければならない．これは，不便である．なんとかしたい．

解決策は，ちょっとしたトリックである：

1. a ≒ b の意味は，「ほぼ等しい」なのだから，「ほぼ」の程度を表す数値 ε（ε < 0 では
変だし，ε = 0 では等式となってしまうので，ε > 0 とする）を用いて

a ≒ b ⇐⇒ |a− b| < ε

と解釈しよう．

2. それならば，例えば (45) に現れる “≒” で同じ「ほぼ」の基準を用いなくても良い
のではないか．

3. 試しに，“⇒” の右側（必要条件）では，ε > 0 を用いて，左側（十分条件）では，
δ > 0 を用いてみると，

|a1 − a2| < δ であり，かつ |b1 − b2| < δ ⇒ |(a1 + b1)− (a2 + b2)| < ε (46)

となる（ここまでは，まあ，良いでしょう．次がなんと言ったら良いのか）．

4. それならば，ε > 0 を見てから，δ の値を δ = ε/2 と選べば，式 (46) が成立！

しかし，これで「ハイロンパ」（胃薬？）と言われても困る．必要条件の要求水準を見て
から十分条件の調整をするのでは，典型的な「後出しじゃんけん」である．

後出しじゃんけんは嫌われる．後出しじゃんけんでハイロンパなどと言ったのでは，友
達をなくす．
だが，最初の定義に「後出しじゃんけん」を忍び込ませておくのは，問題ない．定義だ
から，どのような形で定義しても良いのだ．唯一の判断基準は，「定義の結果が，定義し
たかったものと一致しているか」のみである．それでは，y = f(x) が x = x0 で連続，と
いうことの定義
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任意の ε > 0 に対して，ある δ > 0 が存在して

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε

を満たす

について考えてみよう．

この定義に至る「気持ち」を振り返ってみる：

1. 言いたいことは，

x ≒ x0 ⇒ f(x) ≒ f(x0).

2. 必要条件の「ほぼ等しい」を ε > 0 で，十分条件の「ほぼ等しい」を δ > 0 で表
すと，

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

3. ε = δ と同じ基準にするのがフェアなのだが，それでは，f(x) = 2x は連続でない
ことになってしまう．しかも，f(x) = 1000000000x だって，連続関数に違いはない
だろう．この場合，δ は ε に比べてすごく小さくしとかないとまずい．

4. それでは，ε > 0 を見てから，それに応じて δ > 0 を選んでやれば良いことにして，
連続であることの定義にしてしまおう．

5. つまり，選べるかどうかが問題なのだから，「任意の ε > 0 に対して δ > 0 が存在し
て・・・・・・」とすればよい．

こうして，連続であることの定義ができあがったので，後は，この定義が連続の定義とし
て相応しいかの検証である．これは，

この定義では連続ということになるが，連続であるとは認めたくない関数の
例があるか．連続であると認めたい関数で，この定義では連続ではないとい
うことになってしまう例があるか

ということなのだが，百年以上経過して未だにそのような例は見つかっていない．検証に
合格していると判断できる．

さて，このような
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ε を見てから δ を選ぶことができれば連続

という，後出しじゃんけんを定義に導入しているのだから，「・・・・・・は連続である」という
タイプの定理を証明するときには，ε を見てから δ を決めるという後出しの利点を，どん
どん活用して証明すれば良い．これが，ε− δ 論法の使い方である．

数列が収束することの定義には δ は現れないが，発想は同じこと．

n がすごく大きい番号　⇒　 an と a はほぼ等しい

の必要条件の基準を ε > 0 で決めて，十分条件の「すごく大きい番号」の基準を n0 ∈ N
で決めて，

n ≥ n0 ⇒ |an − a| < ε

と表し，ε を見てから n0 を決めることができれば良い，と考えるだけ．

任意の ε > 0 に対して，ある n0 ∈ N が存在して

n ≥ n0 ⇒ |an − a| < ε

となるとき，an → a (n→ ∞) と定義する．

この定義についても，「収束する数列であると考えたい例との不一致」は見つからないの
で，妥当な定義である．

しかし，「なんか気持ち悪い」と感じるかも知れない．それは，やむを得ない．後出し
じゃんけんはフェアでない．また，

「収束する」，「限りなく近づく」，「無限に近づく」

と連想が進むかもしれないが，無限小という数は否定されている世界での定義なのだか
ら，定義の根拠は無限小ではなく，「ほぼ近い」から来ている．ただし，「ほぼ」の基準は
固定されているのではなく，いくらでも厳しくできるというだけ．

これで，解析学を展開する準備はできたので，後は，an + bn の極限は an の極限と bn
の極限の和，から始まる微積分の議論を延々と展開することになるのだが，復習は，これ
で終わりにして，もう少し「難しい話」に進むことにしよう．
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9.3 一様性

9.3.1 一様連続

「実数というもの」は飛ばして良い部分としているので，重複になるかも知れないが，
連続の定義について説明する．
実数値，または，複素数値の関数 f(t) が t = t0 で連続であるということの，ε− δ 論法
での定義は，

任意の ε > 0 に対して，条件

|t− t0| < δ ⇒ |f(t)− f(t0)| < ε

が成り立つような δ > 0 が存在する

である．これは，

1. t が t0 からちょっとだけ動いたときに，

2. f(t) は f(t0) からちょっとだけしか動かない

という気分を表している．しかし，それでは気分に過ぎない．数学の定義にするためには，

「ちょっとだけ動く」の「ちょっと」が「どのくらいちょっとなのか」という
基準

を決めなければならない．そこで，ターゲットの誤差 |f(t)− f(t0)| の許容範囲を ε で与
え，t をどのくらい t0 に近づければその範囲に収まるのか，という精度を δ で表してい
るのだが，ここでの要点は

ターゲットの誤差の許容範囲 ε が与えられた後に，後出しで，許される精度
（t0 から動いて良い範囲）を表す δ を決めれば良い

という「後出し有利」を定義に含んでいることである．言い換えると，不等式

|f(t)− f(t0)| < ε

が成り立つための t の条件

|t− t0| < δ

は，ε に依存して決めて良い，ということである．

次に，f が [a, b] で連続であるとは，f が [a, b] の各点 t0 で連続ということ．
それでは，|f(t)− f(t0)| < ε という不等式を満たすための δ について考えてみると，
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この δ は，ε に依存して良いだけでなく，t0 ∈ [a, b] にも依存して良い．

つまり，「後出しじゃんけん」のように δを決めることを許している上に，その δを t0 ∈ [a, b]

ごとに変えて良いとしているのだから，これでは，あまりにもイージーモードだ．せめて，

δ は，ε だけに依存して t0 には依存せず．区間 [a, b] 共通に決まる

とするのがフェアであろう（それでも後出しだが），ということで，一様連続という定義
が生まれる．

定義 9 D ⊂ R で定義された実数値，もしくは複素数値の関数 f は，次の条件を満たす
ときに，D で一様連続 (uniformly continuous) であるという．
条件：任意の ε > 0 に対して，ある δ > 0 が存在して，すべての t0, t ∈ D に対して

d(t, t0) < δ ⇒ |f(t)− f(t0)| < ε.

Remark. d(t, t0) = |t− t0| なので，どちらの記号を使って表しても良い．どちらの記
号を選ぶかは，距離と感じているのか，差の絶対値と感じているのかという気分の違いだ
け．おなじく，数列と点列という言葉の使い分けも，特に決まりがあるわけでは無い．も
ちろん，数と見ることのできないケースでは，点列としか言いようがない．さらに，数と
言うか点と言うかの違いも，気分の問題である．区間の中点とは言うが区間の中間値と言
わないのは，幾何的な見方をしているからであり，中間値の定理と言うが中間点の定理と
言わないのは「関数の値」というニュアンスのためだと思う． □

例 4 f(t) = 1
t
は (0, 1] で定義された連続関数だが，(0, 1] で一様連続ではない．

例 5 f(t) = t2 はR 全体で定義された連続関数だが，R で一様連続ではない．

定理 16 (一様連続性) f は有界閉区間 [a, b] で定義された実数値，または，複素数値の連
続関数とする．このとき，f は [a, b] で一様連続である．
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［証明］　 ε > 0 が与えられたとする．ε′ = ε
2
と置く（証明の最後の (47) で必要になる）．

f は [a, b] で連続なので，各 t0 ∈ [a, b] に対して

d(t, t0) < δt0 ⇒ |f(t)− f(t0)| < ε′

となる δt0 > 0 を選び，開区間At0 を

At0 = I(t0;
δt0
2
) （⇐ 1/2倍していることに注意）

と定めると，J = [a, b] を添え字集合とする集合族 {Aj}j∈J は [a, b] の開被覆になる（j を
t0 に書き直せば {At0}t0∈J）．したがって，定理 12 により，J の有限部分集合 J ′ を添え
字集合とする有限部分被覆

{Aj}j∈J ′

が存在する．J ′ = {τ1, τ2, . . . , τn} と表すと，Aτk = I(τk;
δτk
2
) であり，

1. 任意の t ∈ [a, b] に対して d(t, τk) <
δτk
2
となる τk が存在し，また，

2. t ∈ I(τk; δτk) ⇒ |f(t)− f(τk)| < ε′

である．

δ =
min{δτ1 , δτ2 , . . . , δτn}

2

と置くと，d(t, t′) < δ を満たす任意の t, t′ ∈ [a, b] に対して，

1. d(t, τk) <
δτk
2
となる τk をとると，t ∈ I(τk; δτk) なので，|f(t)− f(τk)| < ε′.

2. d(t′, τk) は

d(t′, τk) ≤ d(t′, t) + d(t, τk)

≤ δ +
δτk
2

≤ δτk
2

+
δτk
2

= δτk

を満たすので，t′ ∈ I(τk; δτk) であり，|f(t′)− f(τk)| < ε′.
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よって，

|f(t)− f(t′)| ≤ |f(t)− f(τk)|+ |f(τk)− f(t′)|
< ε′ + ε′ = ε. (47)

以上により，f は [a, b] で一様連続． □

Remark. ε − δ 論法では，ε や δ に 1
2
をかけたり 2 倍になったりなど，とにかく調整

作業がうるさい．これは，「ほぼ等しい」の「ほぼ」の意味を部分ごとで定めているため
に必要になる調整であり，避けられない．この面倒くささを代償として，無限小にまつわ
る深淵を避けているのだと思って，諦めることにしよう． □

9.3.2 一様収束

複素数値，または実数値の関数列 fn が x = x0 で f(x) に収束するということの定義は，
要するに，数列 {fn(x0)} が f(x0) に収束するということで，ε− δ で言えば

任意の ε > 0 に対してある番号 n0 が存在して

n ≥ n0 ⇒ |fn(x0)− f(x0)| < ε

ということ．
さらに，fn が共通の領域Dで定義されている場合，

D の各点 x0 で fn(x0) が f(x0) に収束する

ときには，

D において，fn は f に各点収束 (pointwise convergence) する

という．

Remark. ここまでは，誤解を引き起こす要因はない．まずいのは，関数 fn ではなく，
関数 fn(x) という表記を用いる場合で，また，わざわざ x0 と添え字 “0” を付ける必要も
なかろうということで，

lim
n→∞

fn(x) = f(x)
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と書いた場合である．fn(x) という数列（関数列ではなく）が f(x) に収束するという意
味を表しているつもりでも，「fn(x) は関数 fn のこと」と受け取れば，これは関数列の収
束を意味していることになる．ところが，これから紹介するように，関数列の収束は色々
ある．fn(x) という記号は

数値 fn(x) を表しているのか関数 fn(x) を表しているのか，両方にとれる

ので，逆に各点収束でない関数列の収束を考えている場合にも，関数 fn を fn(x) と書く
と記号に引っ張られて各点収束と誤解されかねない．そろそろ関数を f(x) と表すのは止
めて，f と表すことにするのが，安全な記号の使い方である．だが，合成関数などでは，
やはり独立変数を書き込んでおきたい面もあるので，まあ，なるべく誤解のないように表
現を工夫しましょう，という結論にしておこう． □

各点収束では，与えられた ε > 0 に対して，d(fn(x0), f(x0)) < ε を満たすための条件
n ≥ n0 は，つまり n0 の値は， ε に依存するだけでなく x0 にも依存する．そこで，もう
少し「後出しの度合い」をフェアにした定義も必要になる．

定義 10 fn, n = 1, 2, 3, . . . と f はD で定義された関数とする．

任意の ε > 0 に対してある n0 ∈ N が存在して，すべての n ≥ n0 に対して

|fn(x)− f(x)| < ε, (x ∈ D)

となるとき，関数列 {fn} は f に一様収束 (uniform convergence)するという．

Remark. このように，“すべての”とか “存在する” が多くなると，普通の文章で書く
よりも記号 “∀”, “∃” を使った方がわかりやすい．また，表現を色々工夫しなくても，誤
解の余地が少ない．例えば，

任意の n ∈ N に対して n < m となるm ∈ N が存在する

という文では，解釈に

1. 任意の n に対して，その n に依存してもよいのだが，とにかく n < m となるm が
存在する（後出しでm を選べる）

2. 「任意の n に対して n < m」となるm が存在する（n が後出し）
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の二通りの可能性がある．したがって，数学では，それぞれ

1. 任意の n ∈ N に対してあるm ∈ N が存在して n < m となる

2. あるm ∈ N が存在して任意の n ∈ N に対して n < m となる

というかなりの悪文（しかし業界では正式）を用いることになる．要するに，順番を明記
したいのである．それならば，“任意の” を “∀”, “存在する” を “∃” と書いて

1. (∀n ∈ N)(∃m ∈ N)(n < m)

2. (∃m ∈ N)(∀n ∈ N)(n < m)

とするのが，わかりやすい．
それでは，一様収束することの定義を書いてみよう：

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀x ∈ D)( |fn(x)− f(x)| < ε )

□

Remark. 説明の流れをそのまま引き継いで一様収束を定義するならば，

(∀ε > 0)(∃n0 ∈ N)(∀x ∈ D)(∀n ≥ n0)( |fn(x)− f(x)| < ε )

とすべき．しかし，∀ と ∃ の順番をひっくり返すと真偽が変わってしまう可能性があるの
だが，∀x ∈ D と ∀n ≥ n0 の場合には，順番をひっくり返しても真義は変わらない．
なお，各点収束の場合は

(∀x ∈ D)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)( |fn(x)− f(x)| < ε )

であり，x ∈ D で収束することの定義ならば

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)( |fn(x)− f(x)| < ε )

となる． □

一様収束するということの，すぐにわかる利点は，

積分との相性がとても良い
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ということだ．例えば [a, b] での積分を考えると，fn が f に一様収束するときには，任意
の ε > 0 に対して，ある番号 n0 ∈ N から先の n ≥ n0 では

|fn(x)− f(x)| < ε (x ∈ [a, b])

となる．よって，∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ ≤
∫ b

a

|fn(x)− f(x)| dx

≤
∫ b

a

ε dx = |b− a| ε

なので，∫ b

a

fn(x)dx→
∫ b

a

f(x)dx. (48)

積分を扱うときには，まずそれがルベーク積分なのかリーマン積分でも良いのか高校数
学での定積分（定義したのか，してないのか良くわからないやつ）なのか明示しなければ
ならないはずだが，絶対値の積分が積分の絶対値より大きいというだけの式変形なので，
どの積分を考えているかはっきりさせなくても，どうせ成り立つ．

Remark. 式 (48) は

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx

と書くことができ，このような等式が成り立つことを「極限と積分が順序交換可能」とい
う．左辺は積分（定積分）をした結果の数値についての収束なので紛れはないが，右辺の
積分記号の中での limn→∞ は一様収束としての極限を意味することに注意．各点収束と間
違えないためには，∫ b

a

(
lim
n→∞

fn

)
(x)dx

と書いた方が良いのだろうが，これはあまり見かけない表記． □

一様収束は各点収束よりも望ましい収束なのだが，有界閉区間 [a, b] においても，

各点収束するが一様収束しない関数列 fn
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の例を簡単に作れる．

例 6 [0, 1] において，fn を fn(x) = xn, n = 1, 2, 3, . . . と定めると，fn は

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

に各点収束するが，この収束は一様収束ではない．

一様収束でないことは，例えば x = 1− 1
106
のときには(

1− 1

106

)106

≒ e−1

であることから，n が 106 でもまだ e−1 辺りで小さくなりきっていない，ということで見
当が付く．この例は fn(x) = xn という「作為的でない」関数の収束であるという利点は
あり，また，

各 fn は連続関数なのに，各点収束した先の関数 f は x = 1 で不連続

という点で重要だが，各点収束と一様収束との違いは，むしろ，次の例の方が印象的だと
おもう．

例 7 区間 [0, 1] において，関数の列 fn を定める：

1. まず，数列

1− 1

4
, 1− 1

42
, 1− 1

43
, . . .

を考える．この数列は，区間の端点 1 に収束する．

2. 次に，この数列を端点とする区間

In = [1− 1

4n
, 1− 1

4n+1
], (n = 1, 2, 3, . . .)

の列

I1, I2, I3, · · ·

を考える．
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3. これらの区間

In = [1− 1

4n
, 1− 1

4n+1
], (n = 1, 2, 3, . . .)

は，n が大きくなるにしたがって [0, 1] の端点 1 に近づいて行き，区間の長さは 0

に収束して行く．

4. 区間 In を底辺とする高さ 1 の二等辺三角形を考える．n が大きくなるにしたがっ
て，この二等辺三角形は高さを 1 に保ったまま，どんどん尖った形になりながら端
点 1 に近づく．

5. n に対して，区間 In 以外での値は 0 で，区間 In でのグラフがこの二等辺三角形（の
底辺でない２辺）になるような，折れ線の形のグラフを持つ関数 fn を考える．

6. [0, 1] の任意の点 x において，

(a) x = 1 のときは，fn(x) = 0,

(b) 0 ≤ x < 1 のときは，x < 1− 1
4N
となるN ∈ N が存在するので，それより先

のすべての n ≥ N に対して fn(x) = 0

となっているので，すべての x ∈ [0, 1] に対して

lim
n→∞

fn(x) = 0

となる．つまり，f を恒等的に 0 を値にとる関数とすると，関数列 fn は [0, 1] で f

に各点収束する．

7. 一方，fn の最大値は，n の値に関わらず 1 であり，fn は f に一様収束しない．

この関数を式で表すことにあまり意味はないのだが，

1. 底辺の長さは 3/4n+1 であり，

2. 区間の中点は

1

2
·
(
1− 1

4n
+ 1− 1

4n+1

)
= 1− 5

22n+3
.
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3. 関数 fn を表す式は，

fn(x) =



0 if 0 ≤ x < 1− 1

4n
22n+3

3
·
(
x− 1 +

1

22n

)
if 1− 1

22n
≤ x ≤ 1− 5

22n+3

22n+3

3
·
(
1− 1

22n+2
− x

)
if 1− 5

22n+3
< x ≤ 1− 1

4n+1

0 if 1
4n+1 ≤ x ≤ 1

となる．

例 7 の fn の積分は，二等辺三角形の面積を考えれば∫ 1

0

fn(x)dx =
1

22n+3

なので，積分の値は 0 に収束する．したがって，

積分してから極限をとったものと，極限をとってから（この場合は恒等的に 0

になる）積分したものは等しい

という望ましい関係は成り立っている．しかし，例 7 の関数列 fn は

c1, c2, c3, . . . を任意の数列として，

gn(x) = cnfn(x)

と定めると，[0, 1] において gn も恒等的に 0 の関数に各点収束する

というふざけた性質をもっている．これでは，cn = 22n+3 を選べば，∫ 1

0

gn(x)dx = 1, n = 1, 2, 3, . . .

となってしまうので，積分と極限の順序交換可能性が成り立つわけがない：

lim
n→∞

∫ 1

0

gn(x)dx = lim
n→∞

1 = 1

∫ 1

0

lim
n→∞

fn(x)dx =

∫ 1

0

0 dx = 0.
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さらに，cn をもっと大きく，例えば cn = 32n+3 と選ぶと，
∫ 1

0

gn(x)dx は n→ ∞ で発散

している．

結論　 連続関数の列が収束した先の関数が連続関数であって欲しい場合，また，関数列
の収束と積分が絡む場合，各点収束するというだけでは，使い物にならない．
一様収束は重要なのである．

一様収束について，色々と述べてきたが，一様収束のイメージを掴むにはグラフを考え
るのが一番である．実１変数関数でなくても，また，値が複素数やベクトル値であっても
一様収束の論理的意味は同じなのだが，グラフによるイメージだけは，実１変数の実数値
関数でないと絵が描けないので把握しづらい．今のうちにイメージを掴んでおくに限る．

1. 区間 [a, b] を定義域とする関数 f のグラフを描く．

2. このグラフを中央分離帯として上下 ε の幅を持つ帯を描く．

3. もう一つ別の関数 g のグラフを描くのだが，g のグラフが

(a) この帯の中を通っているならば，

|f(x)− g(x)| < ε (x ∈ [a, b]).

(b) この帯からはみ出しているならば，x0 ∈ [a, b] ではみ出しているとして，

|f(x0)− g(x0)| ≥ ε

となる．

つまり，一様収束とは，

どんなに細い帯を描いたとしても，ある番号から先の fn のグラフはすべてこ
の帯の中に収まっている

ということ．したがって，fn が f に一様収束するときには，任意の ε > 0 に対して，あ
る番号 n0 があって，

1. それより先の n ≥ n0 に対しての fn のグラフは，f のグラフの上下の幅 ε の帯から
はみ出せないので，
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2. 例えば x1, x2, x3 ∈ [a, b] に対して，

|fn(x1)− fn(x1)| < ε, |fn(x2)− fn(x2)| < ε, |fn(x3)− fn(x3)| < ε,

となる（3 個の点に限らず何個でも良いのだが，一番使うのは 2 個 x1, x2 の場合）．

3. また，fn が f を中心とした帯の中にあるならば，逆に，f は fn を中心とした同じ
幅の帯の中にある．

一様収束と積分の相性が良いことは既に見たが，連続性についても，一様収束は期待通
りである．
Remark. 次の定理は，グラフのイメージで押し通すなら簡単：

1. f のグラフを，幅 1 ピクセルで描く．

2. このグラフに 3 ピクセル幅を付けて帯にする．

3. ある番号から先の fn のグラフを 1 ピクセルで描くと，グラフはこの帯の中を通っ
ている．

4. この絵を少し離して見る．

5. 幅 1 ピクセルのグラフも 3 ピクセルのグラフも見分けがつかないことだし，fn のグ
ラフが連続関数のグラフならば，f のグラフも連続だわなあ，と納得する

ということなのだが，これでは証明とは言えない．証明は，不等式の羅列となる．ただし，
イメージに拘っている限り 2 次元のグラフという制約から抜け出せないのだが，式で書
いてしまえば，より一般の場合に拡張するときにも，記号のちょっとした置き換えで済む
ことが多い． □

定理 17 fn はD で定義された連続関数の列であり，D において関数 f に一様収束して
いるとする．このとき，f はD で連続な関数である．

［証明］　
x0 ∈ D と ε > 0 が与えられたとする。

1. fn は f に一様収束しているので，以下の条件を満たす n0 ∈ N が存在する：

n ≥ n0 ⇒ d(fn(x), f(x)) < ε/3 (x ∈ D).
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2. 特に，d(fn0(x), f(x)) < ε/3 (x ∈ D).

3. 特に，x = x0 においても，d(fn0(x0), f(x0)) < ε/3.

4. fn0 は連続関数なので，

d(x, x0) < δ ⇒ d(fn0(x), fn0(x0)) < ε/3

となる δ > 0 が存在する．

5. したがって，d(x, x0) < δ を満たすすべての x ∈ D に対して

d(f(x), f(x0))

≤ d(f(x), fn0(x)) + d(fn0(x), fn0(x0)) + d(fn0(x0), f(x0))

<
ε

3
+
ε

3
+
ε

3
= ε

□

Remark. この証明の流れは，以下の通り：

1. f の帯に fn が収まっているので，fn の帯に f は収まっている（ただし，これは不
等式で書くと当たり前なので，証明の文面には表れない）．

2. fn が連続関数であることを利用する．

3. 証明の最後の式の右辺

d(f(x), fn0(x)) < ε/3 と d(fn0(x0), f(x0)) < ε/3

は帯の中に収まっているということに対応し，

d(fn0(x), fn0(x0)) < ε/3

は fn0 の連続性に対応している．

□
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9.3.3 連続なパラメータをもつ関数族

これから，最終的には，

f(ζ)

ζ − z

を，g(ζ, z) と置いて，

添え字 z をもつ関数族 gz : ζ 7→ gz(ζ)，特に，ζ が

ζ = γ(t) (a ≤ t ≤ b)

と t に依存する場合の関数族 gz : t 7→ gz(γ(t))

について考えたい．

一般に，

C の開領域D1 の点 z ∈ D1と有界閉区間 [a, b] の点 t に対して g(z, t) ∈ C を
対応させる２変数関数 g

に対しての，ある意味での一様性について考える．
g が (z0, t0) で連続であるということは，

任意の ε > 0 に対してある δ1 > 0 と δ2 > 0 が存在して

d(z, z0) < δ1, z ∈ D1, d(t, t0) < δ2, t ∈ [a, b] ⇒ |g(z, t)− g(z0, t0)| < ε

であることを意味する．
z0 ∈ D とし，g はすべての (z0, t), t ∈ [a, b] で連続であるとする．
このとき，

1. t を t0 に固定して z だけの関数とみなすと，

z → z0 のとき g(z, t0) → g(z0, t0)

である．gz(t) = g(z, t) と置いてみると，

z → z0 のとき gz(t0) → gz0(t0)

となり，gz が gz0 に各点収束している雰囲気．
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2. z = z0 に固定すると，

t→ t0 のとき g(z0, t) → g(z0, t0)

であり，関数 t 7→ gz0(t) が [a, b] で連続だと言っていることになる．

ただし，これらの観察では一方を固定してもう一方だけの関数と考えているだけで，
(z0, t) で連続であるということの意味する

z と t を同時に動かしながら (z0, t0) に近づけても g(z, t) は g(z0, t0) に収束
する

ということまでは，活かせていない．これをうまく使うとことにより，次の定理が証明さ
れる．

定理 18 g : (z, t) 7→ g(z, t) は，C，もしくは R の開領域D1 の点 z ∈ D1と有界閉区間
[a, b] の点 t に対して g(z, t) ∈ C を対応させる２変数関数であるとする．z0 ∈ D1 と，[a, b]
の任意の点 t ∈ [a, b] において，g は連続であるとする．このとき，

任意の ε > 0 に対して，ある δ > 0 が存在して，

d(z, z0) < δ, t ∈ [a, b] ⇒ |g(z, t)− g(z0, t)| < ε

となる．

この定理は，z が z0 に近づけば，t ∈ [a, b] はなんであっても，g(z, t) が g(z0, t) に近づ
くという，「t についての一様性」が成り立つことを主張している．
証明は，有界閉区間のコンパクト性（定理 12） からすぐに得られる．

［証明］　 ε > 0 が与えられたとする．ε′ = ε/2 と置く．
各 t0 ∈ [a, b] に対して，

d(z, z0) < δ1, z ∈ D1, d(t, t0) < δ2, t ∈ [a, b] ⇒ |g(z, t)− g(z0, t0)| < ε′

を満たす δ1 > 0, δ2 > 0 が存在するので，そのような δ1, δ2 を選び，δ1(t0), δ2(t0) で表すこ
とにする．
[a, b] を添え字集合 J と考えて，各 t ∈ J に対して，U(t) = {t′ | d(t′, t) < δ2(t) } と定

めると，有界閉区間 [a, b] は開区間からなる集合族

{U(t)}t∈J
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により覆われるので，定理 12 により，J の有限部分集合

J ′ = {t1, t2, . . . , tn}

が存在して

[a, b] ⊂
n∪
j=1

U(tj)

となる．

δ = min{δ1(t1), δ1(t2), . . . , δ1(tn)}

とおくと δ > 0 であり，d(z, z0) < δ, t ∈ [a, b] に対して

1. t ∈ [a, b] なので，t ∈ U(tj) となる j が存在し，d(t, tj) < δ2(tj).

2. d(z, z0) < δ ≤ δ1(tj).

3. よって，

(a) d(z, z0) < δ1(tj), d(t, tj) < δ2(tj) なので，

|g(z, t)− g(z0, tj)| < ε′

(b) d(z0, z0) = 0 < δ1(tj), d(t, tj) < δ2(tj) なので，

|g(z0, t)− g(z0, tj)| < ε′

であり，

|g(z, t)− g(z0, t)| ≤ |g(z, t)− g(z0, tj)|+ |g(z0, tj)− g(z0, t)|
< ε′ + ε′ = ε.

□
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9.3.4 微分と積分の順序交換

複素数 z と実数 t を独立変数とする２変数関数 g : (z, t) 7→ g(z, t) について

t を固定して z だけの関数とみなしたときの z での微分

を考えたい．
要するに偏微分なのだが，複素関数論では偏微分の記号

∂

∂z

を魔法使いのような使い方をするので，偏微分の記号を使うことは避けるべき．むしろ，
いい加減だがイメージを掴みやすい記号は

d

dz
g(z, t)

であろう．これから証明する定理の主張をこのいい加減な記号を用いて書くと

d

dz

∫ b

a

g(z, t)dt =

∫ b

a

d

dz
g(z, t)dt

となる．このタイプの等式を

微分と積分の順序交換可能性

という．
だが，いい加減では困るので，「ここだけの定義」をしてしまおう：
これから用いる記号 g(·, t) は，f ,g,φ などの関数記号と同様に，単なる関数を表す記号
である．関数記号のなかに tが現れているが，これは「tに依存して決まる」というイメー
ジを伝えるためのデザインと思えば良い．z は領域D1 を，t は [a, b] を動くとする．

1. 各 t ∈ [a, b] を固定して，z を変数とする１変数関数 g(·, t) を，g(·, t) : z 7→ g(z, t)

と定める．

2. 関数 g(·, t) : z 7→ g(z, t) がD1 で正則ならば，その微分を

d

dz
g

で表すことにする．これは，g(·, t) の変数 z だけでなく最初に固定した t ∈ [a, b] に
も依存するので，z と t の２変数関数と考えて，

dg

dz
(z, t)

と書くことにする．
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3. 結局，偏微分の定義を繰り返しているだけなのだが，「それならば偏微分の記号を使
うべき」などという苦情は無視．

それでは，複素関数についての積分と微分の順序交換可能性を証明したいのだが，せっ
かくここまで記号を用意したにも関わらず，いきなり複素関数について証明するのは難し
い．ここで実数の世界に戻るのは残念なのだが，実変数について交換可能性を証明してか
ら，Cauchy-Riemann の関係式に頼るという，あまり嬉しくない回り道を経て証明する．
もう一つのアプローチは，べき級数の理論をある程度準備しておくことであり，そうすれ
ば実数の世界に戻る必要はないのだが，それについては，後で述べる．

定理 19 g : (x, t) 7→ g(x, t) は，R の開区間D の点 xと有界閉区間 [a, b] の点 t に対して
g(x, t) ∈ R を対応させる２変数関数であるとする．この２変数関数 g は連続であり，さら

に，各 t ∈ [a, b] に対して x について偏微分可能であり，
∂

∂x
g : (x, t) 7→ ∂

∂x
g(x, y) は（２

変数の）連続関数であるとする．このとき，

h(x) =

∫ b

a

g(x, t)dt

と置くと，h(x) は x0 ∈ D で微分可能であり，

h′(x0) =

∫ b

a

∂

∂x
g(x0, t)dt.

［証明］　
各 t ∈ [a, b] において g(·, t) : x ∈ D 7→ g(x, t) は微分可能なので，平均値の定理により，

g(x0 +△x, t)− g(x0, t) =
∂

∂x
g(x0 + θ△x, t) · △x

を満たす 0 < θ < 1 が存在する（θ は t に依存して決まる）．

h(x0 +△x)− h(x0) =

∫ b

a

g(x0 +△x, t)dt−
∫ b

a

g(x0, t)dt

=

∫ b

a

(
∂

∂x
g(x0 + θ△x, t) · △x

)
dt

なので，

h(x0 +△x)− h(x0)−△x
∫ b

a

∂

∂x
g(x0, t)dt

= △x
∫ b

a

(
∂

∂x
g(x0 + θ△x, t)− ∂

∂x
g(x0, t)

)
dt. (49)

160



ε > 0 が与えられたとする．関数

∂

∂x
g : (z, t) 7→ ∂

∂x
(x, t)

は仮定により連続なので，定理 18 により，

d(x, x0) < δ ⇒
∣∣∣∣ ∂∂xg(x, t)− ∂

∂x
g(x0, t)

∣∣∣∣ < ε

となる δ が存在する．(49) の θ は t にも依存して変わるのだが，不等式 0 < θ < 1 は満
たす．したがって，|△x| < δ を満たす△x に対して

|θ△x| < δ

であり，∣∣∣∣ ∂∂xg(x0 + θ△x, t)− ∂

∂x
g(x0, t)

∣∣∣∣ < ε

となる．よって，∣∣∣∣h(x0 +△x)− h(x0)−△x
∫ b

a

∂

∂x
g(x0, t)dt

∣∣∣∣
≤ |△x|

∫ b

a

∣∣∣∣ ∂∂xg(x0 + θ△x, t)− ∂

∂x
g(x0, t)

∣∣∣∣ dt
≤ |△x|

∫ b

a

εdt = |△x| |b− a| ε

であり，

h(x0 +△x)− h(x0)

△x
−
∫ b

a

d

dx
g(x0, t)dt→ 0 (|△x| → 0).

□

この定理は，2 変数関数 g(x, t) についての定理だが，3 変数関数 g(x, y, t) についても，

h(x, y) =

∫ b

a

g(x, y, t)dt

に対して，微分と積分との順序交換可能性

∂

∂x
h(x, y) =

∫ b

a

∂

∂x
g(x, y, t)dt
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が成り立つ．これは，y を固定して考えれば良いだけ．また，x と y の役割を変えれば，

∂

∂y
h(x, y) =

∫ b

a

∂

∂y
g(x, y, t)dt

定理 20 g : (z, t) 7→ g(z, t) は，C の開領域D1 の点 z ∈ D1と有界閉区間 [a, b] の点 t に
対して g(z, t) ∈ C を対応させる２変数関数であるとする．この２変数関数 g は連続であ

り，さらに，各 t ∈ [a, b] に対して g(·, t) : z 7→ g(z, t) は正則関数であり，
d

dz
g は（２変数

の）連続関数であるとする．このとき，

h(z) =

∫ b

a

g(z, t)dt

と置くと，h(z) は z0 で正則であり，

h′(z0) =

∫ b

a

d

dz
g(z0, t)dt.

［証明］　
g(z, t) = u(x, y, t)+ iv(x, y, t) と表すと，u(x, y, t), v(x, y, t) については微分と積分の順
序交換可能性が成り立つので，

∂

∂x
h(z) =

∂

∂x

∫ b

a

u(x, y, t)dt+
∂

∂x

∫ b

a

iv(x, y, t)dt

=

∫ b

a

∂

∂x
u(x, y, t)dt+ i

∫ b

a

∂

∂x
v(x, y, t)dt

∂

∂y
h(z) =

∂

∂y

∫ b

a

u(x, y, t)dt+
∂

∂y

∫ b

a

iv(x, y, t)dt

=

∫ b

a

∂

∂y
u(x, y, t)dt+ i

∫ b

a

∂

∂y
v(x, y, t)dt

この最後の式の右辺にCauchy-Riemann の関係式を用いると

∂

∂y
h(z, t) =

∫ b

a

− ∂

∂x
v(x, y, t)dt+ i

∫ b

a

∂

∂x
u(x, y, t)dt

= i
∂

∂x
h(z)
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となる．これは，h(z, t) についての Cauchy-Riemann の関係式なので，h(z) は正則で
あり，

h′(z0) =

∫ b

a

d

dz
g(z0, t)dt.

□

これで，ようやく定理 6 の証明をする準備が整った，と言うか，証明は終わっている．
z0 ∈ G に対してD1 を，z0 を中心としてD1 の境界が ∂G に触れないように小さく選
んでおく．

f(z) =
1

2π

∫
∂G

f(ζ)

ζ − z
dz

において，∂G を γ(t), a ≤ t ≤ b と表しておけば，

f(γ(t))γ′(t)

γ(t)− z

は，z ∈ D1, t ∈ [a, b] で連続であり，t を固定すれば，f
(
γ(t)

)
γ′(t) と γ(t) も定数なので，

z 7→ f(γ(t))γ′(t)

γ(t)− z

はD1 で正則であり，

d

dz

(
f(γ(t))γ′(t)

γ(t)− z

)
=
f(γ(t))γ′(t)

(γ(t)− z)2

なので，

f ′(z) =
1

2πi

∫
∂G

f(ζ)

(ζ − z)2
dζ.

つまり，左辺を微分するときには，右辺の被積分関数を（z で）微分すれば良い．

Remark. 良い領域 G が「池」を持つときには，∂G はいくつかの γj(t) で ∂G =

γ1 + · · · + γm と表すことになるのだが，その場合も，微分と積分との順序交換をそれぞ
れ γj での積分について用いれば良い． □
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同じく，f ′(z) を微分するときも被積分関数を微分すれば良いので，f (k)(z) を求めるた

めには，非積分関数
f(ζ)

ζ − z
の k 回微分

(k − 1)!f(ζ)

(ζ − z)k+1
を計算するだけのことであり，

f (k)(z) =
k!

2πi

∫
∂G

f(ζ)

(ζ − z)k+1
dz.

１回だけ微分可能ならば（正則ならば）何回でも微分できる，という結果は，実変数関
数の世界では成り立たない．と言うよりは，それが成り立つ理由が全く無い．
それでは，なぜ正則ならば何回でも微分できるのかというと，計算の仮定を見ればわか
るように，

a

b− z
という形の関数は，何回でも微分できるから．

これは長ったらしい論証の末に「微分と積分が順序交換可能」であることを確認したから
こその計算なのだが，本当のところ，「成り立ちそうなことが成り立つことを確認」した
だけなので，面倒な割には大した値打ちはない．

本当にすごいのは，

どんな正則関数も，
a

z − b
という簡単な形の関数の重ね合わせ（線積分）で表

すことができる

という Cauchy の積分公式である．

ついでに，

定理 21 正則関数列 fn が一様収束するときには，微分と極限の交換可能性

lim
n→∞

d

dz
fn(z) =

d

dz
lim
n→∞

fn(z)

が成り立つ．

［証明］　定理 6 により，

d

dz
fn(z) =

1

2πi

∫
∂G

fn(ζ)

(z − ζ)2
dζ

なので，固定された z に対して，（変数を ζ として）一様収束する正則関数列

fn(ζ)

(z − ζ)2
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については，極限と積分が順序交換可能なので，

lim
n→∞

1

2πi

∫
∂G

fn(ζ)

(z − ζ)2
dζ =

1

2πi

∫
∂G

lim
n→∞

fn(ζ)

(z − ζ)2
dζ

=
1

2πi

∫
∂G

lim
n→∞

fn(ζ)

(z − ζ)2
dζ

となるが，この右辺は，定理 6 により

d

dz
lim
n→∞

fn(z)

に等しい． □

Remark. fn(ζ)
(z−ζ)2 が一様収束することを厳密に言うためには，分母の (z− ζ)2 が z と ∂G

との最小距離の２乗以下にはならないことを用いて，不等式で評価する必要がある． □

Remark. 一般に，Cauchy の積分公式を経由しない限り，関数列の収束と微分との相
性は，とても悪い．一様収束を仮定する程度では，例えば，等式

d

dx
lim
n→∞

fn(x) = lim
n→∞

d

dx
fn(x)

が成り立つことが期待できないどころか，limn→∞ fn(x) の微分可能性すら保証されない．
この等式が成り立つようにするためには，limn→∞ の定義自身に，f ′

n の収束を含める必
要があり，事実上，極限の微分可能性については何も主張できない．正則関数列 fn につ
いて極限と微分の順序交換が保証されるのは，Cauchy の積分公式を経由して，積分と極
限の交換可能性にすり替えることが可能なため． □

9.4 べき級数

9.4.1 形式的べき級数

複素数の数列

a0, a1, a2, . . .
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に対して，

a0 + a1X + a2X
2 + · · ·

を形式的べき級数 (formal power series) という．ここで，X は不定元である．
これは，実はおかしな説明であり，正確には数列 a0, a1, a2, . . . そのものが形式的べき級
数であり，不定元X は形式的べき級数を計算しやすいように表すための補助的記号に過
ぎない．これは，多項式の正式な定義と同じ事情である．要点は，

形式的べき級数と言っているときには，それは無限級数ではなく，収束は考え
ていない

ということである．
また，a0, a1, a2, . . . で定まる（と言うか，a0, a1, a2, . . .であるところの）形式的べき級
数を，

∞∑
n=1

anX
n,

∞∑
j=1

ajY
j

等で表す．つまり，不定元としてどの文字を用いても良く，また，Σ などの記号を使って
も良い．
形式的べき級数は関数ではないのだが，後で，X に複素数 z を代入したときの収束に

ついての議論をする。そのためにも，

f(X) =
∞∑
n=1

anX
n

といった表現を許容しておく．

多項式が代数の重要な対象であったのと同様に，形式的べき級数についての代数も重要
であり，

1. ２つの形式的べき級数の和 f(X) + g(X)

2. 形式的べき級数のスカラー倍 cf(X)

3. ２つの形式的べき級数の積 f(X)g(X)

を考えることができる．これらを計算するためには，収束についての議論は必要ない．例
えば f(X)g(X) についてならば，

166



f(X) =
∑∞

n=1 anX
n, g(X) =

∑∞
n=1 bnX

nとするとき，f(X)g(X) =
∑∞

n=1 cnX
n

の係数 cn は

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0

と定義するので，各係数 cn はすべて有限回の計算で求められる（ただし，cn は無限個あ
るのだが）．
それどころか，

1. f(X) = a0+ a1X + a2X
2+ · · · に g(X) = b1X + b2X

2+ b3X
3+ · · · を代入すること

2. f(X) = a0+a1X+a2X
2+ · · ·，ただし a0 ̸= 0，に対して 1

f(X)
を求めること（f(X)

との積が 1 となる形式的べき級数を求めること）

3. f(X) = a1X + a2x
2 + · · · , ただし a1 ̸= 0，に対して f−1(X) を求めること，つまり

f
(
f−1(X)

)
= X, f−1

(
f(X)

)
= X を満たす形式的べき級数 f−1(X)を求めること

4. 微分の演算 f ′(X) = a1 + 2a2X + 3a3x
2 + · · ·

も可能である．ただし，形式的べき級数に定数項をもつ形式的べき級数を代入することは
できない．定数項のみの形式的べき級数を代入することも無理．これを試みた途端に，収
束の問題が生じる．つまり，無限級数の理論が必要になる．

ここでは，定義と記号を紹介するに留めて，無限級数に進むことにしよう．

9.4.2 無限級数

複数個の数の和は，元々は

一緒にして測る

という操作から来ているので，和の可換性

a+ b = b+ a

と言ってみても，「それは和を記号で表す都合から来ているだけのもの」と受け取られて
も，やむを得ない．また，無限個の数の和も，それらを一緒にして測ると考えるならば，

+∞, −∞ になるかもしれないが，ともかく，値は決まるはずだし，また，無
限個の和をとる順番にも影響されるはずがない
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と考えるのが自然である．したがって，a1, a2, a3, . . . の和は∑
n∈N

an

のような，順番と無関係な表記をする方が自然である．集合A1, A2, A3, . . . の和集合∪
n∈N

An

という「順番と無関係な表記」は，∪
n∈N

An = {x | x ∈ An となる n ∈ N が存在する }

と定義され，右辺は明らかに，集合としてのN しか考えていない．

高校では実にあっさりと，

lim
N→∞

N∑
n=1

an

と，完全に順番 a0, a1, a2, . . . に依存した定義をしているのだが，これは，昔の数学者が

1 + (−1) + 1 + (−1) + · · ·

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

といった無限級数に立ち向かった「悲しい敗北の歴史」の結果である；

無限個の和は，和を計算する順番と無関係に定義するのはムリ.

とは言っても，「できそうな計算はできる」幸せな世界もあり，それは

1. 各項 an の絶対値をとった級数
∞∑
n=1

|an|が収束するような級数
∞∑
n=1

an であり（これを

絶対収束する級数と言う．シャウトしているのではなく，絶対値が収束する級数），
したがって，

2. 各項 an が負でない級数（これを正項級数という．変換候補のトップが「正項」にな
るまで，級数のレポートを書きましょう）

である．危険な世界の根源は，
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プラス・マイナスの打ち消し合い

なのである．
せっかく Cauchy 列は収束するということを証明したので（定理 14），絶対収束する級
数は和をとる順序と関係なく収束することを証明しておこう．ただし，証明は，典型的な
「簡単だが，記述することにより煩雑になる」タイプであり，読むよりも自分で考えた方
が早いかも知れない（考えても書こうとしないこと．書くのはすごく煩わしい）．

しかし，やはり煩わしいので，定理の前に，その簡易版を証明しておこう．∑∞
n=1 |an| が収束するならば，

∑∞
n=1 an も収束する．

［証明］　
cm =

∑m
n=1 |an|，bm =

∑m
n=1 an と置くと，

1. {cm} は収束列なので，Cauchy 列であり，任意の ε > 0 に対してある番号m0 が存
在して

m1,m2 ≥ m0 ⇒ |cm2 − cm1| < ε.

2. したがって，m0 ≤ m1 < m2 に対して

|bm2 − bm1| = |am1+1 + am1+2 + · · ·+ am2 |
≤ |am1+1|+ |am1+2|+ · · ·+ |am2|
= cm2 − cm1 < ε

となるので，{bm} はCauchy 列．

3. よって，定理 14 により，{bm} は収束する．

□

Remark. このタイプの証明は，典型的な「Cauchy 列のありがたみ」証明である．収
束することを直接に示そうとすると，収束の定義に収束した点（収束した値）が入ってい
るために，その点についてのなんらかの情報が必要になるのだが，Cauchy列の定義には
数列しか現れない．この証明を見ればわかるように，cm が収束する点がわかっていたと
しても，bm は収束することがわかるだけで，「何に収束するか」については何も言ってい
ない（ので，証明できた，ということ）． □
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Remark. 「何に収束するか」については何も言っていない，という点については，こ
の場合は微妙である．次の「証明」を検討してほしい；

［証明］　
∑∞

n=1 |an| が収束するので，
∑∞

n=N |an| → 0 であり，したがって，∣∣∣∣∣
∞∑
n=N

an

∣∣∣∣∣ ≤
∞∑
n=N

|an| → 0

となるので，
∣∣∣∑∞

n=1 an −
∑N−1

n=1 an

∣∣∣→ 0 であり，部分和は収束する． □

これは，収束することを証明する前に，その証明のなかで
∑∞

n=1 an という記号を使っ
ているのだが，存在することを証明する前に「存在するかまだわからないもの」を表す記
号を使って論証しても無意味である． □

定理 22
∑∞

n=1 |an| が収束するならば，任意の単射 φ : N → N に対して，
∞∑
n=1

aφ(n)

は収束する．

［証明］　
bm = aφ(1) + aφ(2) + · · ·+ aφ(m) と置いて，数列 {bm} がCauchy 列であることを示す．
ε > 0 が与えられたとする．

1. cm =
∑m

n=1 |an| とおくと，定理の仮定により cm は収束するのでコーシー列であり，

m1,m2 ≥M ⇒ |cm1 − cm2| < ε

となるM ∈ N が存在する．

2. φ は単射なので，φ(µ) ≤M となる µ ∈ N は有限個しかないので，その中の最大の
ものを µ0 とする．

3. このとき，

µ > µ0 ⇒ φ(µ) > M

なので，
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4. µ1, µ2 > µ0, µ1 < µ2 に対して

(a) M1 = min{φ(µ1), φ(µ1+1), . . . , φ(µ2)},M2 = max{φ(µ1), φ(µ1+1), . . . , φ(µ2)}
とおくと，

M < M1 ≤M2

であり，

(b) φ(µ1), φ(µ1 + 1), φ(µ1 + 2), . . . , φ(µ2) ∈ {M1,M1 + 1, . . . ,M2}.
なお，左辺のリストに重複は無い．

5. したがって，

d(bµ1−1, bµ2) =
∣∣aφ(µ1) + aφ(µ1+1) + · · ·+ aφ(µ2)

∣∣
≤

∣∣aφ(µ1)∣∣+ ∣∣aφ(µ1+1)

∣∣+ · · ·+
∣∣aφ(µ2)∣∣

≤ |aM1 |+ |aM1+1|+ · · ·+ |aM2|
= cM2 − cM1−1 < ε

であり，

6. µ1, µ2 ≥ µ0 ⇒ d(bµ1 , bµ2) < ε.

以上により，{bn} はCauchy 列であり，定理 14 により，収束する． □

Remark. このような証明を書くのは，本当に神経を使う割には退屈で面倒くさい．こ
ういうときにこそ，教科書なり資料を書く側の特権「証明は読者のエクササイズとして残
す」を使うべきであった． □

正項級数は，収束するときは絶対収束する（当たり前だ）ので，項の順序は自由に変更
できる．収束しないときには，それこそ限りなく大きくなるので，いわゆる+∞ に発散．
この場合にも，項の順序を変えて良いということには証明が必要なのだが，同じようなも
のなので，読者の演習として残す．

絶対収束する級数は，項を２つのグループに分けて，それぞれの和を計算しても良い．
こんな簡単なことでも，きちんと記述しようとすると，なかなか大変である：
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1. j1 < j2 < j3 < · · ·

2. k1 < k2 < k3 < · · ·

3. {j1, j2, j3, . . .} ∪ {k1, k2, k3, . . .} = N

であるとする．
∑∞

n=1 an が絶対収束するならば，
∑∞

n=1 ajn と
∑∞

n=1 akn も絶対収束し，
∞∑
n=1

an =
∞∑
n=1

ajn +
∞∑
n=1

akn .

これを証明してみる．
まず，

∑∞
n=1 an が絶対収束するとしているので，

∑∞
n=1 ajn と

∑∞
n=1 akn も絶対収束す

ることは，部分列からなる級数であることを考えれば明らか．収束することが確認された
ので，

A =
∞∑
n=1

an, B =
∞∑
n=1

ajn , C =
∞∑
n=1

akn

と置いて部分和との差を評価することができる．
M ∈ N に対して，

1. {am} を２つのグループに分けているという設定なので，

{1, 2, . . . ,M} = {j1, j2, . . . , jN1} ∪ {k1, k2, . . . , kN2}

と分割され（N1, N2 はこの分割を実現する数値），

2.
M∑
n=1

an −
N1∑
n=1

ajn −
N2∑
n=1

akn = 0 となるので，

3. 以下の式変形が可能：

A−B − C =
M∑
n=1

an − (
M∑
n=1

an − A)

−
N1∑
n=1

ajn + (

N1∑
n=1

ajn −B)

−
N2∑
n=1

akn + (

N2∑
n=1

akn − C)

= −(
M∑
n=1

an − A) + (

N1∑
n=1

ajn −B) + (

N2∑
n=1

akn − C)
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4. したがって，

|A−B − C| ≤

∣∣∣∣∣
M∑
n=1

an − A

∣∣∣∣∣+
∣∣∣∣∣
N1∑
n=1

ajn −B

∣∣∣∣∣+
∣∣∣∣∣
N2∑
n=1

akn − C

∣∣∣∣∣
となるので，右辺の３つの項を評価すれば良い．
ε > 0 が与えられたとする．

m ≥M ⇒

∣∣∣∣∣A−
m∑
n=1

an

∣∣∣∣∣ < ε/3

m ≥M1 ⇒

∣∣∣∣∣B −
m∑
n=1

ajn

∣∣∣∣∣ < ε/3

m ≥M2 ⇒

∣∣∣∣∣C −
m∑
n=1

akn

∣∣∣∣∣ < ε/3

となるM ,M1, M2 を選ぶ．ただし，M は，必要ならば更に大きく取り直して，M を
jM1 ≤M , kM2 ≤M となるようにしておくと，

{j1, j2, . . . , jM1} ⊂ {1, 2, 3, . . . ,M}, {k1, k2, . . . , kM2} ⊂ {1, 2, 3, . . . ,M}

であり，一方，

{j1, j2, . . . , jN1} ∪ {k1, k2, . . . , kN2} = {1, 2, . . . ,M}

なので，

N1 ≥M1, N2 ≥M2.

以上により，

|A−B − C| ≤

∣∣∣∣∣
M∑
n=1

an − A

∣∣∣∣∣+
∣∣∣∣∣
N1∑
n=1

ajn −B

∣∣∣∣∣+
∣∣∣∣∣
N2∑
n=1

akn − C

∣∣∣∣∣
<

ε

3
+
ε

3
+
ε

3
= ε

□
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9.4.3 収束半径

複素係数のべき級数

a0 + a1z + a2z
2 + a3z

3 + · · ·

に対して，その収束を決める収束半径 (radius of convergence) という数値を定義する．例
えば，

f(z) = 1 + z + z2 + z3 + · · ·

の収束半径 ρ は，ρ = 1. この場合，

1. |z| < ρ のときには，f(z) は収束して f(z) = 1
1−z．

2. |z| > ρ のときには，f(z) は発散．

3. |z| = 1 のときには，なんとも言えない．z = 1 のときには発散するのだが，|z| = 1

で z ̸= 1 のとき収束することもある．

したがって，収束半径 ρ というものに期待される性質は，

|z| < ρ ならば収束し，そのような ρ でなるべく大きい数値

である．

定義 11 べき級数

a0 + a1z + a2z
2 + · · ·

が与えられているとして，関数

g(r) = |a0|+ |a1| r + |a2| r2 + · · · (r ≥ 0)

を考える．収束に関して，次の３通りに場合分けして，ρ の値を定める：

1. g(r) が収束するのは r = 0 のときのみならば，ρ = 0.

2. ある正の実数 r0 が存在して，

(a) 0 ≤ r < r0 に対して，g(r) は収束

(b) r0 < r に対して，g(r) は発散
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となるならば，ρ = r0.

3. すべての正の実数 r に対して，g(r) は収束するならば，ρ = +∞.

補題 1 与えられたべき級数の，第N 項までの部分和をSN(z) =
∑N

n=0 anz
n とおく．r > 0

とM > 0 が，条件

|an| rn ≤M (n ∈ N)

を満たしているとする．
ここで，0 < r1 < r を満たす r1 を任意に選ぶと，|z| < r1 を満たすすべての z ∈ C に
対して，limN→∞ SN(z) =

∑∞
n=0 anz

n は収束し，∣∣∣∣( lim
N2→∞

SN2(z)

)
− SN1(z)

∣∣∣∣ ≤M

(
r1
r

)N1+1

1− r1
r

. (50)

［証明］　
補題の仮定の下で，N1 < N2 に対しての |SN2(z)− SN1(z)| の大きさを評価する．

|SN2(z)− SN1(z)| =

∣∣∣∣∣
N2∑

n=N1+1

anz
n

∣∣∣∣∣
≤

N2∑
n=N1+1

|an| · |z|n

≤
N2∑

n=N1+1

|an| rn ·
(r1
r

)n
= M

(
N2∑
n=0

(r1
r

)n
−

N1∑
n=0

(r1
r

)n)

= M

(
1−

(
r1
r

)N2+1

1− r1
r

−
1−

(
r1
r

)N1+1

1− r1
r

)

= M ·
(
r1
r

)N1+1 −
(
r1
r

)N2+1

1− r1
r

.

したがって，N0 ≤ N1, N2 ならば，

|SN2(z)− SN1(z)| ≤M ·
2
(
r1
r

)N0+1

1− r1
r
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であり，0 < r1/r2 < 1なので{SN(z)}はCauchy列．よって，定理14により limN→∞ SN(z)

は収束する．また，∣∣∣∣ limN2→∞
SN2(z)− SN1(z)

∣∣∣∣ ≤M · lim
N2→∞

(
r1
r

)N1+1 −
(
r1
r

)N2+1

1− r1
r

=M ·
(
r1
r

)N1+1

1− r1
r

.

□

Remark. 要するに，∣∣∣∣∣
∞∑
n=0

anz
n −

N∑
n=0

anz
n

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

anz
n

∣∣∣∣∣
≤ M ·

(
r1
r

)N+1

1− r1
r

ということであるが，
∑∞

n=0 anz
n という記号を使って計算を始める前に，その存在（収束

すること）を示す必要があることに注意． □

Remark. この「収束の誤差評価」（収束の速さの評価）は，|z| ≤ r1 の範囲で z に依存
せずに評価されているので，この範囲で一様収束をしていることがわかる．ただし，r1 の
選び方には依存する．r1 は 0 < r1 < r という条件を満たす限り自由に選べるので，なる
べく r に近く選びたいのだが，そうすると逆に，r1/r は 1 に近づき，収束は遅くなる．□

定理 23 f(z) =
∑∞

n=0 anz
n の収束半径を ρ とするとき，

1. 0 ≤ r1 < ρ となる r1 に対して，fm(z) =
∑m

n=0 anz
n はDr1 = {z ∈ C | |z| ≤ r1 } で

f(z) に一様収束する．

2. |z| > ρ となる z ∈ C に対して，f(z) は発散する．

［証明］　
0 < r1 < ρとなる r1 に対して，r1 < r2 < ρを満たす r2 を選ぶ．収束半径の定義により

∞∑
n=0

|an| rn2
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は収束するので，各項 |an| rn2 は 0 に収束し，したがって，上に有界である．つまり，

|an| rn2 ≤M (n = 1, 2, 3, . . .)

となるM ∈ R が存在する．よって，補題 1 により，Dr1 で一様収束する．

次に，
∑∞

n=0 anz
n が収束する |z| > ρ が存在したと仮定すると，|anz|n < M (n =

0, 1, 2, . . .) を満たすM ∈ R が存在する．したがって，補題 1 により，ρ < r1 < |z| とな
る r1 に対して

∑∞
n=0 anr

n
1 は収束する．しかし，これは収束半径の定義に反する． □

9.4.4 積分と微分の順序交換

以上により，f(z) =
∑∞

n=1 anz
n の形で関数 f(z) を定義したいときには，右辺の級数の

収束半径 ρ よりも僅かに小さな r1 < ρ を選んでおけば，

1. f(z) の定義域をDr1 = {z ∈ C | |z| ≤ r1 } とすることができ，

2. fm : z 7→ fm(z) =
∑m

n=1 anz
n は，Dr1 において，f に一様収束することがわかった．

さて，ここまで頑張ってきたので，Cauchy の積分公式

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z
dz

の右辺の非積分関数を等比級数に展開して

f(ζ)

ζ − z
=

f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

=
f(ζ)

ζ − z0
·

∞∑
n=1

(
z − z0
ζ − z0

)n
となることから，

lim
N→∞

N∑
n=1

(
z − z0
ζ − z0

)n
=

∞∑
n=1

(
z − z0
ζ − z0

)n
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という収束が一様収束であると論じ，一様収束する関数列では積分と極限とが順序交換可
能であることをもって，f が z0 において

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z
dz

=
1

2πi

∫
∂G

f(ζ)

ζ − z0
lim
N→∞

N∑
n=1

(
z − z0
ζ − z0

)n
dz (51)

=
1

2πi
lim
N→∞

∫
∂G

f(ζ)

ζ − z0
·
N∑
n=1

(
z − z0
ζ − z0

)n
dz (52)

=
1

2πi
lim
N→∞

N∑
n=1

∫
∂G

f(ζ)

ζ − z0
·
(
z − z0
ζ − z0

)n
dz

=
∞∑
n=1

(
1

2πi

∫
∂G

f(ζ)

(ζ − z0)n+1
dz

)
(z − z0)

n

とテーラー展開される，と華麗に決めたいのが山々なのだが，(51) から (52) への等号を
保証するために要求される一様収束性は ζ についてのものなので，「テーラー展開が一様
収束すること」は根拠にならない．そこで，もっとややっこしい「一様性」が必要になる
のかと身構えるのだが，実は，状況はむしろ簡単である．等比級数で表される具体的な収
束が問題になっているのだから，直接評価してしまえば良い：

1. z0 ∈ G が与えられたとする．

2. Dr(z0) = {z ∈ C | d(z, z0) ≤ r } がG の境界 ∂G に触れないように，r > 0 を選ぶ．

3. Dr(z0) の内部 Dr(z0) = {z ∈ C | d(z, z0) < r } は良い領域であり，f は Dr(z0)

で正則なので，Dr(z0) において Cauchy の積分公式を用いると（Dr(z0) の境界は
|ζ − z0| = r で決まる円周）

f(z) =
1

2πi

∫
|ζ−z0|

f(ζ)

ζ − z
dz

=
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

dz.

4. ζ はDr(z0) の円周上を動き，z は円の内部にあるので，∣∣∣∣z − z0
ζ − z0

∣∣∣∣ < 1
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であり，等比級数の和の公式により

f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z0
·

∞∑
n=0

(
z − z0
ζ − z0

)n
dz

ここまでは，論証を丁寧にしただけだで変わりはない．要点は，等比級数の和の公式の収
束が簡単に評価できることであり，項比 α の等比級数では，

N∑
n=0

αn −
∞∑
n=0

αn =
1− αN+1

1− α
− 1

1− α

= − 1

1− α
· αN+1

となる．これを利用するために，0 < r1 < r を満たす r を選んで，z をDr1(z0) の中に制
限してしまえば，項比は z−z0

ζ−z0 ≤ r1/r であり，∣∣∣∣∣
N∑
n=0

f(ζ)

ζ − z0
·
(
z − z0
ζ − z0

)n
−

∞∑
n=0

f(ζ)

ζ − z0
·
(
z − z0
ζ − z0

)n∣∣∣∣∣
=

∣∣∣∣∣ f(ζ)ζ − z0
· 1

1− z−z0
ζ−z0

·
(
z − z0
ζ − z0

)N+1
∣∣∣∣∣

=

∣∣∣∣∣ f(ζ)ζ − z
·
(
z − z0
ζ − z0

)N+1
∣∣∣∣∣

≤ |f(ζ)|
r − r1

·
(r1
r

)N+1

後は，右辺最後の式の |f(ζ)|をDrz0上でのf(ζ)の最大値で抑えてしまえば，limN→∞
∑N

n=0

の limN→∞ が ζ についての（ついでに z についての）一様収束であることがわかる．
よって，

∑∞
n=0 と積分との順序交換が可能である．

Remark. 上の証明の後半は，補題 1 の式変形と同じことなのだが，引用するよりは計
算し直した方が早い． □

9.4.5 べき級数の微分

正の収束半径 ρ をもつ f(z) =
∑∞

n=0 anz
n に対して，

f ′(z) =
∞∑
n=1

nanz
n−1

179



と定義する．これは，z を複素数ではなく単なる文字としてみても意味のある定義であり，
ここまでと同様，特に難しいことはない．例えば，f ′(z) が f(z) と同じ収束半径 ρ を持
つことも，簡単に確認できる．

補題 2
∑∞

n=0 an の収束半径が ρ > 0 ならば，
∑∞

n=1 nanz
n−1 の収束半径も ρ.

［証明］　 ρ < r ならば，
∑

n=0 |an| rn は発散するので，
∞∑
n=0

n |an| rn−1 =
1

r

∞∑
n=0

n |an| rn

≥ 1

r

∞∑
n=0

|an| rn → +∞

0 < r < ρ に対して，r < r1 < r2 < ρ を満たす r1, r2 をとると，
∞∑
n=0

n |an| rn−1 =
1

r

∞∑
n=0

n

(
r1
r2

)n
|an| rn2

(
r

r1

)n
であり，

1. n

(
r1
r2

)n
→ 0 (n→ ∞), なので，n

(
r1
r2

)n
は有界.

2. r2 < ρ なので，|an| rn2 は有界．

となっているので，収束する．
以上により，

∑∞
n=0 nanz

n−1 の収束半径は ρ. □

Remark. n

(
r1
r2

)n
→ 0 であるという証明はしなかった．情報科学科に所属している

以上，

指数関数的増加や減少は，線形な減少や増加どころか，多項式的な減少や増
加などものともしない

ということは体感として受け入れていると思う．ただし，どうしても証明をということに
なると，それなりに工夫して証明を書き上げなければならない：

cn = n(r1/r2)
n と置く．0 < r1 < r2 に対して，n が不等式

n >
2r1

r2 − r1
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をみたすとすると，

cn+1

cn
=

(
1 +

1

n

)
· r1
r2

<

(
1 +

r2 − r1
2r1

)
· r1
r2

=
r1 + r2
2r2

.

したがって，

cn+m < cn ·
(
r1 + r2
2r2

)m
→ 0 (m→ ∞).

□

これから確かめたいことは，

f(z + h)− f(z)

h
→ f ′(z) (h→ 0)

となることだが，これは意外に難しい．理由は f(z + h) という項にあり，これを z のべ
き級数として見ようとしても，形式的べき級数（z を単なる文字として扱う見方）という
ものの定義を拡げない限り，f(z) の z に z + h を代入するという操作はできないためで
ある．したがって，z, h は数値として扱い，慎重に，部分和の段階で評価を進めなければ
ならない．

0 < r1 < r < ρ を満たす r1 と r を選び，δ = r − r1 と置く．
|z| ≤ r1 を満たす z と |h| ≤ δ を満たす h が与えられたとする．このとき，

∞∑
n=0

an(z + h)n,
∞∑
n=0

anz
n, h

∞∑
n=1

nanz
n−1

は収束するので，以下のように計算を進めることができる．要点は，n = 0, 1 と ℓ = 0, 1
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の項が打ち消されることである．
∞∑
n=0

an(z + h)n −
∞∑
n=0

anz
n − h

∞∑
n=1

nanz
n−1

=
∞∑
n=2

an
(
(z + h)n − zn − hnzn−1

)
=

∞∑
n=2

an

(
n∑
ℓ=0

an

(
n

ℓ

)
zn−ℓhℓ − zn − hnzn−1

)

=
∞∑
n=2

an

∞∑
ℓ=2

(
n

ℓ

)
zn−ℓhℓ

= h2
∞∑
n=2

an

∞∑
ℓ=2

(
n

ℓ

)
zn−ℓhℓ−2

つぎに，大きさを評価する：

1

|h|
·

∣∣∣∣∣
∞∑
n=0

an(z + h)n −
∞∑
n=0

anz
n − h

∞∑
n=1

nanz
n−1

∣∣∣∣∣
= |h| ·

∣∣∣∣∣
∞∑
n=2

an

∞∑
ℓ=2

(
n

ℓ

)
zn−ℓhℓ−2

∣∣∣∣∣
≤ |h| ·

∞∑
n=2

|an|
∞∑
ℓ=2

(
n

ℓ

)
|z|n−ℓ |h|ℓ−2

≤ |h| ·
∞∑
n=2

|an|
∞∑
ℓ=2

(
n

ℓ

)
|z|n−ℓ δℓ−2 · · · · · ·最初の h は δ で抑えずに残しておく

=
|h|
δ2

·
∞∑
n=2

|an|
∞∑
ℓ=2

(
n

ℓ

)
|z|n−ℓ δℓ

≤ |h|
δ2

·
∞∑
n=2

|an|
(
|z|+ δ

)n
≤ |h|

δ2
·

∞∑
n=2

|an| rn.

以上により，∣∣∣∣∣f(z + h)− f(z)

h
−

∞∑
n=1

nanz
n−1

∣∣∣∣∣ ≤ |h| ·
∑∞

n=2 |an| rn

δ2

という評価が得られ（ここまでは，z, h は与えられた値として固定されている），
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1. この評価は，|z| ≤ r1, |h| ≤ δ を満たす z, h について成り立ち，

2.

∑∞
n=2 |an| rn

δ2
は，r, r1 のみから決まる定数である（z, h には依存しない）．

よって（ここで初めて h を動かす），∣∣∣∣∣f(z + h)− f(z)

h
−

∞∑
n=1

nanz
n−1

∣∣∣∣∣→ 0 (h→ 0)

である．これは，f が z で正則であり．

f ′(z) =
∞∑
n=1

nanz
n−1

となることを意味する． □
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10 解析接続とローラン展開 第８回

10.1 一致の定理

前回の命題 3 は，z = z0 での命題に書き換えると:

べき級数
∑∞

k=0 akz
k　は，収束半径 ρが正のべき級数であるとする．条件

1. zn → z0 (n→ ∞)

2. 0 < d(zn, z0) < ρ

3.
∑∞

k=0 ak(z − z0)
k の z = zn での値は 0.

を満たす点列 {zn} が存在するならば，このべき級数は恒等的に零のべき級数
（すべての係数 ak が 0 のべき級数）である．

となる．
f が領域G で定義された正則関数で z0 ∈ G ならば，|z − z0| < r の範囲で f がテー
ラー展開されるような r > 0 が存在する．したがって，z0 が f の零点であるとき，この
命題により，f が z0 を中心とした半径 r の円の内部で恒等的に 0 でない限り，z0 は孤立
零点である．つまり．零点 z0 の近くには別の零点は存在しない．

ここまで，領域が連結であるかどうかが問題になることはなかったのだが，次の一致の
定理では，弧状連結という仮定が重要である．
しかし，弧状連結という用語は，定義して一般的に扱おうとすると，なにかと微妙なの

だ．例えば，領域の定義に最初から連結（これも未定義）であることを入れておれば，C
が局所連結（また，未定義用語が出現）であることを用いて，連結から弧状連結が導くこ
ともできる（つまり，仮定しなくても良くなる）．ただし，

連結，弧状連結，局所連結

という用語の違いを説明しなければならない．要するに，それなりの準備が必要になるの
だが，これらの微妙な概念（と相互の相違）は位相空間論という立場で落ち着いて扱うべ
きだと思う．したがって，正確さを求めて微妙な用語を多数持ち込むのは避けて，定理の
中に仮定として導入してしまうことにした．

定理 24 (一致の定理) 領域G は，弧状連結であるとする．つまり，
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G の任意の２点 α, β ∈ G に対し，

φ(0) = α, φ(1) = β

を満たす連続関数 φ : [0, 1] → G が存在する

という条件を満たすとする．G で定義された正則関数 f と g が，G のひとつの点 z0 ∈ G

において，条件

z0 に収束し f(zn) = g(zn) となる点列 zn ∈ G, n = 1, 2, 3, . . . が存在する

を満たすならば，f と g はG 全体で一致する．

［証明］　 α = z0 とし，β をG の任意の点とする．

1. 定理の仮定により，φ(0) = α, φ(1) = β となる連続関数 φ : [0, 1] → G が存在する．

2. [0, 1] の部分集合A を

A = {t1 ∈ [0, 1] | 0 ≤ t ≤ t1 ⇒ f(φ(t)) = g(φ(t)) }

と定め，A の最大値を γ とすると，

(a) 0 ≤ γ ≤ 1 であり，

(b) すべての t ∈ [0, γ] に対して，f(φ(t))− g(φ(t)) = 0.

(c) また，

i. φ(γ) ∈ G なので，f − g は φ(γ) で正則．

ii. したがって，f − g が |z − φ(γ)| < r の範囲でテーラー展開できるような
r > 0 が存在する．

3. φ(γ) = z0 の場合，定理の仮定により φ(0) に収束する f − g の零点の列 zn が存在
するので，φ(γ) は f − g の孤立零点ではない．

また，φ(γ) ̸= z0 の場合は，γ > 0 であり 0 ≤ t ≤ γ を満たすすべての t で φ(t) は
f − g の零点となるので，φ(γ) は孤立零点ではない．

4. したがって，|z − φ(γ)| < r の範囲で (f − g)(z) = 0 であり，

|φ(t)− φ(γ)| < r ⇒ (f − g)(φ(t)) = 0

となるが，γ < 1 の場合は，
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φ は連続関数なので，

|t− γ| < δ ⇒ |φ(t)− φ(γ)| < r

となる 0 < δ < 1− γ が存在し，

γ ≤ t ≤ γ + δ/2 ⇒ f(φ(t))− g(φ(t)) = 0.

しかし，これは γ + δ/2 ∈ A であることを意味し，γ がA の最大値であることに反
する．

よって，γ = 1 であり，f(β) = g(β).

以上により，G のすべての点 β において，f と g は一致する． □

Remark. 証明を読むのは，面倒くさかったと思う（読んだとしたらだが）．しかし，証
明を書くのは，本当に本当に面倒くさい！ 要は，「孤立零点じゃないんだから近くでは零
なんだ」というだけなのだが，証明として書くと神経を使うし，長くなる． □

Remark. 定義域が連結でない場合の例を見ておこう：

G = D1(0) ∪ D1(3) であり，f はG で定義され，D1(0) で値 0 をとりD1(3)

で値 79 をとる関数とする．f はG で正則であり，z0 ∈ D1(0) において半径
r = 1− |z0| の範囲でテーラー展開され，もちろん，テーラー展開のすべての
係数は零．しかし，この恒等的に零のテーラー展開は，D1(3) までは効力を及
ぼさない．

□

Remark. G が良い領域で，α, β が具体的に与えられたG の２点ならば，α と β を結
ぶ曲線を，∂G に近づかないように選ぶことができ，その場合には，その曲線上の点での
f, g の収束を保証する半径 r を下から押さえる数 ε > 0 を選ぶことができる．このことを
使えば，より直感的な証明も可能だが，証明を記述しようとすると，むしろ面倒である．
したがって，上の形の証明を選ぶことになる． □

やはり，失敗だったようだ．始めから「次の定理が成り立つことが知られている」とし
て片付けるべきだった．真面目に証明を読んだ人に申し訳ないので，隠し課題を仕込んで
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おこう．上で例としてあげたD1(3) での f の値を答えよ．それなりの評価点を努力賞と
して加点します．

例 8 R で定義された関数 x 7→ x2 の C への拡張となる正則関数は，f : z 7→ z2 だけで
ある．
実際，g : C → C が，g(x) = x2 (x ∈ R) を満たすならば，一致の定理により，すべて
の z ∈ C で f(z) = g(z).

さらに，C 全体で定義されていなくても，R との共通部分が開区間であるような開集
合D ⊂ C で定義された関数 g についても，その開区間で g(x) = x2 となっているならば，
D で f と一致する．つまり，定義域を，実質的に少しでも複素平面に拡張しようとする
ならば，f(z) = z2 を選ぶしかない．

10.1.1 解析接続

領域Gで定義されている正則関数 fを，Gよりも広い領域G1 に拡張することができる
としたら，その拡張は一意である．つまり，実際にどのように拡張するのかという以前に，
G での正則関数 f が与えられた時点で，そのG1 での姿は決まっている．この予め決まっ
ている（G1 で定義された）正則関数を見つける作業を，解析接続 (analytic continuation)

と言う・・・・・・と言いたいのだが，数学のきちんとした定義では，まさか作業を定義の対
象とするわけにはいかないので，f の拡張となる “the” function を解析接続と言う．ただ
し，実際には，これを見つけたいのである．
この「見つけたい」は，例えばC∞ 関数の拡張のケースのような，「作りたい」とは異な
る．C∞ 関数の定義域を拡げる場合には，一意には決まらないので，不定冠詞付きの “a”

function を作る作業を行う．一方，正則関数の解析接続となる正則関数は，既に１つだけ
存在することが分かっている定冠詞付きの関数を「見つける」作業となる．ただし，それ
を式で表す場合，その式はアプローチの仕方で変わってくるのだが．

例 9 まず，べき級数

1 + z + z2 + z3 + · · ·

を考える．このべき級数の収束半径 ρ は 1 であり，G = {z ∈ C | |z| < 1 } において，正
則関数

f(z) = 1 + z + z2 + z3 + · · ·
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を定める．一方，等比級数の和の公式により，

1 + z + z2 + z3 + · · · = 1

1− z

であり，g : z 7→ 1
1−z は z = 1 以外のすべての複素数に対して定義された正則関数である．

よって，f(z) の解析接続は，g(z)．

Remark. 無限個の和というものについての「諦め」が確立される以前には，

1− 1 + 1− 1 + 1− · · ·

の値はなにかという議論が繰り返されていた．１つの答えは，

値は 1/2

というもので，元々は，

「この値は，1 = 1, 1− 1 = 0, 1− 1 + 1 = 1, 1− 1 + 1− 1 = 0, · · ·と
　 1, 0, 1, 0, 1, 0, 1, . . . と振動するが，平均すれば 1/2 ではないでしょうか」

という辺りを理由としているのだろう．解析接続という視点（解析接続という見方が確立
される 100 年以上前の Euler の時代だと，式として成立するという視点）から言うと，

これは f(z) の−1 での値 f(−1) なので，

1

1− (−1)
=

1

2

ということになる．Euler が巧妙な式変形の結果として残した多くの「Euler 先生，どう
しちゃったんですか！」と危ぶまれそうな公式は，一世紀を経て，解析接続という視点か
ら根拠を得ることになる． □

例 10 n! という離散的数値 n = 1, 2, 3, . . . に対して定義された関数（n の階乗）の拡張に
ついて考える．
まず，等式

(n+ 1)! = (n+ 1) · n! (53)

に注目する．
n と n+1 の間を補う（補間）するだけならば，「(n, n!) を折れ線でつないだグラフ」を
考えるだけなのだが，等式 (53) を尊重するためには，例えば次のように定義する：
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1. 1 ≤ x < 2 に対しては，f(x) = x と定める．

2. n− 1 ≤ x < n に対して f(x) が定められているとして，n ≤ x < n+ 1 に対して

f(x) = xf(x− 1)

と定める．

しかし，このように定めても，f(x) は微分可能ではない．微分可能になるよう定めたい
ならば，最初に f(x) = x という１次関数ではなく 3 次関数として端点の微分係数を調整
すれば良いのだが，２回微分可能にはならない．それも，5 次関数の範囲で調整すれば解
決されるが，このような人為的操作は，どこまで続けても作為的であり，数学の感性から
見ると，採用に値しない．
一方，

Γ(t) =

∫ ∞

0

e−txt−1dt t > 0

は関数等式

Γ(t+ 1) = tΓ(t) t > 0

を満たし（部分積分で簡単に確かめられる），Γ(1) = 1 なので，

Γ(n+ 1) = n!

となる（つまり，f(t) = Γ(t+ 1) とすれば良い）．
ガンマ関数は，ここでは確かめないが，領域G = {z ∈ C | ℜ(z) > 0 } で正則である．
つまり，Γ-関数は，数学の立場から言うならば，n! の拡張として理想的な関数であり，他
の候補は考えづらい（ただし，一意性は主張できない）．

次の課題は，定義域G をどこまで拡げられるかだが，z = 0 以外については

Γ(z) =
Γ(z + 1)

z

を利用して，例えば

1. −1
2
< ℜ(z) ≤ 1

2
での Γ(z) の値は 1

2
≤ ℜ(z) < 3

2
での Γ(z+1)

z
の値で，

2. −3
2
< ℜ(z) ≤ −1

2
での Γ(z) の値は−1

2
≤ ℜ(z) < 1

2
での Γ(z+1)

z
の値で，

3. −5
2
< ℜ(z) ≤ −3

2
での Γ(z) の値は−3

2
≤ ℜ(z) < −1

2
での Γ(z+1)

z
の値で，

4. 以下同様

と定めて行けば良い．したがって，z = · · · ,−3,−2,−1, 0 を除いた残りの領域でガンマ
関数は正則．
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10.1.2 悩ましい log z と
√
z

解析接続について，ここまで

どこかの小さい領域で正則関数が与えられているならば，その拡張となる正
則関数は一意に定まる

という感じの説明をしてきたのだが，これは乱暴な説明である．「小さい」などという気
分しか表さない言葉が入っているから乱暴だというのではなく（そんなものは無視すれば
良い），もっと深刻な意味で乱暴なのである．一致の定理から導かれる一意性は，

どこかの小さい領域で正則関数が与えられているならば，より大きな領域G

への拡張となる正則関数は一意に決まる

ということであり，「より大きな領域G」を指定して初めて，一意性が保証される．「正則
な関数として拡張しうる最大の領域」というものが存在する場合は，文句なく一意性が保
証されるのだが，「最大の領域」ではなく「極大な領域」しか存在しないケースもある．
「f(z) = ez の逆関数」と言いたくなる関数について（つまり，log z と言いたくなる関
数について）考えてみよう．正確には，定義域をC 全体にはできないので，f(g(z)) = z

となる関数を考える．
実数 x に対しての log x は x > 0 に対してのみ定義される．それでは，

G1 = {z ∈ C | ℜ(z) > 0 }

まで定義域を拡張した正則関数 g だが，これは，z ∈ G1 を

reiθ, −π/2 < θ < π/2

と表しておいて，

g : z = reiθ 7→ log r + iθ

と定めれば良い．同じ理屈で，G1 より大きな領域

G2 = {reiθ | r > 0, −2π/3 < θ < 2π/3 }

でも，

g : z = reiθ 7→ log r + iθ

と定義すれば良い．同じく，

G3 = {reiθ | r > 0, −3π/4 < θ < 3π/4 }
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でも可能．
このようにパックマンが口を閉じていくように定義域を拡げていくことができるので，
それならば，ギリギリの領域

G∞ = {z = reiθ | − π < θ < π }

ではどうかというと，やはり，

g : z = reiθ 7→ log r + iθ

と定義すれば良い．除外されているのは，re±π, つまり−r だけ．
しかし，調子に乗って−π ≤ θ ≤ π （つまり全部）としてしまうと，

g(reiπ) = log r + iπ

g(re−iπ) = log r − iπ

であり，reiπ = re−iπ であるにも関わらず，異なる値をとることになり破綻している．つ
まり，領域G∞ は g を定義可能な極大な領域．

トリックは，極座標表示に隠れている偏角 2πn の任意性である．偏角の定義域を制限
して任意性がトラブルを起こさないようにすれば g(z) は定義できるのだが，偏角を制限
するやり方に必然性はない．別の制限としては，

−3π/2 < θ < π/2

を選ぶことも可能であり，この場合も極大な領域となる（複素平面から r ≥ 0, θ = π/2 で
決まる半直線を除いた領域）．他にも g を拡張できる極大な領域は存在し，

複素平面から原点を端点とする任意の半直線を除いた領域

が極大な定義域となる．「任意の」と言ってしまったので，実数直線の非負の部分を取り
除いてもよいことになってしまい，これは「実数に対して定義されている log x の拡張」
という意味ではナンセンスなのだが，z 7→ ez の “逆関数” としての意味はある．

実数 x ≥ 0 に対して定義されていた
√
x も，x 7→ x2 の “逆関数” として厄介な関数で

ある．まず，実数のみの関数として考えていたときは定義域に x = 0 を含んでいたのだ
が，これを取り除いてから，正則関数への拡張を考える必要がある．この場合も，C から
原点を通る任意の半直線を取り除いておけば，極表示を一意に指定することができ，後は

reiθ 7→
√
reiθ/2

とするだけのこと．

191



10.1.3 望ましい解析接続

log x (0 < x),
√
x (0 < x) などと異なり，実変数の関数

f(x) = 1 + x+ x2 + x3 + · · · (|x| < 1)

もしくは，正則関数

f(z) = 1 + z + z2 + z3 + · · · (|z| < 1)

については，z = 1 以外のすべての z ∈ C で定義されている正則関数

z 7→ 1

1− z

が，文句なしに，f の “the” 解析接続である．z = 1 においても，気分としては無限大で
あり，無限大という言葉の使い方をうまく定めれば，

z 7→ 1
1−z は複素数全体で定義され z = 1 で “無限大”

という言い方が可能になりそうだ．ただし，そう簡単にはいかない．例えば，

g(x) = e−1/x (0 < x)

について考えてみよう．この関数も，複素数全体から z = 0 を除いた領域で定まる正則
関数

z 7→ e−1/z (z ̸= 0)

に拡張されるのだが，この場合には

関数 z 7→ e−1/z (z ̸= 0) は複素数全体で定義され z = 0 で “無限大”

と言い切ることはできない．そもそも，無限大どころか z が正の実数値をとりながら 0 に
近づくときには 0 に近づく．一方，負の値をとりながら 0 に近づくと +∞ に発散する．
これでは，「複素数全体で定義され」と言いたくても，この関数が 0 に近づくときの振る
舞いは “ヤバすぎる”ため「定義されている」とは到底言えそうもない．また，正の実数
を定義とする関数 e1/x は，

g(x) =

{
0 if x ≤ 0

e1/x　 if x > 0
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と定めることにより，定義域を実数全体まで拡張できるが，これは「無限回微分可能な実
変数関数は “柔らかい”」という正則関数と真っ向から対立する性質の根拠となる関数で
ある．また，z = it での値を見ると

e1/(it) = e−i/t = cos(1/t)− i sin(1/t)

であり，z = 0 の周囲を無限に巻き付いている．

その他，色々とこの関数の “ヤバい点” z = 0の “ヤバさ”をあげつらうことはできるが，
まあ何と言うか，こんな悪口は数学ではない．したがって，ちゃんと数学の言葉で述べる
必要がある．そのためには本当は「Riemann球」というものが必要になる．また，そこま
で行かずに済ますならば極 (pole) という概念が必要になる．これは，気分を言うならば

z 7→ 1
zn
が z → 0 で発散するような，普通の発散の仕方をする「無限大をと

る点」

のことであり，次のローラン展開により定義される．

10.2 ローラン展開

ここまで，人名はアルファベット表示することが多かったような気がするが，ローラ
ン (Laurent) とかテイラー (Taylor) は，あまり人名という気持ちがしないのでカタカナ
にする．
ローラン展開は，Cauchy の積分公式からべき級数展開するときの仕方が少し違うだけ．

10.2.1 等比数列の和の公式

Cauchy の積分公式の非積分関数

f(ζ)

ζ − z

を等比級数の和の公式と解釈するためには，

f(ζ)

ζ − z
=

f(ζ)

(ζ − z0)− (z − z0)

=


f(ζ)

z − z0
· 1
ζ−z0
z−z0 − 1

if |ζ − z0| < |z − z0|

f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

if |ζ − z0| > |z − z0|
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と式変形をすれば良い．ローラン展開は，この式変形に結びつく領域を設定しているだけ
のことなのだが，なかなか威力がある．

10.2.2 ローラン展開

定義 12 0 ≤ R1 < R2 が与えられているとする．領域

{z ∈ C | R1 < |z − z0| < R2 }

を，R1 < R2 から決まる中心が z0 の円環領域といい，R(R1, R2; z0) で表す．

f は，R(R1, R2; z0) で正則であるとする．

1. R1 < r1 < r2 < R2 を満たす r1, r2 を選びG = R(r1, r2; z0) と置くと，G は良い領
域であり，f はG で正則．

2. z ∈ G が与えられたとする．このとき，r1 < |z − z0| < r2.

3. Cauchy の積分公式により，z ∈ G に対して

f(z) =
1

2πi

∫
|ζ−z0|=r2

f(ζ)

ζ − z
dζ − 1

2πi

∫
|ζ−z0|=r1

f(ζ)

ζ − z
dζ.

これで，準備は終わり．
右辺第１項では，|ζ − z0| = r2 > |z − z0| なので，∣∣∣∣z − z0

ζ − z0

∣∣∣∣ < 1

であり，非積分関数は等比級数の和の公式により

f(ζ)

ζ − z
=

f(ζ)

(ζ − z0)− (z − z0)

=
f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

=
f(ζ)

ζ − z0

∞∑
n=0

(
z − z0
ζ − z0

)n
=

∞∑
n=0

f(ζ)

(ζ − z0)n+1
(z − z0)

n (54)
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と展開され，第２項では，|ζ − z0| = r1 < |z − z0| なので，∣∣∣∣ζ − z0
z − z0

∣∣∣∣ < 1

であり，非積分関数は等比級数の和の公式により

f(ζ)

ζ − z
=

f(ζ)

(ζ − z0)− (z − z0)

=
f(ζ)

z − z0
· 1
ζ−z0
z−z0 − 1

= − f(ζ)

z − z0

∞∑
n=0

(
ζ − z0
z − z0

)n
= −

∞∑
n=0

f(ζ)(ζ − z0)
n(z − z0)

−(n+1)

= −
∞∑
n=1

f(ζ)(ζ − z0)
n−1(z − z0)

−n (55)

と展開されるので，Cauchy の積分公式に戻って

f(z) =
1

2πi

∫
|ζ−z0|=r2

f(ζ)

ζ − z
dζ − 1

2πi

∫
|ζ−z0|=r1

f(ζ)

ζ − z
dζ

=
1

2πi

∫
|ζ−z0|=r2

(
∞∑
n=0

f(ζ)

(ζ − z0)n+1
(z − z0)

n

)
dζ

− 1

2πi

∫
|ζ−z0|=r1

(
−

∞∑
n=1

f(ζ)(ζ − z0)
n−1(z − z0)

−n

)
dζ

=
1

2πi

∞∑
n=0

∫
|ζ−z0|=r2

f(ζ)

(ζ − z0)n+1
(z − z0)

ndζ

+
1

2πi

∞∑
n=1

∫
|ζ−z0|=r1

f(ζ)(ζ − z0)
n−1(z − z0)

−n dζ

=
∞∑
n=0

(
1

2πi

∫
|ζ−z0|=r2

f(ζ)

(ζ − z0)n+1
dζ

)
(z − z0)

n

+
∞∑
n=1

(
1

2πi

∫
|ζ−z0|=r1

f(ζ)(ζ − z0)
n−1 dζ

)
(z − z0)

−n

195



となるので，

an =
1

2πi

∫
|ζ−z0|=r2

f(ζ)

(ζ − z0)n+1
dζ

b−n =
1

2πi

∫
|ζ−z0|=r1

f(ζ)(ζ − z0)
n−1 dζ

と置くと，

f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn(z − z0)
−n

という展開が得られる．さらに，

f(ζ)(ζ − z0)
n−1 =

f(ζ)

(ζ − z0)−n+1
dζ

と書き直せることを用いて，

an =
1

2πi

∫
|ζ−z0|=r2

f(ζ)

(ζ − z0)n+1
dz n = −1,−2,−3, . . .

と置く．また，円環領域 {z ∈ C | r1 < |z| < r2 } にCauchy の積分定理を用いると，その
領域で正則な関数の線積分は，|z| = r1 で計算しても |z| = r2 で計算しても同じであり，
また，任意に選んだ r1 < r < r2 について |z| = r で計算しても同じ値になる．
結局，r1, r2 はG で f が正則になるような円環領域G を考えてCauchy の積分公式を
使うために必要だったのであり，ここまで来ると，不要になる．
したがって，得られた結果を定理の形にまとめると，

定理 25 z0 ∈ C, 0 ≤ R1 < R2 ≤ +∞ とする．f が円環領域

R(R1, R2; z0) = {z ∈ C | R1 < |z − z0| < R2 }

で正則ならば，f は

f(z) =
∞∑

n=−∞

an(z − z0)
n (z ∈ R(R1, R2; z0)) (56)

の形に展開され，係数 an は，r を R1 < r < R2 を満たす任意の実数として，

an =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)n+1
dz n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (57)

と表される．
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(56) の形の級数をローラン級数，ローラン展開 (Laurent series, Laurent expansion) と
いう．

Remark. (56) の右辺の収束は，正式には lim
N→∞

N∑
n=0

an(z − z0)
n と lim

N→∞

−N∑
n=−1

an(z − z0)
n

が収束するということであり，この収束はR1 < r′1 < r′2 < R2 を満たすように選んだ任意
の r′1, r

′
2 から定まる円環領域（境界も含んで良い) において一様収束になる．

証明は，簡単なのだが多少の細工が必要であり，面倒なので省略する（そもそも，一様
収束は補充２でしか説明していない）．概略は，

1. 項比 cのべき級数展開を有限項で打ち切った誤差∣∣∣∣∣ 1

1− c
−

N∑
n=0

cn

∣∣∣∣∣ =
∣∣∣∣ cN+1

1− c

∣∣∣∣
を評価できる形にするために，

2. r1, r2 が定める円環領域R(r1, r2; z0) を　 r1 < r′1 < r′2 < r2 となる r′1, r
′
2 を選んで

R(r′1, r
′
2; z0) に制限しておくと，

3. (54)式, (55) 式での項比はそれぞれ r1/r
′
1, r

′
2/r2 となり，

4. 無限級数 (54), (55) の ζ についての一様収束が示され

5. 積分と lim
N→∞

N∑
n=1

との順序交換が保証され，

6. その後，r′1 ≤ |z − z0| ≤ r′2 の関数としての一様収束が示される．

7. この段階では，r1, r2 はもはや必要なくなっているので，r′1, r
′
2 として要求される条

件はR1 < r′1 < r′2 < R2 のみ．

□

Remark. 定理の中で，0 ≤ R1 < R2 ≤ +∞ と書いているが，このR2 ≤ ∞ の意味は，
「R2 はなくても良い」ということ，つまり，0 ≤ R1 のみで与えられる領域 {z ∈ C | R1 <

|z − z0| } でも良いということを意味する．一方，R1 = 0 は，「原点を除く」ということを
意味する． □
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10.2.3 ローラン展開の例

ローラン展開のイメージを掴むためには，具体例を見た方が早いと思う．

例 11 f(z) =
1 + 3z + 5z3

z2
のローラン展開．

式の形を見れば，ただちに，

f(z) =
1

z2
+ 3 · 1

z
+ 5z

と展開されることがわかる．もう少し正確に書くならば，

1. 0 = R1 < R2 = +∞ であり，つまり，{z ∈ C | z ̸= 0 } において，

2. a−n = 0 (n = 3, 4, 5, . . .), a−2 = 1, a−1 = 3

3. a0 = 0, a1 = 5, an = 0 (n = 2, 3, 4, . . .)

Remark. 実は，定理 25 では，

f(z) =
∞∑

n=−∞

an(z − z0)

と展開されているならば，それはCauchy の積分公式から導かれた形に限る，という一意
性を主張していない．この一意性は成立するのだが，「・・・・・・と展開されているならば」の
正確な主張を始めとして，なにかと煩雑である．面倒なので，一意性は成立するものとし
てしまう． □

例 12 f(z) = sin z
z5
のローラン展開は

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

の両辺を z5 で割った形で

f(z) =
1

z4
− 1

3!
· 1

z2
+

1

5!
− z2

7!
+ · · ·

となる．
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ローラン展開を求める際に等式 (56) を使うことは，あまりない．積分の計算は面倒だ
からである．それならば，何のために定理 25 があるのかというと，もっぱら，このよう
な展開ができることの保証と，収束についての理論的扱いのため．ここから，とにかく，
できそうな計算はどんどん行って結果を求めるという方針で進む（今までも，そうだった
のだが，少なくとも「補充」は用意してきた）．
複素関数論はそれなりに大きな理論（これまで勉強したものに比べれば）なので，ま
ず，全体の感覚を掴んでから，きちんとしたテキストで勉強するのが良いと思う．どうし
ても，きちんと証明しながら進みたいのならば，必要な道具は「補充１」，「補充２」で用
意してある（はず，もしくは，つもり）なので，まず，自分で証明をしてみましょう（こ
れは，書くのが面倒だからというよりは，大がかりなテキストを読む前に挫折しとくのも
１つの手だから）．
具体例を続ける．

例 13 f(z) = e
1
z は原点を除いた領域で正則であり，ローラン展開は ez のテーラー展開

に 1/z を代入して

f(z) = · · ·+ 1

3!z3
+

1

2!z2
+

1

1!z
+ 1

この例では，a−1, a−2, a−3, . . . は，どこまで行っても無くならない（0 ばかりになって
実質的には a−k から先が要らない状態にならない）．このようなヤバい点は，単にヤバい
だけでなく本当に危険な振る舞いをする凶暴な存在であることがわかっている．そこで，
ちゃんとした用語を導入する．

10.2.4 特異点

最初に，“ヤバい点” というふざけた言い回しを，格好いい数学用語に変える．
z0 ∈ C，0 < r に対し，z0 を中心とする半径 r の開円板から z0 を取り除いた領域をUr
とする：

Ur = {z ∈ C | 0 < |z| < r }.

定義 13 z0 ∈ C とする．ある r > 0 が存在して f がUr で正則で正則なとき，z0 は f の
孤立特異点 (isolated singularity) であるという（もしくは，f は孤立特異点 z0 をもつと
いう）．
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ただし，この定義では，正則な関数 f の定義域のすべての点が孤立特異点となってし
まう．実際には，「f は，z0 では今のところ定義されていない」という状況でないと “特
異” と言うのも変なのだが，数学の定義としては，このように定義する．

定理 26 z0 ∈ C は f の孤立特異点であるとする．f が z0 の近くで有界ならば，つまり，
ある r1 > 0 とM ∈ R が存在して

|z − z0| ≤ r1 ⇒ |f(z)| ≤M

ならば，f(z0) の値を定めて f が z0 でも正則であるようにできる．

［証明］　
z0 は f の孤立特異点なので，f が 0 < |z − z0| < r で正則になるような r > 0 が存在

する．定理で存在が仮定されている r1 は，小さくとり直してもやはり f は有界なので，
0 < r1 < r であるとして良い．
定理の仮定により，f は 0 < |z − z0| < r でローラン展開され，ローラン展開

f(z) =
∞∑

n=−∞

an(z − z0)

の係数 an は |z − z0| = r1 を線積分の経路に選んで

an =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)n+1
dζ

と求めることができる．ここで，n = −1,−2,−3, . . . については，m = −n− 1 とおくと

|an| =

∣∣∣∣ 1

2πi

∫ 2π

0

f(z0 + reit) · (reit)m · (ireit)dt
∣∣∣∣

≤ 1

2π

∫ 2π

0

∣∣f(z0 + reit)
∣∣ rm+1dt

≤ Mrm+1

となるのだが，r はいくらでも小さく選んでも良く，M は r を小さく選び直しても大き
くなることはないので，m = −n− 1 ≥ 0 であることを考慮すると，

an = 0, n = −1,−2,−3,−4, . . .

という結論が得られ，

f(z) =
∞∑
n=0

an(z − z0) 0 < |z − z0| < r
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というテーラー展開の形の等式が得られる．f(z0) = a0 と定めると，f は |z − z0| < r で
正則． □

つまり，特異点であっても，孤立特異点であってその点の周りで有界ならば，実は特異
でもなんでもなく，その点も含めて正則な関数にすることができる．このような特異点を
除去可能特異点という．

孤立特異点が，その点の周りで有界でない場合は，ローラン展開には負の次数の項が現
れる．まず，多項式の次数に対比して，位数という用語を導入する：

∞∑
n=−∞

anz
n

の形のローラン展開について，

1. m < n ⇒ am = 0

2. an ̸= 0

となる n が存在するならば，その n をこの展開の位数 (order) という．このような n が
存在しないならば，位数は無限大であると言うことにする．
次の２つの場合に分かれる．

1. ローラン展開の位数が k のとき， この孤立特異点を位数 k の極 (pole) という．

2. ローラン展開の位数が無限ならば，この孤立特異点を真性特異点 (essential syngu-

larity) という．

これからの主題は，極である．

1. 孤立特異点でない特異点を調べることは難しい．

2. 孤立特異点のうち，

(a) 除去可能特異点は，特異点と言うに値せず，調べる値打ちがない．

(b) 真性特異点を調べることは難しい．

201



結局，極は程々に難しく，ローラン展開で調べるのにもってこいなのである．

z0 での f のローラン展開が

f(z) = a−k(z − z0)
−k + a−k+1(z − z0)

−k+1 + · · ·+ a−1(z − z0)
−1

+a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

の形ならば，

g(x) = a−k + a−k+1(z − z0) + a−k+2(z − z0)
2 + · · · a−1(z − z0)

k−1

+a0(z − z0)
k + a1(z − z0)

k+1 + · · ·

とおくと，

f(z) =
g(z)

(z − z0)k

と表すことができる．
a−k ̸= 0 なので g(z0) ̸= 0 であり，したがって，z0 の近くで g(z) は g(z0) に近い値をと
り 0 ではないので，z が z0 に近づくときの発散の仕方は，1/(z − z0)

k の発散の仕方と同
程度である．特に，z0 は孤立特異点であり，次数 k の極になる．

以上，ローラン展開からわかる理論的結果は一通り得られた．次回は，ローラン展開の
−1 次項を活用した計算，いわゆる留数計算を紹介する．
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11 留数計算１　第９回

11.1 留数と留数定理

11.1.1 極のローラン展開

z0 は正則関数 f の極であるとする．記号が煩雑になることを避けるために，z0 = 0 と
する．z0 = 0 は f の極なので，位数を−k とすると，

f(z) = a−kz
−k + a−k+1z

−k+1 + · · · a−2z
−2 + a−1z

−1

+a0 + a1z + a2z
2 + · · · 0 < |z| < R2

とローラン展開される（R1 は 0）．
負の次数の項を捨てて

g(z) = a0 + a1z + a2z
2 + · · ·

として関数 g を定めると，これは 0 < |z| < R2 の範囲で正則であり，また，0 は除去可能
特異点なので，|z| < R2 で正則．したがって，r > 0 を，ローラン展開が可能な範囲で選
ぶ，つまり r < R2 となるように選ぶと，∫

|z|=r
g(z)dz = 0

なので，|z| = r での

f(z) = a−kz
−k + a−k+1z

−k+1 + · · · a−2z
−2 + a−1z

−1 + g(z)

の線積分は，∫
|z|=r

f(z)dz =
k∑
j=1

a−k

∫
|z|=r

z−kdz

となるが，∫
|z|=r

z−jdz =

{
0 if j ̸= 1

2πi if j = 1

なので，∫
|z|=r

f(z)dz = 2πi a−1

となる．
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11.1.2 留数

これからわかるように，z0 が極となっているときには，そこでのローラン展開の−1 次
の係数 a−1 は特別に重要である．

定義 14 f が 0 < |z − z0| < R2 で正則であるとき，0 < r < R2 を満たす r に対しての線
積分

1

2πi

∫
|z|=r

f(z)dz

を f の z0 における留数 (residue) といい

Res[f ; z0]

で表す．

この定義は，z0 が極でない場合も含んでいるのだが，ここでは z0 が極の場合のみに限
定して調べる．したがつて，f の z0 における留数Res[f ; z0] は，f の z0 におけるローラ
ン展開の 1 次の係数 a−1 のことと考えて良い．

定理 27 (留数定理) G が良い領域であり，f は，G の有限個の点 α1, . . . , αj を除いてG

で正則ならば，

1

2πi

∫
∂G

fdz = Res[f ;α1] + · · ·+Res[f ;αj].

この定理には留数定理という立派な名前が付いているのだが，

良い領域という芝生にヤバい点があったら，そこを池にして計算する

というテクニックの言い換えに過ぎない．証明をするまでもないと思う．

さて，留数定理自体は何も知見を与えてくれないのだが，

極の留数 a−1 は線積分を使わなくても計算できる

ということが大変に有効な技となる．

要点は，z0 が f の位数 k の極ならば，g(z) = zkf(z) は

g(z) = a−k + a−k+1z + · · ·+ a−1z
k−1 + a0z

k + · · ·
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となることであり，a−1 を求めるためには g のテーラー展開の k− 1 の係数を求めれば良
い，ということである．

これは，いくつかの例を見た方が早い（ただし，ローラン展開での例と重複する）．

例 14 f(z) = ez/z3 の，位数 3 の極 0 における留数Res[f ; 0] は，(
g(z) =

)
z3f(z) = 1 +

z

1!
+
z2

2!
+
z3

3!
+ · · ·

の 2 次の係数 1/2! である．これは，両辺を z3 で割ってみればすぐにわかる．

Res[f ; 0] = 1/2.

例 15 f(z) = ez/z4 の，位数 4 の極 0 における留数Res[f ; 0] は，例 14 と同じように考
えて，

Res[f ; 0] = 1/5.

例 16 f(z) = sin z/z4 の極 0 における留数を求める．

sin z =
z

1!
− z3

3!
+
z5

5!
− · · ·

なので，

sin z

z4
=

1

z3
− 1

6z
+
z

5!
− · · ·

なので，Res[f ; 0] = −1/6.

この例では，0 の位数が 4 ではなく，3 であることに注意が必要．と言うよりは，この
例に限らず，簡単にテーラー展開がわかる例では，位数という言葉に頼らず，テーラー展
開を考えた方が間違えない．

テーラー展開全体を考えなくても，位数 k がわかっていればテーラー展開の k 次の係
数は

1

(k − 1)!

dk−1

dzk−1

{
(z − z0)

kf(z)
}

の定数項（z に z0 を代入）として求められるのだが，常にテーラー展開を意識しておく
方が間違えないと思う．
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11.2 留数計算

テクニックは Cauchy の積分定理を使った計算と共通なのだが，

積分経路が囲む良い領域に，いくつかの極が含まれていても良い

とする所が，多少の進展ではある．ただし，Cauchy の積分定理に還元するためには極の
周りをくり抜けば良いだけのことなので，実質的な進展は，

留数の計算技術を磨いたので，極をどんどん処理できるようになった

ということなのだろう．

例題 8 定積分

I =

∫ 2π

0

1

5 + 3 sin θ
dθ

の値を求めよ．

［解］　
この定積分の値を求めること自体は，それ程の意義はない．目的は，

X と Y で書かれた式 F (X,Y ) の文字 X,Y を cos θ, sin θ で置き換えた式
F (cos θ, sin θ) についての積分∫ 2π

0

F (cos θ, sin θ)dt

を留数計算で求める

という一般形を，具体的な形 F (X,Y ) = 1
5+3Y

でやってみる，ということである．

一般に，この形では，Euler の公式から導かれる等式

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

を背景に，

z = eiθ
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と置く．したがって，

cos θ =
z + z−1

2

sin θ =
z − z−1

2i

であり，|z| = 1 での線積分（つまり，γ(t) = eit (0 ≤ t ≤ 2π) として線積分）∫
|z|=1

F

(
z + z−1

2
,
z − z−1

2i

)
· 1

iz
dz

を考えると，∫
|z|=1

F

(
z + z−1

2
,
z − z−1

2i

)
· 1

iz
dz =

∫ 2π

0

F (cos θ, sin θ) · 1

iz
· ieiθdt

=

∫ 2π

0

F (cos θ, sin θ)dt

となるので（となって結果的にうまく行っているので），この線積分を計算すれば良い．
この例題の関数 F (X,Y ) = 1

5+3Y
では

1

5 + 3 sin θ
=

1

5 + 3 z+z
−1

2i

=
2iz

3z2 + 10zi− 3

=
2iz

(3z + i)(z + 3i)

なので，

f(z) =
1

iz
· 2iz

(3z + i)(z + 3i)
=

2

(3z + i)(z + 3i)

と置いて

I =

∫
|z|=1

f(z)dz

の値を計算すれば良い．
f は

α = −i/3, β = −3i
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を除いて正則であり，|z| = 1を境界とする領域{z ∈ C | |z| ≤ 1 }の中では，f はα = −i/3
を除いて正則なので留数定理により

I = 2πiRes[f ;α]

となる．
Res[f ;α] は f の α におけるローラン展開の係数 a−1 であり，それは，z = α で正則な
関数

(z − α)f(z) =
2

3
· 1

z + 3i

のテーラー展開の定数項なので，

Res[f ;α] =
2

3
· 1

− i
3
+ 3i

=
1

4i
.

よって，

I = 2πiRes[f ;α] =
π

2
.

□

Remark. 大体において，分数の計算というものは「分数のできない大学生」に限らず，
間違えるものである．特に i が絡むと，プラスマイナスの引き起こす間違いが頻発する．
幸いなことに，この例題のように結果が実数になることがわかっている場合には，複素関
数を経由しての計算で計算間違いをすると結果が実数にならないことが多いので，それが
ある程度のエラーチェックになる． □

この例題のように F (X,Y ) が有理式の場合には，微積分の普通の変数変換でも（原理
的には）計算できる．したがって，F (X,Y ) が有理式でない例でないとつまらないので，

I =

∫ 2π

0

e2 cos θdθ

を計算してみる．この場合，

1. まず，

f(z) = e2·
z+z−1

2
1

iz
= ez · e−z · 1

iz

であり，
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2. f は 0 以外のすべての点で正則なので Res[f ; 0] を求めれば良く，

3. f(z) のローラン展開の−1 次の係数 a−1 は

izf(z) =

(
1 +

z

1!
+
z2

2!
+ · · ·

)(
1 +

z−1

1!
+
z−2

2!
− · · ·

)
の定数項であり，

4. それは

1 +
1

(1!)2
+

1

(2!)2
+

1

(3!)2
+ · · ·

なので

5. 求める値は

I = 2π
∞∑
n=0

1

(n!)2

としたいところだが，

1. z = 0 は真性特異点であり，極ではない（ので，あまり扱いたくない）

2. 位数が−∞ の場合には，形式的べき級数のように積が（それぞれの係数が）有限回
の計算で求められるわけではない．上の計算では z と z−1 の文字式のように考えて
「定数項」を計算しているのだが，ここまでの段階でこれが安全な計算であることを
保証するのは無理（なので扱うべきでない）

というわけで，「こんなこともできるのだなあ」と感心するだけにしておこう．

Remark. このタイプの留数計算は，最も安心できる．最初の積分は有界な区間での積
分であり，積分経路についても，半径を限りなく大きくする，また，限りなく小さくする，
といった極限操作は必要ない．したがって，

単位円の内側には正則でなくなる点が有限個しかない

というだけの条件で計算できるのだが，逆に，それ以外の条件を必要としないということ
は，ちょっと心配になる．例えば，∫ 2π

0

1

sin(3θ/2)
dθ
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としたらどうなるのだろうか．これは θ = 2π/3, 4π/3 で無限大になるために広義積分に
なるが，この広義積分は収束しない．このような場合，∫

|z|=1

F

(
z + z−1

2
,
z − z−1

2i

)
· 1

iz
dz

が計算できるとしても，広義積分∫ 2π

0

1

sin(3θ/2)
dθ

は「存在しない」のだから，両者を等号で結ぶことはできない．ことによると，広義積分
が２箇所で発散していて広義積分として収束していなくても，両者の発散が打ち消し合う
と解釈できる可能性（もしくは，Cauchy の主値として収束している可能性）はある．し
かし，このような微妙な問題は考えない方が無難．したがって，

F (cos θ, sin θ) は 0 ≤ θ ≤ 2π で定義されている（無限大になる点をもたない）

という前提，つまり，∫ π

0

F (cos θ, sin θ)dθ

は広義積分ではなくちゃんとした定積分だという前提をつけておくことにしよう． □

問題 17 定積分∫ 2π

0

1

5 + 3 cos θ
dθ

の値を求めよ．
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12 留数計算　第10回
前回に続き，留数を利用した計算を紹介する．

12.1 広義積分の計算１

例題 9

I =

∫ ∞

−∞

1

(1 + x2)3
dx

の値を求めよ．

［解］　∫∞
−∞

1
(1+x2)3

dx は広義積分であり，正確には，

I = lim
R→+∞

∫ R

−R

1

(1 + x2)3
dx

である．したがって，収束することを確認する必要があるが，以下の計算の過程で収束も
確認される．

1. R > 0 に対して，

(a) γ1 は実数直線上で−R からR へ向かう線分

(b) γ2 は上半面（複素平面の，ℑ(z) が負でない部分）でR から−R へ向かう半径
R の半円周

(c) γ = γ1 + γ2

(d) G は γ で囲まれる半円

とする．

γ1(t) = t (−R ≤ t ≤ R),

γ2(t) = Reit (0 ≤ t ≤ π)

として計算すると，まず，∫
γ1

f(z)dz =

∫ R

−R
f
(
γ1(t)

)
· γ′1(t) dt =

∫ R

−R
f(x)dx

であり，求める定積分の（極限をとる前の）形になる．
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2. つぎに，∫
γ2

f(z) · izdt

について，R → +∞ の極限を調べる：

|z| =
∣∣Reit∣∣ = R

であり，∣∣∣∣ 1

(1 + z2)3

∣∣∣∣ = 1

|z6|

∣∣∣∣ 1

(1 + 1
z2
)3

∣∣∣∣ = 1

R6

∣∣∣∣ 1

(1 + 1
z2
)3

∣∣∣∣
となる．1/R6 の後ろの項が邪魔だが，これはR が大きくなれば 1 + 1

z2
の 1

z2
はゴ

ミのような項なのであり，「じゃまです！」と言って捨ててしまえば，「ほぼ 1 」と見
なせる．とは言っても，いきなり捨ててしまうのは愛想がないので，妥協して，

この項は有界

と言うだけにしておこう．

もう少し真面目に評価すると，R > 2 ならば，∣∣∣∣1 + 1

z2

∣∣∣∣ ≥ 1− 1

4
=

3

4

なので，∣∣∣∣ 1

(1 + 1
z2
)3

∣∣∣∣ ≤ (4

3

)3

であり，有界．

したがって，γ2 での線積分の非積分関数 f(z) · iz の絶対値は

|f(z) · iz| = |f(z)| · |z| ≤ 1

R6
M ·R =

M

R5
→ 0 (R → +∞).

であり，また，積分は有界な区間 [0, 2π] での積分なので，積分した値も 0 に収束
する: ∫

γ2

f(z)dz → 0 (R → +∞).

なお，M = 64/27 であり，わざわざ文字M を導入する必要は全く無いのだが，有
界であることが重要であり具体的な数値は必要ないことを強調するために，無駄な
文字を導入した．
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3. 後は，この半径 R の半円に含まれる特異点での留数の和を求めれば良い．f(z) =
1

(1+z2)3
の特異点は z = ±i であり，このうち，上半平面にあるのは z = iなので，R

が大きくなれば（実際にはR > 1 となれば）γ で囲まれる半円に含まれる特異点は
z = i であり，

1

2πi

∫
γ

f(z)dz = Res[f ; i].

また，

f(z) =
1

(z − i)3(z + i)3

(z − i)3f(z) =
1

(z + i)3
これは z = i で正則

なので，z = i における

1

(z + i)3

のテーラー展開の 2 次の項を求めれば良い．これは

1

2!
· d

2

dz2
1

(z + i)3
=

1

2
· (−3) · (−4)

(z + i)5

の z = i における値であり，

Res[f ; i] =
6

(2i)5
= − 3i

16

となるので，

4. γ = γ1 + γ2 での線積分は∫
γ

f(z)dz = 2πiRes[f ; i] = 2πi ·
(
− 3i

16

)
=

3π

8

であり，∫
γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz → I + 0 = I (R → +∞)

なので

I =
3π

8
.
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□

それでは，この例をどのくらい一般化できるか考えてみよう．1.2.3. の三段階で計算し
ているので，それぞれの部分に分けて検討する．

1.
∫
γ1
f(z)dz と

∫ R
−R f(t)dt とが等しいことを示す部分では，f に条件を課す必要はな

い．ただし，f(x) が無限大になる（定義されない）点は，実数軸上にはないとする．

2. 半径R の半円周での線積分が 0 に近づくことを示す部分では，明らかに，f につい
ての条件が必要になる．簡単な条件としては，

|f(Reit) ·R2| ≤M となるM が存在（つまり有界）

ということを要求すれば良い（R が大きくなったときのみが問題なので，都合の良
いR0 を選んで R ≥ R0 のとき有界であれば良い）．この条件が満たされていれば，

|f(z) · iz| =
∣∣f(Reit) · iReit∣∣ ≤M/R → 0

であることが保証される．

この例題での f(z) はR6 に逆比例して小さくなるので，かなり余裕をもって条件を
クリアーしている．

ギリギリの条件にしたいならば，M/Rε → 0 なので f(z) ·R1+ε ≤M で良いのだが，
精密化は止めておこう．

Cauchy の積分定理を利用した計算で紹介した例では，積分経路は上半面でないと
まずかったのだが，この場合には ℑ(z) < 0 の側を通る半円でも構わない．積分経
路を上半面（もしくは下半面）にとったときのみ成立する微妙な収束もあり得るの
だが，そうなると，もとの広義積分の収束が怪しくなる（これについては，後で検
討する）．

3. 最後は留数計算であり，これは計算して求められるか否かということのみ．
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12.2 広義積分の計算２

例題 10 広義積分

I =

∫ ∞

0

x sinx

(1 + x2)2
dx

の値を求めよ．

［解］　
例題 9 と同じく，R > 0 に対して積分経路 γ = γ1 + γ2 を

γ1(t) = t (−R ≤ t ≤ R)

γ2(t) = Reit (0 ≤ t ≤ π)

として，

g(z) = f(z)eiz, f(z) =
x

(1 + x2)2

の線積分∫
γ

g(z)dz =

∫
γ

zeiz

(1 + z2)2
dz

を考える．

まず，γ1 での線積分は∫
γ1

g(z)dz =

∫ R

−R
g(t) · 1dt =

∫ 0

−R
g(t)dt+

∫ R

0

g(t)dt

=

∫ 0

R

g(−s) · (−1)ds+

∫ R

0

g(t)dt （⇐ t = −sと変数変換）

=

∫ R

0

(
g(−t) + g(t)

)
dt

となるが，トリックは

g(t) + g(−t) = f(t)eit + f(−t)e−it

となることであり，f(t) が奇関数であることから

g(t) + g(−t) = f(t)
(
eit − e−it

)
= 2if(t) sin t

215



となって，目標の関数が現れる．したがって，∫
γ1

g(z)dz = 2i

∫ R

0

f(t) sin tdt

γ2 での積分は，例題 9 と同じ評価をすれば，R → ∞ で 0 に収束することがわかる．
したがって，∫

γ

g(z)dz =

∫
γ1

g(z)dz +

∫
γ2

g(z)dz

= 2i

∫ R

0

f(t) sin t dt+

∫
γ2

g(z)dz → 2i

∫ ∞

0

f(t)dt (R → +∞).

後は留数の計算をするだけであり，この例題では，g の２つの極 z = ±i のうち上半面
にある極 z = i での留数Res[g; i] を求めれば良い．これは

g(z) =
1

(z − i)2
zeiz

(z + i)2

であることから

(z − i)2g(z) =
zeiz

(z + i)2

を z = i でテーラー展開した 1 次の項を求めれば良く，

d

dz

zeiz

(z + i)
=

(1 · eiz + z · ieiz)(z + i)− 2zeiz

(z + i)3

∣∣∣∣
z=i

=
1

4e
.

以上により，

I =
1

2i
lim

R→+∞

∫
γ

g(z)dz =
1

2i
· 2πiRes[g; i] = π

4e
.

□

ここまで，留数定理の応用として，実数値関数の定積分の値を求めた．しかし，複素関
数論は複素数の関数が主題なので，実数値関数の定積分に限定する必要はない．例題 11

は，確かに実数値関数の定積分なのだが，それは，f(t) が奇関数であるために，f(z)eiz
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から f(t)eit−f(t)e−it の形を経由して f(t) sin tという実数値関数となったためであり，背
景にある積分∫ ∞

−∞
f(t)eit dt

が重要なのである．それでは，この形の広義積分の収束について，きちんと評価してみ
よう．

12.3 Fourier 変換

c を正の実数として，広義積分∫ ∞

−∞
f(t)eict dt

について考える．この形の広義積分を fの Fourier 変換というが，f はいくつかの極を除
けば正則な関数に限定しているので，Fourier 変換の一般論を扱おうとしているわけでは
ない（なお，一般の Fourier 変換では，c > 0 という制限はない）．
この広義積分が収束するための条件を要求する：

1. f は有限個の極を除き正則である．

2. 実数軸上に極を持たない．

3. 次の条件を満たす定数M > 0, K > 0 が存在する：

|f(z)| ≤ K

|z|
(|z| ≥M).

ここで要求している条件「実数軸上に極を持たない」が満たされていない場合にも，そ
れを小さな半円で迂回すれば，なんとかなる場合が多い．
第６回で計算した例∫ ∞

0

sinx

x
dx

では，
eiz

z
の極 z = 0 を半径 ε の半円で迂回している．つまり，第６回の計算例は，これ

から考えるタイプよりも面倒な例だったのだが，そのことを除けば，∫ −ε

−R

eix

x
+

∫ R

ε

eix

x
= 2i

∫ R

ε

sinx

x
dx
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というトリックを使って Fourier 変換の形にしているだけである．

それでは，

|f(z)| ≤ K

|z|
(|z| ≥M)

という条件だが，これは |z| が大きくなるときに f(z) が，少なくとも 1
z
が 0 に近づく速

さと同じ程度の速さで，0 に近づくことを要求している．それでは，この条件が，どのよ
うに広義積分の収束に反映するかを追跡してみよう．

Remark. これは，一般に広義積分の収束を保証するためには，弱すぎる条件であり，
例えば，∫ ∞

1

dx

x

は収束せずに，+∞ に発散する（いわゆる対数オーダーの発散）．このような「遅い収
束」でも広義積分が収束するためには，∫ ∞

1

sinx

x
dx

のように正負の打ち消しの助けを借りる必要があり，これがフーリエ級数の収束の要点な
のだが，複素関数として計算できる場合には，単純に積分路に沿っての不等式を評価する
だけで収束を保証できる．この辺りも，留数計算の強みとなる． □

これまで，上半面を通る半円を積分路に選んできたのだが，広義積分の収束との関係を
追うためには，別の積分路を選んだ方が評価が簡単である．積分路を与える前に，単純な
線積分を評価しておこう．

例題 11 f は上の条件を満たし，A,B は正の実数とする．T が限りなく大きくなるとき，∫
γT

f(z)eizdz, γT (t) = t+ iT (−A ≤ t ≤ B)

が収束するか判定せよ．

［解］　∣∣eiz∣∣ = ∣∣ei(t+iT )∣∣ = ∣∣eit · e−T ∣∣ = e−T
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であり，∣∣∣∣∫
γT

f(z)eizdz

∣∣∣∣ ≤ e−T
∫ B

−A
|f(z)| · 1dt

≤ e−T
∫ B

−A

K

|z|
dt

= Ke−T
∫ B

−A

1

|t+ iT |
dt

≤ Ke−T (A+B)
1

T
→ 0 (T → +∞).

□

Remark. A,B を固定して T → +∞ としての評価をしたのだが，不等式の最後の項を
見ると，A,B を限りなく大きくしながら T = A+B としても，積分は 0 に収束すること
がわかる（T と分母のA+B が打ち消す）． □

Remark. 積分路に極がある場合が心配になるかも知れないが，極は有限個しかないの
で，T が十分大きくすれば，すべての極を避けることが出来る． □

例題 12 f は例題 11 と同様に与えられた条件を満たし，A と T は正の実数とする．|A|
が限りなく大きくなるとき，∫

γA

f(z)eizdz, z = −A+ it, (0 ≤ t ≤ T )

が収束するか判定せよ．

［解］　

∣∣eiz∣∣ = ∣∣e−iA · e−t
∣∣ = e−t
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であり，∣∣∣∣∫
γA

f(z)eizdz

∣∣∣∣ ≤
∫ T

0

∣∣f(z)eiz · i∣∣ dt
=

∫ T

0

|f(−A+ it)| · e−tdt

≤
∫ ∞

0

K

|−A+ it|
· e−tdt

≤ K

|A|

∫ T

0

e−tdt

=
K

A

(
1− e−T

)
≤ K

A
→ 0, A→ +∞.

□

同様に，∫
γB

f(z)eizdz, z = B + it, (0 ≤ t ≤ T )

も，B → +∞ とするとき 0 に収束する．

以上により，積分経路 γ1, γ2, γ3, γ4 を

γ1(t) = −A+ (B − A)t, (0 ≤ t ≤ 1)

γ2(t) = γB

γ3(t) = −γT
γ4(t) = −γA
γ(t) = γ1 + γ2 + γ3 + γ4

と定め，A, B, T を大きくしていくと，

1.
∫
γ2
f(z)eizdz → 0

2.
∫
γ3
f(z)eizdz → 0

3.
∫
γ4
f(z)eizdz → 0
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となる．したがって，∫
γ

f(z)eizdz −
∫
γ1

f(z)eizdz → 0

であり，∫
γ

f(z)eizdz

は複素上半面にあるすべての極から留数定理で求められるので，∫
γ1

f(z)eizdz =

∫ ∞

−∞
f(x)eixdx

も留数定理でもとめることができる．

Remark. このように考えると，∫ ∞

−∞
f(x)eixdx

が収束することを証明する必要は生じない．γ での積分が有限個の留数から求められ，し
たがって，A,B, T の値に関わらず有限の値で確定していて，γ1 以外の線分での積分が 0

に近づくということから，自動的に収束が保証され，その値も求まる．
広義積分としては収束が保証されない遅い「小さくなり方」でも収束する理由は，γ1 で
の積分を直接評価すると eix に隠れている正負の打ち消しに頼らなければならなかったの
だが，実数軸上での積分を留数定理で避けることにより，「小さくなり方」の評価だけで
（打ち消しに頼らずとも）収束がわかる，という流れである． □

以上で，留数計算の基本的な例を終える．
ここまで，Cauchyの積分定理は証明を飛ばして使ってきたのだが，次回は，Cauchyの
積分定理を証明する．
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13 Cauchy の積分定理（証明）　第11 回
Cauchy の積分定理を証明する．証明はかなり長くなるので，段階を分けて証明する．

定理（Cauchy の積分定理）　 f が良い領域G で正則ならば，∫
∂G

f(z)dz = 0.

13.1 長方形の領域

命題 4 良い領域G で f が正則であり，E が

a1 + ib1, a2 + ib1, a2 + ib2, a1 + ib2

を頂点とする長方形であるとする．このとき，∫
∂E

f(z)dz = 0.

これは，良い領域を長方形に限定した場合の Cauchy の積分定理であり，これを基に，
Cauchyの積分定理を証明する．証明のストーリーは，正則な関数 f が与えられたとして，

1. 長方形についての Cauchy の積分定理（この命題）を証明する．

2. ある条件の下で，折れ線の形の積分路についての線積分の値が，始点と終点のみで
決まることを示し，物理のポテンシャルに似た発想の関数を定める．

3. このように定義した関数が f の原始関数であることを示す．

4. この段階で，実は，G が「池のない公園」（外側の境界だけで，くり抜かれている部
分がなしに囲まれている領域）の場合の Cauchy の積分定理が証明されている．後
は，G をうまく分割して，「池のない公園」に帰結させるだけ．

という流れとなる．

それでは，この命題「長方形についての Cauchy の積分定理」の証明をしよう．
次の２点が，証明の根拠となる：

222



1. f が複素関数として 1 次関数である場合，つまり，

f(z) = cz + c0

の形の関数の場合には，この線積分の値は零になる．このことは，第４回の計算例
で線積分の値を直接計算して，確認してある．

2. さらに，この長方形が極めて小さいならば，正則な関数 f は，

f(z0 +△z) ≒ f ′(z0)△z + f(z0)

と近似され，右辺は△z の 1 次関数．

ここで，近似されるということの意味は，∣∣∣∣f(z0 +△z)− f(z0)

△z
− f ′(z0)

∣∣∣∣→ 0 (|△z| → 0)

ということであり，ε− δ 論法で記述すると

任意の ε > 0 に対して，ある δ > 0 が存在して∣∣∣∣f(z0 +△z)− f(z0)

△z
− f ′(z0)

∣∣∣∣ < ε (0 < |△z| < δ)

となること．この式は，

|f(z0 +△z)− f(z0)− f ′(z0)△z| ≤ ε |△z|

と書き換えることができる（“<” を “≤” に変えてあるので，△z = 0 に対しても成り
立つ）．
したがって，長方形E が十分小さな長方形で

1. z0 ∈ E

2. z ∈ ∂E ⇒ |z − z0| < δ

という条件を満たすならば，

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ ε |z − z0| (z ∈ ∂E)

であり，関数

z 7→ f ′(z0)(z − z0) + f(z0)
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は 1 次関数なので，∂E での線積分は零．したがって，∣∣∣∣∫
∂E

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
∂E

f(z)− f(z0)− f ′(z0)(z − z0) dz

∣∣∣∣
≤

∫
∂E

ε |z − z0| dz (58)

という評価が得られる．

一般に，長方形E に対して，

1. 縦の辺の長さと，横の辺の長さの和を ℓ(E)，

2. 面積を vol(E),

3. ∂E で f(z) を線積分した値をErr(E) で表す：

err(E) =

∫
∂E

f(z)dz.

4. 縦横の辺を２等分して作られる４つの長方形を

ELL, ERL, ELR, ERR

とする．

·

�

·o

�

·o

· /

�

·o /

�

O
ELR

·o

O
ERR

· / · /

O
ELL

·

O
ERL

このとき，

1. ℓ(ELL) = ℓ(ERL) = ℓ(ELR) = ℓ(ERR) = ℓ(E)
2
,

2. vol(ELL) = vol(ERL) = vol(ELR) = vol(ERR) = vol(E)
4

,

3. ∂ELL + ∂ERL + ∂ELR + ∂ERR = ∂E,

4. Err(ELL) + Err(ERL) + Err(ELR) + Err(ERR) = Err(E)
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となる．

·

�

·o

�

·o

· /

�

·o /

�

O
⟲

·o

O
⟲

· / · /

O
⟲

·

O
⟲

=

·

�

·o ·o

·

�

·

O

· / · / ·

O⟲

それでは，背理法により命題を証明するために，
∣∣∫
∂E
f(z)dz

∣∣ = C > 0 であると仮定
し，再帰的に長方形Ej を定義する：

1. E0 = E.

2. Ej+1 は，Ej を分割してELL
j , ELR

j , ERL
j , ERR

j を作ると，∣∣Err(ELL
j )
∣∣ , ∣∣Err(ERL

j )
∣∣ , ∣∣Err(ELR

j )
∣∣ , ∣∣Err(ERR

j )
∣∣

のいずれか１つは，|Err(Ej)| /4 以上の値となるので，それをEj+1 として選ぶ．選
び方を確定したいならば，例えば LL,RL,LR,RR の優先順位で選ぶことに決めて
も良い．

このとき，

E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Ei ⊃ · · · ,

|Err(Ej)| ≥ C

4j
(59)

ℓ(Ej) =
ℓ(E)

2j
(60)

となる．

1. E0 ⊃ E1 ⊃ E2 ⊃ · · · には，有界閉区間の縮小列の定理により，すべてのEj に共通
に含まれる z0 が存在する．

2. ε <
C

2ℓ(E)
となる ε > 0 を選ぶ．
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3. この ε に対して，∣∣∣∣f(z0 +△z)− f(z0)

△z
− f ′(z0)

∣∣∣∣ < ε (0 < |△z| < δ)

となる δ > 0 を選ぶ．

4. ℓ(Ej) =
ℓ(E)
2j
なので，ℓ(En) < δ となる n が存在する．

5. このとき，

|z − z0| < δ (z ∈ ∂En)

なので，(58) 式により∫
∂En

f(z)dz ≤ ε

∫
∂En

|z − z0| dz

となる．

6. 右辺については，|z − z0| ≤ ℓ(En) であり積分路 ∂Ej の長さは 2ℓ(En) なので，∫
∂En

f(z)dz ≤ ε · ℓ(En) · 2ℓ(En)

であり，

Err(En) ≤ 2ε(ℓ(En))
2.

となるが，

7. (59) 式と (60) 式により

C

4n
≤ |Err(En)|

≤ 2ε(ℓ(En))
2

= 2ε
ℓ(E)

4n
.

8. したがって，

C ≤ 2εℓ(E)

となるが，
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これは ε <
C

2ℓ(E)
と選んだことに反し，矛盾． □

以上で，

領域G は，辺が実軸，虚数軸に平行な長方形

と限定されての，Cauchy の積分定理の証明を終える．この制限付きの Cauchy の積分定
理が，（制限なしの）Cauchy の積分定理の第一段階となる．

13.2 折れ線での線積分

これから，複素平面で始点 Sと終点 T を固定して，S から T まで折れ線で繋ぐ積分路
を考える．ただし，以下の条件を課す：

1. 折れ線での積分路と言うときの折れ線は，

折れ線を構成する各線分が，実軸，もしくは虚軸に平行なもの

と限定する．

2. ある長方形G があって，

(a) f はG で正則．

(b) S と T はG の内部にある．

(c) S から T まで繋ぐ折れ線は，G の内部にあるものに限る．

という条件を課す．

この条件の下で，線積分の値は S と T のみから決まり，それを繋ぐ折れ線には依存し
ないことを示す．

まず，次の例を調べる．

例題 13 下の図の積分路

γ1 : S
1

/ ·
2

/ T
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γ2 : S
3 / · 4 / · 5 / · 6 / · 7 / · 8 / T

での線積分について∫
γ1

f(z)dz =

∫
γ2

f(z)dz

となることを，長方形についての Cauchy の積分定理を用いて示せ．

T ·
8

o

· 6 / ·
7

O

· 4 / ·
5

O

S
1

/

3

O

·

2

O

［解］　
Step 1. 交差している２つの辺

· 2 / · と · 6 / ·

の交点を T ′ として辺を分割して

· 2′ / T ′ 2′′ / · と · 6′ / T ′ 6′′ / ·

としても線積分の値は変わらない：

T ·
8

o

· 6′ / T ′ 6′′ /

2′′

O

·
7

O

· 4 / ·
5

O

S
1

/

3

O

·

2′

O
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長方形についての Cauchy の積分定理により，積分路

T ′
2′′

/ T と T ′ 6′′ / · 7 / · 8 / T

についての線積分の値は等しいので，T ′ までの線積分の値が等しいことを示せば良い：

· 6 / T ′

· 4 / ·
5

O

S
1

/

3

O

·

2

O

（辺 2′ を改めて 2 と書いている）．

step 2. 辺 · 4 / · の延長線との交点を T ′′ として ·
2

/ · を分割し，新たな積
分路

γ′2 : S
3 / · 4 / · 7 / T ′′ 8 / T ′

を作る：

· 6 / T ′

· 4 / ·
5

O

7 / T ′′

8

O

2′′

O

S
1

/

3

O

·
2′

O

長方形についての Cauchy の積分定理により γ2 と γ′2 の線積分の値は等しいので，γ
′
2
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と γ1 の線積分を比較すれば良い：

T ′

· 4 / · 7 / T ′′

8

O

2′′

O

S
1

/

3

O

·
2′

O

Step 3. したがって，T ′′ までの線積分が等しいことを示せば良いのだが，長方形につ
いての Cauchy の積分定理により，両者は等しい：

· 4 / T ′′

S
1

/

3

O

·
2′

O

□

おそらく，一般の場合も明らかだと思う．しかし，それを証明として記述するためには，
うまい指標を選んで帰納法を用いるなど，かなりの「証明記述テクニック」が必要にな
る．こういったテクニックも，論文を書くときには，またテキストを書くときには必要に
なる．また，このテクニックは数多くの証明を読むことにより身につくということも，確
かである．だが，それよりも大切なことは，証明を理解することであり，記述テクニック
に幻惑されて本筋を追えなくなるのは残念な事態だと思う．
と言うわけで（本当はこの証明を書くのが嫌，と言う理由なのだが），一般の場合の証
明は止めて，課題とする．

問題 18 自分で嫌にならない程度にジグザクした積分路を２つ作り，線積分が等しくなる
ことを段階を追った図を描いて確認せよ（文章による説明は不要．なるべく沢山の図を描
くとポイントが高そう）．
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証明記述テクニックはともかく，本当に大切なことは，実は最初の条件

長方形の領域G

という限定である．これは長方形である必要はなく，円の内部でも良いし，楕円の内部で
あろうと，また，にゃんこ顔の輪郭で囲まれた領域でも良い．必要なことは，

1. 連結であり（共通部分のない２つの円で，始点と終点が別々の円にあると折れ線で
結べない），

2. 「池のない公園」であること

の２点である．「池のない公園」は数学風味ではないので，数学の用語にすると

単連結であること

もしくは，

ホモトピー群が自明であること

なのだが，これについては，野口先生に聞いた方が良いと思う．

ただ，この場合についてなら，折れ線を変更していく途中で困った事態になる例を考
えた方が納得できると思う．話は簡単で，折れ線を換えていく途中で，長方形についての
Cauchy の定理を使おうとしたとき，その長方形のなかに f が正則でない点が存在したの
では定理が成り立たないため．円とか長方形の中に折れ線があれば，このような事態に遭
遇する心配はない．簡単な理由は，円とか長方形は凸図形だからなのだが，凹という形で
も，折れ線を細かく分けて迂回すれば，切り抜けられる．ただし，この場合も含めての証
明となると，もっと，面倒くさそう．まして，伸びをする猫さんの横から見たシルエット
図形まで面倒を見ようとすると，もっと面倒くさい．大体，この辺りまで来ると，「複素
関数論」の著者は，それならば「まつわり数」まで持ち出すことにしよう，と決断するら
しく，難しい本ができあがる．

とりあえず，これで終わりにして，次に進む．

13.3 ポテンシャル関数

かっこつけて「ポテンシャル」などという用語を持ち出してみただけで，物理の知識が
必要なわけではないし，また，高級な複素関数論で必要になる「ポテンシャル関数論」と
も関係はない．要点は，次の「お話」から感じ取って欲しい．
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小田急線に乗って，大山の山頂まで登る．そこから，降りたり登ったり降りた
り登ったりを延々と繰り返して，塔之岳の尊仏猫山荘まで歩く．その際に，降
りたり登ったりという高度変化を，高度計を用いて記録し，精密に積算する
（絶対値ではなく，正負の値は打ち消し合う）．最終的には，積算した結果は，
塔之岳山頂と大山山頂の高度差に等しい．

ここで，大山から塔之岳までのルートを指定していないことに注意．どのようなルートを
選んだとしても（蛭が多そうな辺りに降りてから丹沢山経由で塔之岳へというルートを選
んだとしても），積算値（これを線積分と思いましょう）は変わらない．

うっかりこういう話をすると，阿呆だと思われるので，気をつけること．積算値が登り
降りの絶対値の場合（フーリエ級数の収束の議論で使われる有界変動に関係する）とか，
登りだけ積算する（疲れ具合の指標になりそう）ならば良いのだが，プラスマイナスで打
ち消し合いながら積算したのでは，標高の変動を測っていることになるというのは，当た
り前．なにをポテンシャルなどと偉そうに，理系はこれだから・・・・・・となるのが関の山．
原因は

最初から標高というものが存在するから

である．仮に，世界が常に霧に覆われていて山の形など見えずに，視界は数メートルとい
う世界に放り込まれたならばどうだろうか（長田真理の異世界転生的な発想だが）．何と
言っても異世界なので，フィシャーのだまし絵のように登り続けながら彷徨っていると元
の場所に戻っている可能性も心配になる．
それでも，歩き回って，地図を作っていく．そして横方向の距離だけでなく，縦方向の
登り降りも，なんとか計測して少しずつ，地図を完成させていく．その結果，Ａ地点から
Ｂ地点までの累積「登り降り」が

ルートに依存せずに一定

であることが確信できたならば，Ａ地点とＢ地点の高度差という概念が確立される．後
は，どこか基準点を選んで，そこからの高度差として「標高」という概念を定めれば良い．
これが，「登り降り」から定めたポテンシャルということになる．
もしもルートに依存するならば，その場合，ポテンシャルを定めることは難しい．

ここまでは喩えに過ぎないが，これで話はほとんど終わっている：

1. S から T までの折れ線を積分路とする線積分の値は，折れ線の取り方に依らず決ま
る．この値を FS(T ) で表すことにすると，
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2. S を固定してFS(T ) を T を独立変数と考えることにより，関数 T 7→ FS(T ) が定義
される．

3. この関数は，「基準点」S の選び方に依るが，別の基準点S ′ を選んだ関数FS′(T ) は，

(a) S ′ から T への積分路を，S ′ から S へ向かい，そこから T へと向かう積分路
と指定すると

(b) FS′(T ) = FS′(S) + FST となる．

(c) FS′(S) は T に依存しない定数なので，

FS′(T ) = FS(T ) + 定数

であり，基準点 S の選択は，FS(T ) の定数項にしか影響しない．

この

基準点 S の選び方により定数項だけ任意性の残る関数 FS(T )

を，f のポテンシャルと言う・・・・・・としたいところだが，この関数 FS(T ) を微分すると
f(T ) となることが次に示されるので，そして，そうなると f の原始関数と呼ぶのが適切
なので，ポテンシャルという用語は裏の雰囲気に留めて，正式には使わないことにする．

ポテンシャル，もしくは，原始関数が存在するということは素晴らしいのだが，それは，
長方形についてのCauchy の積分定理が根拠となっている．したがって，「正則でない点」
という障害 (obstruction) があるケースでは，折れ線の取り方に依っては，互いに異なる
線積分の値をもつことがある．つまり，線積分という積算がルートの選び方に依存し標高
に相当するポテンシャルが定められないという，だまし絵のような状況もあり得る．それ
でも，例えば「正則でない点」という「ヤバい点」が１つだけならば，それを右から回り
込むケースと左から回り込むケースでは線積分の値が異なるとしても，左から回り込む
２つの積分路ならば，等しい値をとることがわかる．これも，きちんと言おうとすると，
左から反時計回りに 13 回ヤバい点を周回してから T へと進む等という路も考えられるの
で，結局，ホモトピー，もしくはまつわり数の話が必要になるのだが，複素関数論に「路
に沿った積分」（線積分そのものではない）という妙な用語が登場する根拠は感じ取って
欲しい．

シラバスに従えば，Cauchy の積分定理の証明は１回で片付けることになっている．し
かし，そろそろ（たぶん，ずっと前に），教室内に存在していれば講義が進んでいくとい
う幸せな世界と異なり，自分から進んで資料を読まなければならないという辛い状況に
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は，ほとほと疲れたと思う．シラバスの最後の１回は止めにして，このあたりで，（遅す
ぎた）休憩をとることにしよう．Cauchy の積分定理の残りは，次回にする．

真面目な話 折れ線の積分路を，長方形での Cauchy の積分定理を使って変更していくセ
ンスは，数学のかなりの部分の基本センスとなります．したがって，「画を沢山描く」とい
う今回の課題 18 は，とても重要です．

234



14 Cauchy の積分定理（証明の続き） 第 12 回

14.1 F (z) を定める

前回までで，基準点となる z0 を決めておくと z までの線積分の値が，積分路の選び方
に依らずに決まることを示した．この場合の

積分路に依らず決まる

という積分路は，折れ線であって，しかも，実軸，もしくは虚数軸に平行な線分から成る
折れ線に限定されている．これから頻繁に

折れ線であって，しかも，実軸，もしくは虚数軸に平行な線分から成る折れ線

という形が出てくる．面倒なので，そのような折れ線を正置折れ線と呼ぶことにしよう．
さて，「積分路に依らず」と言っても正置折れ線という限定が付いている．それならば，
いっそのこと，

正置折れ線であって，かつ，可能な限り実軸に平行に進むことを優先する

という更なる限定をしてしまえば，どうなのだろうか．話を簡単にするために，f は長方
形の領域で（なんなら複素平面全体で）正則であるとして，基準点 z0 = (x0, y0) を選んで
あるとする．このとき，z0 から z = (x, y) へ進む積分路として，

1. まず，z0 = (x0, y0) から (x, y0) へ進み（実軸に平行に移動），

2. 次に (x, y0) から z = (x, y) へと進む（虚軸に平行に移動）

という正置折れ線を採用することに決めてしまい，その積分路での線積分の値としてF (z)

を定義するわけだ．このようにすれば，ここまで苦労して証明してきた Cauchy の積分定
理の第一段階は必要ない．
なんだか壮大な無駄手間を掛けてしまったように見えるが，実は，そんなことはない．
これは，F (z) の微分を考えると明らかになる．

14.2 F (z) の微分

△z = △x+ i · 0 として，F (z +△z)− F (z) を考えてみよう．

1. F (z) を決めるための積分路は

(x0, y0)
γ1 // (x, y0)

γ2 // (x, y)
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2. F (z +△z) を決めるための積分路は

(x0, y0)
γ3 // (x+△x, y0)

γ4 // (x+△x, y)

であり，広い範囲で異なる．

z z +△x

z0
γ1 //

γ3
//·

γ2

OO

·

γ4

OO

これから△z → 0 として F (z+△z)−F (z)
△z をF の微分F ′(z) に収束させ，それが f(z) にな

ると言いたいのだが，積分路が広い範囲で変わってしまうのでは，手の付けようがない．
つまり，積分路を限定しすぎなのだ．

一方，正置折れ線までしか限定せず，しかも，正置折れ線の選び方に依らずに線積分が
一定の値をとるということまで証明してあると，積分路の選び方の自由度は，状況を劇的
に改善する：

F (z +△x) への積分路として，

z0
γ1 // (x, y0)

γ2 // z
γ5 // (x+△x, y)

という「都合のよう積分路」を選ぶことが出来る．

z
γ5 // z +△x

z0
γ1 // ·

γ2

OO

// ·

OO
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したがって，

F (z +△x)− F (z) =

∫
γ1+γ2+γ5

f(z)dz −
∫
γ1+γ2

f(z)dz

=

∫
γ5

f(z)dz

=

∫ 1

0

f(z + t△x) · △x dt

= △x
∫ 1

0

f(z + t△x)dt

であり，

f(z + t△x) → f(z) (△x→ 0)

なので

lim
△x→0

F (z +△x)− F (z)

△x
= f(z).

また，同様に，△z = △x+ i△y としての z から z +△z への変化も

z
γ1 // z +△x γ6 // z +△x+ i△y

という積分路を選ぶと

F (z +△z)− F (z) =

∫
γ1

f(z)dz +

∫
γ6

f(z)dz

=

∫ 1

0

f(z + t△x) · △xdt+
∫ 1

0

f(z +△x+ it△y) · (i△y)dt

= △x
∫ 1

0

f(z + t△x)dt+ i△y
∫ 1

0

f(z +△x+ it△y)dt

なので，

lim
△z→0

F (z +△z)− F (z)

△z
= f(z).

つまり，F (z) は f(z) の原始関数である．
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z + i△y

z

γ6

OO

z0
γ1 // ·

γ2

OO

14.2.1 制限なしの積分路

f(z) が原始関数F (z) を持つ場合には，線積分は（ここまで来てやっと，単なる定義で
はなく）合成関数の微分の等式を通じて「導関数の積分は元の関数になる」という意味を
持つのであり，z0 から z への任意の積分路 γ に対して，∫

γ

f(z)dz =

∫ b

a

f(φ(t))φ′(t)dt

=

∫ b

a

F ′(φ(t))φ′(t)dt

=

∫ b

a

{F (φ(t))}′dt

= F (φ(b))− F (φ(a)

= F (z)− F (z0) = F (z)

となる．つまり，

1. 積分路を正置折れ線に限定してだが，積分路の選び方に依存しない，ということを
示しておくと

2. 基準点として選んだ z0 から z への線積分の共通の値を F (z) として関数 F (z) を定
めることができ，
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3. F ′(z) = f(z) となる．

4. このことから，積分路に正置折れ線という制限を課さなくても，F (z) は z0 から z

への任意の積分路での線積分となることがわかる．

それでは，z = z0 としてみよう．もちろん，F (z0) = 0 であり，これは z0 から出て z0
に戻るループを限りなく短くしていけばわかる．さらに積分路はどのように選んでも良い
ので，z0 から出て z0 に戻る任意の路で囲まれた領域をD とすれば，∂D での線積分は零
であることがわかる．z0 も任意に選べる．

こうなると，最初に与えられた領域G の境界上に z0 をとって，∂G を積分路に選んで
やれば Cauchy の積分定理の証明は終わりのように見えるが，そうではない．

z0 から z への２つの正置折れ線 γ1, γ2 での線積分の値が同じであることの証明は，一
方の折れ線から他方へ，「長方形の場合のCauchy の積分定理」を用いて変形していくこと
により証明したのだが，残念なことに，G が「池」を持つ場合は，池のひとつを左から
回って z に行く路を右から回って z に行く路に変型していく手段を持たない（長方形が
池を囲んでしまうことを避けられない）．

そこで，もう一段階の工夫が必要になる．

14.3 「池」の処理

次の例を見れば，「池」を処理して行く一般論はわかると思う．なお，TEXの xymatrix

で簡易な図を作った都合により，折れ線で囲まれた領域になっているが，手書きで書くな
らば，曲線にしておいた方が，一般的な雰囲気になる．

２つの「池」を持つ領域G とその境界 ∂G を考える．

γ0 = ∂G ·

��

·oo

· // ·

��

· // ·

��
·

OO

·oo ·

OO

·oo

· //

G

·

OO
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下図の積分路 γ1 = γ11 + γ12 + γ13 + γ14 は，「池を持たない領域」を囲むので，線積分の値
は零．積分路 γ1 を最初の積分路に付け加えても線積分の値は変わらない：

γ0 + γ1 ·

��

· γ13
// ·
γ14
��

·oo

· // ·

��

·
γ12

OO

// ·
γ11oo

��
·

OO

·oo ·

OO

·oo

· // ·

OO

γ11 と γ13 は γ の一部と打ち消し合う：

γ0 + γ1 ·

��

·oo ·
γ14
��

·oo

· // ·

��

·
γ12

OO

·

��
·

OO

·oo ·

OO

·oo

· //

G1

·

OO

γ + γ1 の囲む領域をG1 とすると，G1 の「池」の個数は１個減り，かつ，境界での線積
分の値は変わっていない．

以上の「手術」で，線積分の値を変えることなしに，「池」を１個解消することが出来
た．一般に「池」が n 個ある場合には，このような「手術」を n 回行うことにより，池
のない領域での Cauchy の定理に帰着させることが出来，証明を終える．

これで，Cauchy の積分定理の証明を終えるが，確かに，良い領域一般についての「手
術」をどのように勧めるかという一般的証明は記述していない．しかし，証明に曖昧な部
分を残していると言う訳ではなく，一般的な記述をしていないだけである．具体的に良い
領域が与えられたならば，それに含まれる「池」をどのように処理して行けば良いかは，
簡単にわかるはずである．

複素関数論はここまでにして，次回からはFourier 級数の説明と，その収束についての
厳密な議論に移ることにする．

問題 19 複素関数論全般について，感想でも．
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15 フーリエ級数 第 13 回

15.1 理論を勉強する意味

フーリエ級数とフーリエ変換は，数学としては全く異なるものなのだが，似ている点も
多い．したがって，多くの場合，「フーリエ変換とフーリエ級数」という形で同時に扱う
のだが，ここではフーリエ級数のみに触れることにする．理由は，

理論的に正確な話をすると，フーリエ級数の収束はかなり難しい．フーリエ
変換の収束はもっと難しい

からである．フーリエ級数にしろ，フーリエ変換にしろ，実際の問題に応用する場合に
は，収束を理論的に確かめることはほとんどなく，

とにかく計算してみるという方針で結果（らしきもの）を導き，それが実際の
問題にうまく当てはまることを確かめる

という，結果オーライのやり方が多いのだと思う．それならば，実際の問題への応用を意
識しての厳密な理論を勉強する意義は，「どこが難しいのか」という感覚を得ることでは
ないだろうか．
という理由で，とりあえず理論的な扱いが比較的簡単なフーリエ級数に限定して，その
難しさに触れることを目的とする．

したがって，フーリエ級数やフーリエ変換を使えるようになる，ということは目的とし
ない．それを目指した良書は世の中に豊富にあるので，必要に応じて，それで勉強すれば
良いと思う．理論的な側面と違って，「使い方」の勉強は，忙しい中で切れ切れにだが時間
を作って勉強しても，なんとかなるものだ．一方，理論的な側面は，まとまった時間がと
れる学生時代でないと，手が出ない．

しかし，いくら時間の余裕が（比較的）ある学生時代といっても，「難しさを知るため
に理論を追求する」などという，ちょっと変わった行動は，興味がないことには無理だと
思う．そこで，理論は最終回に詰め込んで，今回は，フーリエ級数が登場する背景につい
ての雑談だけにしておく．

15.2 テーラー展開とフーリエ級数

テーラー展開

f(a+ h) = a0 + a0h
2 + a3h

3 + · · ·
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の収束は，わかりやすい．収束する理由は，h1, h2, h3, . . . は h が小さいときにはどんどん
小さくなって行くからであり，aj がよほど速く大きくならない限り，（h が小さいときに
は）各項 ajh

j は後の方の項になれば成るほど，小さく無視できるようになって行く．

一方，フーリエ展開は e±inx という項で展開するのだが，この項の絶対値は n がいくら
大きくなっても 1 のままで，小さくならない．それでは，フーリエ展開での「無視できる
ようになって行く」ことのトリックは何なのかというと，それは

定積分∫ 2π

0

f(x) sin(nx)dx

の値が，n が大きくなるにしたがって，0 に近づいて行く

ということである．f は，さすがにどんな関数でも良いというわけではないが，少なくと
も連続関数ならば何でも良い．なぜ 0 に近づくのかと言うと

1. sin(nx) は n が大きくなると非常に小さい区間で正の値と負の値を均等にとる．

2. したがって，その非常に小さな区間で f の値がそれ程変化しないならば，その区間
での積分の値は，正負で打ち消し合い 0 に近い値になる．

3. 仮にそれぞれの区間である程度の打ち消し合いの残りが生じていても，全体として
はそれらは打ち消し合い，さらに小さな値になる可能性が強い．

漠然とした説明で，これでは到底数学の議論とは言えないのだが，要点は「正負でほぼ打
ち消し合う」というだけのこと．次回に，f が連続関数の場合に厳密に証明するが，それ
は不等式の評価を厳密に辿っているというだけで，ここで述べた以上のアイデアが在るわ
けではない．

それでは，このような「振動数のやたら大きな振動による打ち消し合い」というトリッ
クが自然科学の世界に何時頃登場したのかというと，それは分からない．ニュートンの
時代には既に，「波としての光（つまり振動）」と「幾何光学での最短経路」との関連が問
題となっていたのだから，このトリックは，優れた頭脳の中でモニャモニャと蠢いていた
のかも知れないが，良くわからない．しかし，数学史の見解としては，このトリックに気
づいてフーリエ展開に至ったのではなく，フーリエ展開が登場してこのトリックが表に出
た，ということなのだと思う．

ところで，数学史という現実の世界での時系列を無視して，「応用数学」という授業の
なかでのフーリエ展開を登場させるとしたら，ローラン展開から
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複素平面の単位円を含む円環領域で正則な関数 f を

f(z) = · · ·+ a−3z
−3 + z−2z

−2 + a−1z
−1 + a0 + a1z + a2z

2 + a3z
3 + · · ·

とローラン展開して，単位円上で z = eit を代入

という流れから始めるのが理に適っている．f を単位円上の関数と考えると，この関数は
e±i·nt という関数に展開されていることになる．
f を，複素平面での単位円で定義された関数と考えるのではなく，実数の区間 [0, 2π] で

定義された関数 g(t) = f(eit) （したがって g(0) = g(2π)） と考える，もしくは，一般角
と同じ発想で t ∈ R で定義された周期 2π の周期関数と考えることにして，さらに，z の
実数部，虚数部を別々の関数と考えることにすれば，

cos(nt), n = 0, 1, 2, . . . , sin(nt), n = 1, 2, 3, . . .

で展開するということになる．
おそらく，これが最短の「フーリエ展開の理論」なのだろうが，歴史的には複素関数論
の完成よりもフーリエ級数の発見の方が早い．また，複素関数論経由だと正則関数である
ことを要求することになり，制限が強すぎる．

それでは，数学史に則った「フーリエ級数の発見」を紹介しよう．

15.3 熱方程式の２つの解

１次元の直線に熱が分布していて時間と共に変化していく様子を考える．１次元なので
針金，もしくは，それらしく砲身のような鉄棒でも考えておこう．
この変化は熱方程式

∂

∂t
u(x, t) = k

∂2

∂x2
u(x, t)

に従う． 熱方程式がなぜこのような形なのかという気分は

1. 点 x での熱は，温度の低いところに移動したがる

2. しかし，遠くの点に飛んでいくことは出来ないので，x の近くで温度の低い方に少
し移る

3. どの位の熱が移るかは，温度勾配

∂

∂x
u(x, t)

に比例する．
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4. こうして熱の流れが生じるのだが，その結果，xから熱が流れ出ると同時に，近くの
点から熱が流れ込んでくる．それを差し引いた x での熱の増減は，熱の流れの微分

∂

∂x

(
∂

∂x
u(x, t)

)
つまり，

∂2

∂x2
u(x, t)

に比例する．

5. その結果，x での温度は上昇，もしくは下降する．つまり，u(x, t) の時間微分

∂

∂t
u(x, t)

は

∂

∂t
u(x, t) = k

∂2

∂x2
u(x, t)

という熱方程式にしたがって変化する（k は比例定数．熱が絡む問題で軽々しく文
字 k を使うのは悪趣味なのだが，数学なので良いことにしよう）．

物理の専門家に叱られそうな表現なのだが，とにかく，熱方程式という名前の偏微分方
程式

∂u

∂t
= k

∂2u

∂x2

の解 u = u(x, t) を調べることにしよう．

15.3.1 最初の解

直接に代入して計算することにより

u =
u0√
4kt

e−
x2

4kt

が解であることがわかる．
これは納得の出来る形をしている．
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1. 時間が経過するにしたがって分散は大きくなり，熱の分布は正規分布にしたがって
拡がって行く．

2. なお，tを 0に戻していくと，uは x = 0に集中して無限大に近づく．つまり，t = 0

時点において１点 x = 0で発生した熱の拡散の様子をうまく表している．

なかなか気分の良い解となっている．ただし，t = 0.0000000001 時点でも無限に遠くまで
裾野が拡がっているので「点熱源からの拡散」とは言えないのだが，「如何なる意味でも
無視して良いほど小さな値」の拡がりなので，これは数学的な解なのだと割り切れば済む
ことであろう．

以上，満足できる解が得られていることになる．

しかし，この解は，熱力学の典型的状況

等温に保たれた境界が設定されている状況

には対応できない．つまり，

u(0, t) = u(1, t) での値は時間に依らず一定

という条件の下での解を探す場合である．

15.3.2 第２の解

この条件を満たす解は，意外に簡単に見つかる：

u(x, t) = ae−bt sin(cx) + d

と置くと

∂

∂t
u(x, t) = −bu(x, t)

∂2

∂x2
= −(−c)2u(x, t)

となる．したがって

b = kc2

とすれば，u = u(x, t) は熱方程式

∂u

∂t
= k

∂2u

∂x2
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を満たす．さらに，c = nπ ならば u(0, t) = u(1, t) = d なので，d の値を調整すれば「端
点で等温」という「等温」の値とすることが出来るので，端点での条件は

u(0, t) = u(1, t) = 0

と考えて，解として

u(x, t) = ae−kn
2t sin(nπx) n = 0, 1, 2, 3, . . . (61)

を得る．

こうして，第２のタイプの解，つまり x = 0, 1 で u(x, t) = 0 という境界条件を課せら
れた上での解が無限個見つかったのだが，（おそらくフーリエが考えていた）現実の問題
では，

t = 0 においての温度分布（もちろん，端点では 0）が与えられている

という初期条件も満たすことが要求される．

式 (61) は，t = 0 で

u(x, 0) = a sin(nπx) n = 0, 1, 2, 3, . . .

となるのだが，要求されている解は与えられた関数 f(x), ただし f(0) = f(1) = 0， に対
して

u(x, 0) = f(x)

となる解 u(x, t) なのである．

ここからがフーリエの大胆な発想なのだが，

無限個の解が見つかっているのだから，自由に選べる係数 a の値を n 毎に変
えて an として

f(x) =
∞∑
n=1

an sin(nπx)

となるように調整してやれば良い

ということなのだが，全くもって大胆極まりない．
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15.3.3 フーリエ級数

なお，熱の伝搬問題の設定から u(0, t) = u(1, t) = 0 となることを要求し，初期条件を
与える f(x) も f(0) = f(1) = 0 を満たすとしたのだが，この条件を緩めて，f(x), u(x, t)
に f(0) = f(1), u(0, t) = u(1, t) であることのみを要求する場合には（これがフーリエ展
開の設定になる）

f(x) =
∞∑
n=0

an cos(2πnx) +
∞∑
n=1

bn sin(2πnx) (62)

となるように a0, a1, a2, . . ., b1, b2, b3, . . . を選ぶことができるか，という問題になる．

また，三角関数が絡んでいる以上，区間 [0, 1] とするよりは区間 [−π, π] で考える方が
式が簡単になるということもあって，

f(x) =
1

2
a0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)] (63)

という形の展開とすることもある．この場合，1
2
a0 は cos(0 · x) の係数に対応する．1

2
が

付いている理由は，この後に述べる an を求める式の美観のため．

f(x) がどのような条件を満たしていれば，(62), (63) が成り立つような係数 an, bn が存
在するのかという問題は難しいのだが（次回に概要を述べる），

このような等式が成立しているならば，an, bn はどのような式で求められるか

という問題は（積分と極限の順序交換可能性を問題にしなければ）簡単であり，等式∫ π

−π
cosmx cosnx =

{
π m = n

0 m ̸= n∫ π

−π
sinmx sinnx =

{
π m = n

0 m ̸= n∫ π

−π
cosmx sinnx = 0
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から，∫ π

−π
cosmxf(x)dx =

∫ π

−π
cosmx · 1

2
a0dx+

∞∑
n=1

an

∫ π

−π
cosmx cosnxdx

+
∞∑
n=1

bn

∫ π

−π
cosmx sinnxdx

=

∫ π

−π
cosmx · 1

2
a0dx+

∞∑
n=1

an

∫ π

−π
cosmx cosnxdx

=

{
a0π m = 0

amπ m ≥ 1

となるので，

am =
1

π

∫ π

−π
cosmxf(x)dx m = 0, 1, 2, 3, . . . .

また，

bm =
1

π

∫ π

−π
sinmxf(x)dx m = 1, 2, 3, . . . .

したがって，計算をするというだけならば，後は，なるべく多くの例に触れて楽しむと
いうことなのだが，それは実用的な良書が数多くあるので，それらに任せることにする．

ただし，フーリエ級数（式 (63) の右辺），フーリエ展開（式 (63)）は，区間 [−π, π] の
両端で等しい値をとる関数についてのもの，もしくは周期 2π をもつ関数についてのもの
であり，例えば f(x) = x のような関数については，端点で不連続な関数とみなす必要が
ある．そして，フーリエ展開の収束の問題は，不連続点の近くでは，かなり厄介である．
このような危なっかしい側面もあるので，フーリエ展開の難しさについても触れておくべ
きだと思うので，次回はそのような困難な部分を紹介する．

せっかく複素関数を扱ってきたのだがら，フーリエ級数も三角関数というちょっと面倒
な関数よりも，指数関数として扱う．理屈は簡単で，オイラーの等式により

cke
ikπt + c−ke

−ikπt = (ck + c−k) cos(kπt) + i(ck − c−k) sin(kπt)

と書き換えるだけのこと．
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問題 20 最初に区間 [0, 1] で考えていた関数 sinx は，式 (63) の形だと f(x) = sin(πx) に
対応する．f(x) = sin(πx) を (63) の形に展開せよ（展開できると仮定して係数 a0, an, bn
を求める）．
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16 フーリエ級数の理論 第 14 回

16.1 直交関数系

16.1.1 周期関数

ここでは，実変数の複素数値関数を考える．

f が，条件

f(x+ c) = f(x) (x ∈ R)

を満たすとき，f は周期 (period) c の周期関数 (periodic function)であるいう．

f が周期 c の周期関数ならば，f は周期±nc の周期関数でもあり，特に c < 0が周期な
らば，|c| (> 0) も周期である．

周期関数については，とりあえずこれで十分である．これ以上踏み込むと，意外に紛ら
わしい．一応，Remark として触れておくが，読まなくても困ることはない．

Remark.

f が周期 c （ただし c > 0）の周期関数となる最小の正数 c が存在するならば，それを
f の最小周期という．f が定値関数の場合，すべての実数 c に対して c は f の周期となる
ので，最小周期は存在しない．ただし，この場合の最小周期は 0 と定義しても良い．

Remark. ディリクレ関数

f(x) = lim
n→∞

{
lim
m→∞

cos2m(2πn!x)
}
=

{
1 x ∈ Q
0 x ̸∈ Q

は，任意の c ∈ Q に対して， x ∈ Q ⇐⇒ x+ c ∈ Q であることから周期 c の周期関数で
ある．したがって，最小周期は存在しない．なお，無理数 c ̸∈ Q は周期にはならない．

Remark. 最小周期のみを周期と言う定義を採用する方が良い場合もあるのだが，フーリ
エ展開のような「円周上の関数」を背景とする場面では，この定義は避けた方が良い．

Remark. 独立変数は実数としているので，最小周期という考え方も意味があるのだが，
独立変数が複素数の場合は２重周期関数（楕円関数）というものも登場し，周期について
の考察はさらに慎重に行うことが必要になる．
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16.1.2 周期関数の積分

周期 c の周期関数 f の積分について，次の等式が成り立つ．f が

任意の閉区間で積分可能

という程度の「良い関数」であることは，仮定している．∫ b

a

f(x)dx =

∫ b+c

a+c

f(x)dx

これは，右辺を x = u+ c と置換積分して周期性を用いれば明らかである．また，この等
式を k 回用いれば，∫ b

a

f(x)dx =

∫ b+kc

a+kc

f(x)dx

であることもわかる．
上の等式では a, b は任意であったが，b = a+ c の形に限定すると，等式∫ a+c

a

f(x)dx =

∫ c

0

f(x)dx

を導くことができる．そのためには，まず，a ≤ kc < a+ c を満たす k をとり（このよう
な k は一意に存在する）∫ a+c

a

f(x)dx =

∫ kc

a

f(x)dx+

∫ a+c

kc

f(x)dx

=

∫ kc+c

a+c

f(x)dx+

∫ a+c

kc

f(x)dx

=

∫ c+kc

kc

f(x)dx

=

∫ c

0

f(x)dx

とすればよい．
f が周期 c の周期関数であれば，微分について

{f(x+ a)}′ = f ′(x+ a)

という等式が成り立つことから（a は周期 c に限らず任意の実数），f ′ も周期 c の周期関
数である．
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しかし，f が周期関数であっても，f の原始関数が周期関数になるとは限らない．これ
は，F (x) =

∫ x
0
f(t)dt とおくとき，

F (0) = 0, F (c) =

∫ c

0

f(t)dt

であることから明らかである．ただし，
∫ c
0
f(t)dt = 0 であるときは，f の原始関数はす

べて周期 c の周期関数になる：

F (x+ c) =

∫ x+c

0

f(t)dt

=

∫ x

0

f(t)dt+

∫ x+c

x

f(t)dt

= F (x) +

∫ c

0

f(t)dt

= F (x) + 0 = F (x)

よって，f の原始関数（F (x) +定数 の形の関数）は，周期 c の周期関数である．

16.1.3 直交関数系

有限次元線形空間のベクトル −→x = (x1, x2, . . . , xn) を，
−→x = (x(1), x(2), . . . , x(n)) と

書いてみると，ベクトルを

添え字集合 {1, 2, . . . , n} からの写像 j 7→ x(j)

と見なす発想が生まれる．それを一般化すれば，自然数の集合 {1, 2, 3, . . .} からの写像
j 7→ x(j)もベクトルと見なすことができ，さらに一般に，実数の集合Rからの写像 t 7→ x(t)

もベクトルと見なすことができる．つまり，記号を書き換えれば，関数 f : x 7→ f(x) は
実数全体という添え字集合をもつベクトルと見なすことができる．完全に一般化するなら
ば，任意の集合 J について，それを「添え字集合」と考えて，J 上の実数値，もしくは
複素数値（一般には可換体に値をとる）関数を，ベクトルと考えることができる．
これから，実数の区間 [a, b]，もしくはR 全体からの複素数値関数をベクトルと考えて，
線形空間からの類似を辿る．厳密な議論であることは要求せずに，とにかく計算してみ
よう．
有限次元線形空間Rn に定義される標準的内積は

⟨−→x , −→y ⟩ =
n∑
j=1

x(j)∗y(j)

(
=

n∑
j=1

x∗jyj

)
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であった．

Remark. 複素線形空間の内積としは，

⟨−→x , −→y ⟩ =
n∑
j=1

x(j)y(j)∗

と定める方が「標準的」かもしれないが，ここでは −→x の方に複素共役をつける定義を採
用する．

添え字集合がN，もしくは Z の場合は

⟨−→x , −→y ⟩ =
∞∑
j=1

x(j)∗y(j), もしくは ⟨−→x , −→y ⟩ =
∞∑

j=−∞

x(j)∗y(j)

とすれば，内積の概念を一般化できる（ただし，上の無限和が収束することを保証する条
件を，「ベクトル」に課す必要がある）．
添え字集合が実数の区間 [a, b] となると，無限和であっても和の形で一般化することは
不可能であり，積分の形で

⟨f, g⟩ =
∫ b

a

f(t)∗g(t) dt

として「内積」を一般化することになる．この場合も，積分が定義されることを保証する
条件，つまり，関数 f, g がある程度「良い関数」であることを前提としなければならな
い．ただし，ここでの「良い関数」という条件は，極めて緩い条件であり，よほど変な関
数を考えない限り，閉区間での積分は定義されるので，あまり気にすることはない．
つぎに，n ∈ Z に対して，区間 [0, 1] 上の複素数値関数Φn を

Φn(t) = e2πi nt

と定め，内積 ⟨Φn,Φm⟩ を計算してみよう：

⟨Φn,Φm⟩ =

∫ 1

0

Φn(t)
∗Φm(t) dt

=

∫ 1

0

e−2πi nte2πimt dt =

∫ 1

0

e2πi (m−n)t dt

=


[
e2πi (m−n)t

2πi (m−n)

]1
0
= 0 m ̸= n∫ 1

0
1dt = 1 m = n
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つまり，

⟨Φn,Φm⟩ = δnm =

{
0 m ̸= n

1 m = n

であり，

. . . ,Φ−2,Φ−1,Φ0,Φ1,Φ2, . . .

は「互いに直交し長さが 1」という条件を満たし「正規直交系」となる．

Remark. δmn は「クロネッカーのデルタ」と呼ばれる記号であり，定義は

δmn =

{
1 m = n

0 n ̸= n

である．

それでは，区間 [0, 1] 上の関数 f が，この「正規直交系」の「線形結合」として

f(x) =
∞∑

m=−∞

cmΦm(x)

と表されているとしてみよう．このとき，

⟨Φn, f⟩ = ⟨Φn,
∞∑

m=−∞

cmΦm⟩

=
∞∑

m=−∞

cm⟨Φn,Φm⟩ = cn

となるので，

cn =

∫ 1

0

e−2πi ntf(t) dt (= ⟨Φn, f⟩)

であることがわかる．問題は，

どのような関数 f が，「正規直交系の線形結合」で表されるのか

ということである．
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16.1.4 問題の設定

以上，有限次元線形空間との類似から話を進めてきたのだが，これはあくまでも類似で
ある．そもそも，線形空間での議論では，最初に線形空間が与えられ，そこから内積を定
義し，基底を選び・・・・・・と展開するのであり，最初に線形空間を確立させないことには，
話が進まない．しかし，これからの流れはその逆であり，最初に正規直交基底に相当する
関数の候補

Φn(x) = e2πi nx, n ∈ Z

が与えられていて，そこから，どのような線形空間（に相当する関数の集合）を選べばよ
いのか，という問題に取り組むことになる．

線形空間との類似から離れて，正確に問題を設定する．ただし，対象とする関数につい
ての条件は，後から定める．

問題（フーリエ級数の収束条件）　R で定義された周期 1 の周期関数 f で，区間 [0, 1]で
の積分が適切に定義されるという条件（Ａ）（これは極めて弱い条件である）を満たすも
のに対して，

f (̂n) =

∫ 1

0

f(t)e−2πi nt dt (64)

とおく．また，

sN(x) =
N∑

n=−N

f (̂n)e2πi nx (65)

とおく．このとき， lim
N→∞

sN(x) が収束して

フーリエ級数の収束条件： f(x) = lim
N→∞

sN(x) (66)

を満たすためには，f はどのような条件を要請すれば良いか．

Remark. R で定義された周期 1 の周期関数 f ではなく，区間 [0, 1] の関数 f についての
展開とすることもできるが，その場合の区間 [0, 1] の意味は，端点 0 と 1 を同一視した円
周（もしくはR/Z）である．したがって，f についての条件も，端点で一致するように定
める必要があり，それならば最初から周期関数を考えた方が簡潔なのである．

Remark. フーリエ展開の場合は，条件（Ａ）は形式的に一応要請しておくという程度の
弱い条件だが，フーリエ変換の場合には，無限区間での積分を考えることになるので，本
質的な条件になる．
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f が連続関数であると仮定しておけば，積分の存在についての条件（Ａ）は満たされる．
フーリエ級数の理論では不連続点を含む関数も考えることになるのだが，最初から話を複
雑にするべきではないので，とりあえず，f は連続であると仮定しておくことにする．

繰り返しになるが，ここでは数学の教科書での流れ

ある条件を満たす関数の集合を与えておいて，それらの関数についてフーリ
エ級数が収束することを証明する

という流れではなく，

フーリエ級数の収束条件を満たすためには，関数にどのような条件を要請す
れば良いかを調べる

という方針を選んでいる．それでは，計算を進めて，必要な条件を調べていこう．

Remark. フーリエ解析の教科書では，f(x) = x のような周期関数でない関数のフーリ
エ展開が最初から例として取り上げられることがあるが，これは不連続点をもつ関数の
フーリエ展開であり，理論的には少しやっかいである．連続関数の場合を最初にきちんと
理解してから，それを基に不連続点の解析を進めるべきである．

16.2 ディリクレ核

まず，問題の核心が明らかになるところまで，計算を進める．計算の最初の部分は，等
比級数の計算に過ぎない：

sN(x) =
N∑

n=−N

f (̂n)e2πi nx

=
N∑

n=−N

{∫ 1

0

f(t)e−2πi nt dt

}
e2πi nx

=

∫ 1

0

f(t)

{
N∑

n=−N

e2πi n(x−t)

}
dt

となるが，

N∑
n=−N

e2πi (x−t)n
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は等比級数なのである．これを計算する．ただし，計算の途中の式を少し簡潔にするため
に，また，その重要性を考慮して，ディリクレ核という用語を導入する：

DN(x) =
N∑

n=−N

e2πi nx (67)

と定め，これをディリクレ核 (Dirichlet kernel) という．
したがって，

sN(x) =

∫ 1

0

f(t)DN(x− t)dt (68)

である．

ディリクレ核を等比級数として計算し，計算結果を，オイラーの公式

eix = cos x+ i sinx

e−ix = cos x− i sinx

から得られる，sinx, cos x の等式

cosx =
eix + e−ix

2

sinx =
eix − e−ix

2i

を用いて，特に sinx についての等式

sinx =
eix − e−ix

2i

を用いて，整理してみる．

1− e2ix =
e−ix − eix

e−ix
= −2i eix · e

ix − e−ix

2i
= −2i eix sin(x)

と変形することが，これからの計算の常套手段である．

DN(x) を

初項 e−2πiNx, 公比 e2πi x, 項数 2N + 1 の等比級数
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とみて計算すると，等比級数の和の公式により

DN(x) = e−2πiNx 1− (e2πi x)
2N+1

1− e2πi x

である．右辺を

sinx =
eix − e−ix

2i

を使える形に変形する：

DN(x) = e−2πiNx ·
(
1− e2πi (2N+1)x

)
· 1

1− e2πi x

= e−2πiNx · e
−πi (2N+1)x − eπi (2N+1)x

e−πi (2N+1)x
· e−πi x

e−πi x − eπi x

= eπix(−2N+(2N+1)−1) · e
πi (2N+1)x − e−πi (2N+1)x

2i
· 2i

eπi x − e−πi x

=
sin(π(2N + 1)x)

sin(πx)

となる．以上より，

DN(x) =
sin(π(2N + 1)x)

sin(πx)
(69)

であり，

sN(x) =

∫ 1

0

f(t)DN(x− t)dt

=

∫ 1

0

f(t)
sin(π(2N + 1)(x− t))

sin(π(x− t))
dt

となるので，∫ 1

0

f(t)
sin(π(2N + 1)(x− t))

sin(π(x− t))
dt −→ f(x) (N → ∞)

となるために f が満たすべき条件を求めれば良い，ということなのだが，難しいのは，こ
こからである．

ディリクレ核DN(x) は，N → ∞ のときの挙動がかなり “怪しげな”関数なのである．
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まず，N を固定して，x→ 0 としてみると

DN(x) =
sin(π(2N + 1)x)

sin(πx)

=
sin(π(2N + 1)x

π(2N + 1)x
· x

sin(πx)
· π(2N + 1) (70)

なので，

DN(x) → π(2N + 1) (x→ 0) (71)

であり，x = 0 での発散を心配する必要はない。しかし，大きなN に対して π(2N + 1)

は大きな値となるので，

D1(x), D2(x), D3(x), . . .

は一様に有界な関数族ではない．「有界な関数族」という要請は，定積分の収束の議論を
するときに，特にその収束の速さを議論するときに，ものごとを簡単にしてくれる必須の
条件であり，これが満たされない場合，いろいろと危険な振る舞いを心配しなければなら
なくなる。
また，ディリクレ核の積分（これは f(x) として恒等的に 1 の関数を選んだ場合に相当
する）は収束するのだが，これが収束する理由は正負の打ち消しのためであって，絶対値
の積分

lim
N→∞

∫ 1

0

|DN(x)|dx

はN → ∞ で発散してしまう．そのため，通常の積分の「収束定理」は使いづらい．

16.2.1 補題Ｂ

正負の打ち消しによる収束を主張する定理を「補題Ｂ」として述べておく．ただし，こ
の補題には「関数 f が条件（Ｂ）を満たすならば」という前提が必要になる．実は条件
（Ｂ）は極めて緩やかな条件で良いのだが，とりあえず，ここでは「f は連続である」と
いうことにしておく．

補題Ｂ [0, 1] 上で定義された関数 f が条件（Ｂ）を満たすならば，

lim
n→∞

∫ 1

0

f(x) sin(πnx) dx = 0
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である．

条件（Ｂ）を「f は連続関数」とした場合の証明を，後で述べる．

ここからは，この補題が使える形に変形する，という方針で計算を進める．

16.2.2 基本的な変形

sN(x) についての等式

sN(x) =

∫ 1

0

f(t)DN(x− t) dt

を，もう少し評価しやすい形に変形しておく．その前に，

DN(x) =
sin(π(2N + 1)x)

sin(πx)

は，2N + 1 が奇数であることにより，周期 1 の周期関数であることに注意しておく．し
たがって，t 7→ DN(x − t) も同じ周期の周期関数であり，f(t) についても同じなので，
f(t)DN(x− t) は周期 1 の周期関数である．定積分の変数を x− t = u として置換積分し
てから，周期性を用いることにより，

sN(x) =

∫ 1

0

f(t)DN(x− t) dt

=

∫ x−1

x

f(x− u)DN(u) · (−1) du

=

∫ x

−1+x

f(x− u)DN(u) du

=

∫ 0

−1

f(x− u)DN(u) du

=

∫ 1

0

f(x− u)DN(u) du

であり，

sN(x) =

∫ 1

0

f(x− t)DN(t) dt
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となる．この形でも良いのだが，DN(t) の分母が 0 になる t = 0, 1 が端点になるのは，な
にかと扱いづらいので，もう一度，周期性を用いて

sN(x) =

∫ 1
2

− 1
2

f(x− t)DN(t) dt

としておき，t = 0 を中心に，次のように変形する．x は，固定して考えるので，x0 と書
くことにする．

sN(x0) =

∫ 1
2

− 1
2

f(x0 − t)DN(t) dt

=

∫ 1
2

− 1
2

{f(x0 − t)− f(x0)}
sin(π(2N + 1)t)

sin(πt)
dt+ f(x0)

∫ 1
2

− 1
2

sin(π(2N + 1)t)

sin(πt)
dt

=

∫ 1
2

− 1
2

{
1

π
· f(x0 − t)− f(x0)

t
· πt

sin(πt)

}
· sin(π(2N + 1)t) dt · · · 第１項

+ f(x0)

∫ 1
2

− 1
2

{
πt

sin(πt)
− 1

πt

}
· sin(π(2N + 1)t) dt · · · 第２項

+ f(x0)

∫ 1
2

− 1
2

sin(π(2N + 1)t)

πt
dt · · · 第３項

第３項は，これから直接計算する．
第２項は，まず，中括弧の中身が連続関数になることを示し，補題Ｂを用いる．
第１項は，基本的には，中括弧の中身が連続関数になるように f の条件を設定し，そ
れから補題Ｂを用いる．やっかいなのは，この第１項である．

16.2.3 第３項

第３項は，π(2N + 1)t = u と変数変換すると，

f(x0)

∫ 1
2

− 1
2

sin(π(2N + 1)t)

πt
dt = f(x0)

∫ π(2N+1)
2

−π(2N+1)
2

sin(u)

πu
du

となるので，複素関数論の演習で頻出の等式∫ ∞

−∞

sinx

x
dx = π

を用いれば，

第３項→ f(x0), N → ∞
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であることがわかる．
この結果を前提にしたくない場合は，部分積分をして

lim
M→∞

∫ M

−M

sinx

x
dx = lim

M→∞

[
− cosx

x

]M
−M

− lim
M→∞

∫ M

−M

cosx

x2
dx

= −
∫ ∞

−∞

cosx

x2
dx

としてから，広義積分−
∫ ∞

−∞

cosx

x2
dx の収束を示し，その値を γ とおいておく．この場

合，第３項は

γ

π
f(x0)

に収束することになるが，γ の値が関数 f には依存しないことを利用すると，第１項，第
２項の評価が終わった後で，関数 f をうまく選んで γ = π であることを示すことができる．

16.2.4 第２項

中括弧の中身が，連続関数であることを確認する．簡単な方法は，テーラー展開をする
ことである：

πt
sin(πt)

− 1

πt
=
πt− sin(πt)

(πt)2
· πt

sin(πt)

となるので，テーラー展開の形の等式

x− sinx

x2
=
x−

(
x− x3

3!
+ x5

5!
− · · ·

)
x2

=
x

3!
− x3

5!
+
x5

7!
+ · · ·

sinx

x
= 1− x2

3!
+
x4

5!
−

により，

πt− sin(πt)

(πt)2
· πt

sin(πt)

はC1 級の関数（実際には解析的関数）であることがわかり，補題Ｂが適用できる．補題
Ｂにより，第２項は 0 に収束する．
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16.2.5 第１項

第１項を処理するためには，関数 f(x) に対して「積分がうまくできる」という以上の
追加の条件（Ｃ）を仮定する必要がある．
これには大きく分けると２通りのアプローチがあり，ひとつは微分可能性を仮定するこ
とであり，もう一つは「有界変動」という条件を仮定することである．ここでは，最も簡
単な，微分可能性を仮定するアプローチのみ紹介する．
f は微分可能であるとする．このとき，第１項∫ 1

2

− 1
2

{
1

π
· f(x0 − t)− f(x0)

t
· πt

sin(πt)

}
· sin(π(2N + 1)t) dt

に現れる

f(x0 − t)− f(x0)

t

は，t = 0 における値を f ′(t) と定めて区間 [−1
2
, 1
2
] における連続関数と見なすことができ

る．また，

πt

sin(πt)

も，同様に t = 0 での値を 1 と定めて連続関数と見なすことができるので，補題Ｂを適用
できることになる．よって，第１項はN → ∞ で 0 に収束する．

以上，第１項が 0 に収束することも示せたので，limN→∞ sN(x0) = f(x0) であることの
証明は終わりなのだが，

1. この収束が x0 にどのように依存するか（例えば一様収束になるのか？）

2. 不連続点がある場合，x0 がその不連続点に近づくと収束性はどの程度悪くなるのか

といった問題を解決するためには，第１項をもう少し精密に評価する必要が生じる．
フーリエ級数の教科書には色々なスタイルがあるが，ディリクレ核まで踏み込んで収束
の議論をする場合には，（乱暴な分類だが）

• f に微分可能性を要求し

– 収束（各点収束）することのみを示して終わりにする

– 収束性についてもう少し踏み込んだ議論をする
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– 有限個の不連続点がある場合について，不連続点での値を考察する

• 微分可能性は要求せずに，有界変動関数ということを要求する

と分類して良さそうである．さらに本格的な議論をするならば，条件（Ａ）まで絡めて，
「測度論的な議論」が登場することになるのだが，多くの本は，フーリエ級数の議論は程々
に留めて，それよりもずって厄介なフーリエ変換に進むことになる．

16.3 不連続点がある場合の例

不連続点を持つ場合の最も簡単な例

f(x) =

{
0 0 ≤ x < 1

2

1 1
2
≤ x < 1

について，考えてみよう．この関数は 0 と 1/2（と 1）で不連続点である（区間 [0, 1] の
外では周期関数になるように延長する）．
ε > 0 を正の実数として，x0 = 1

2
+ ε と定める．ε を零に近づけていくときの x0 にお

ける収束の様子を調べたい．第１項の収束の様子を調べる．
区間 [−1

2
, 1
2
] に変数変換した形では，x0 = ε であり，f は

f(x) =

{
0 −1

2
≤ x < 0

1 0 ≤ x < 1
2

と表される．∫ 1
2

− 1
2

{
1

π
· f(x0 − t)− f(x0)

t
· πt

sin(πt)

}
· sin(π(2N + 1)t) dt

=

∫ 1
2

ε

1

π
· 0− 1

t
· πt

sin(πt)
· sin(π(2N + 1)t) dt

= −(2N + 1)

∫ 1
2

ε

πt

sin(πt)
· sin(π(2N + 1)t)

π(2N + 1)t
dt

16.4 補題Ｂの証明

有界閉区間 [a, b] において，連続関数 g(x) が与えられているとする．n を正整数とし
て，定積分∫ b

a

g(x) sin(πnx)dx
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の値を評価し，これが n→ ∞ で 0 に収束することを示す．

Remark. 実は，連続であることを要請するのは，あまりにも強すぎる要求なのだが，そ
れではどこまで条件を弱くできるかというと，これは「測度論」の世界に踏み込むことに
なる．そこまで一般化せずに「有限個の不連続点を持つ」という程度なら，積分区間を分
けて考えればよいだけであり，一般化は容易である．

g(x) については，連続であるということ以外に「小さくなる」といった条件はなにも
仮定していない．sin(πnx) は，n が大きくなっても±1 の間を振動し，「小さくなる」と
いうことはない．したがって，定積分が 0 に収束するとしたら，考えられる理由は，n が
大きくなるとき

1. sin(πnx)が最小の周期をなす小さな区間 [2j
n
, 2j+2

n
]では，g(t)の値はあまり変化せず，

2. sin(πnx) が正の値をとる前半 [2j
n
, 2j+1

n
]と

3. 負の値をとる後半 [2j+1
n
, 2j+2

n
]で，

4. g(t) sin(πnx) はほとんど打ち消し合う

ということだけである．この「打ち消し合う」ということを評価に取り入れない限り，0

への収束を示すことは不可能である．

後は，この打ち消しを丁寧に不等式で評価していけば良い（「丁寧に」なので不等式の
評価は書くと長くなるのだが，実は単純作業である）．そこで，

次のように x0, x1, . . . , x2n に選ぶ：

1. 2K−2
n

< a ≤ 2K
n
を満たす整数 K と，2L

n
≤ b < 2L+2

n
を満たす整数 L を選び，

N = L−K とおく．

2. x0, x1, . . . , xN を

xℓ =
2K + ℓ

n
, ℓ = 0, 1, 2, . . . , 2N

と定める．

このとき，j = 0, 1, 2, . . . , N − 1 についての区間 [x2j, x2j+2] において，

1. x2j ≤ x ≤ x2j+1 では，sin(πnx) ≥ 0

2. x2j+1 ≤ x ≤ x2j+2 では，sin(πnx) ≤ 0
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である．
区間 [x2j, x2j+2] において

mj = min{g(x) | x2j ≤ x ≤ x2j+2 }
Mj = max{g(x) | x2j ≤ x ≤ x2j+2 }

とおくと，

1. 区間 [x2j, x2j+1] では

mj

∫ x2j+1

x2j

sin(πnx)dx ≤
∫ x2j+1

x2j

g(x) sin(πnx)dx ≤Mj

∫ x2j+1

x2j

sin(πnx)dx

2. 区間 [x2j+1, x2j+2] では

Mj

∫ x2j+2

x2j+1

sin(πnx)dx ≤
∫ x2j+2

x2j+1

g(x) sin(πnx)dx ≤ mj

∫ x2j+2

x2j+1

sin(πnx)dx

なので，

mj

∫ x2j+1

x2j

sin(πnx)dx+Mj

∫ x2j+2

x2j+1

sin(πnx)dx

≤
∫ x2j+2

x2j

g(x) sin(πnx)dx

≤ Mj

∫ x2j+1

x2j

sin(πnx)dx+mj

∫ x2j+2

x2j+1

sin(πnx)dx

となる．ここで，∫ x2j+2

x2j

sin(πnx)dx = 0

∫ x2j+1

x2j

sin(πnx)dx =

∫ 1
n

0

sin(πnx)dx =
2

πn

であることを考慮すると，

mj

∫ x2j+1

x2j

sin(πnx)dx+Mj

∫ x2j+2

x2j+1

sin(πnx)dx

= Mj

∫ x2j+1

x2j

sin(πnx)dx+Mj

∫ x2j+2

x2j+1

sin(πnx)dx+ (mj −Mj)

∫ x2j+1

x2j

sin(πnx)dx

= Mj

∫ x2j+2

x2j

sin(πnx)dx+ (mj −Mj)

∫ x2j+1

x2j

sin(πnx)dx

= −(Mj −mj)
2

πn
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Mj

∫ x2j+1

x2j

sin(πnx)dx+mj

∫ x2j+2

x2j+1

sin(πnx)dx

= mj

∫ x2j+1

x2j

sin(πnx)dx+mj

∫ x2j+2

x2j+1

sin(πnx)dx+ (Mj −mj)

∫ x2j+1

x2j

sin(πnx)dx

= mj

∫ x2j+2

x2j

sin(πnx)dx+ (Mj −mj)

∫ x2j+1

x2j

sin(πnx)dx

= (Mj −mj)
2

πn

なので，

−(Mj −mj)
2

πn
≤
∫ x2j+2

x2j

g(x) sin(πnx)dx ≤ (Mj −mj)
2

πn
· · · · · · (∗)

となることがわかる．後は，g が [a, b] で連続であることを用いて評価するだけの作業で
ある．

Remark. この不等式を導く過程では，g が連続であるという条件は，各区間 [x2j, x2j+2]

において

mj ≤ g(x) ≤Mj (x ∈ [x2j, x2j+2])

を満たすmj, Mj の存在を保証するためにしか使われていない．したがって，g が連続で
なくても，例えば [a, b] で有界であることを仮定しておくならば，この不等式を導くこと
ができる．

ε > 0 が与えられたとする．ε− δ 論法の常套手段として，この ε から別の正数 ε′ を定
めるのだが，どのように定めるかは，後で決めることにする．

1. g は有界閉区間 [a, b] の連続関数なので，

(a) |g| も連続であり [a, b] において最大値をもつので，それをM とすると

|g(x)| ≤M (x ∈ [a, b])

(b) g は [a, b] において一様連続になるので，δ > 0 を十分小さく選ぶと，

|x− x′| < δ となる任意の x, x′ ∈ [a, b] に対して |g(x)− g(x′)| < ε′

となる．
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2. n0 を，

M

n0

< ε′,
2

n0

< δ

を満たすように選ぶ．

3. このとき，n ≥ n0 に対して

(a) 区間 [a, 2K
n
] と [2L

n
, b] については，∣∣∣∣∣

∫ 2K
n

a

g(x) sin(πnx)dx

∣∣∣∣∣ ≤
∫ 2K

n

2K−2
n

|g(x)|dx < 2

n
M < 2ε′

∣∣∣∣∣
∫ b

2L
n

g(x) sin(πnx)dx

∣∣∣∣∣ ≤
∫ 2L+2

n

2L
n

|g(x)|dx < 2

n
M < 2ε′

(b) [x2j, x2j+2], j = 0, 1, . . . , N − 1, については，Mj −mj < ε′ となることから，
不等式 (∗) により，∣∣∣∣∣

∫ x2j+2

x2j

g(x) sin(πnx)dx

∣∣∣∣∣ < ε′
2

πn

となる．したがって，∣∣∣∣∫ b

a

g(x) sin(πnx)dx

∣∣∣∣ ≤

∣∣∣∣∣
∫ 2K

n

a

g(x) sin(πnx)dx

∣∣∣∣∣
+

N−1∑
j=0

∣∣∣∣∣
∫ x2j+2

x2j

g(x) sin(πnx)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

2L
n

g(x) sin(πnx)dx

∣∣∣∣∣
= 2ε′ +

N−1∑
j=0

2ε′

πn
+ 2ε′

= 4ε′ +N
2ε′

πn

である．また，

x2N − x0 =
2

n
N, x2N − x0 ≤ b− a
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なので，

N

n
<
b− a

2

であり∣∣∣∣∫ b

a

g(x) sin(πnx)dx

∣∣∣∣ < 4ε′ +
b− a

2
· 2ε

′

π
= (4 +

b− a

π
) ε′

となる．よって，最初に戻って，与えられた ε > 0 に対して

ε′ =
ε

4 + b−a
π

と定めておけば，不等式∣∣∣∣∫ b

a

g(x) sin(πnx)dx

∣∣∣∣ < ε (n ≥ n0)

を満たす n0 の存在が示されたことになり，補題（Ｂ）の証明を終える．

最後に課題についてだが，以下にいくつかの例を挙げたが，

フーリエ展開に関連した話題について wiki 等で調べて簡単なレポートにまと
める

ということを最後の課題とする．

問題 21 有界変動関数という言葉と，有界変動関数についてのフーリエ展開の定理につ
いて調べよ．

問題 22 フーリエ級数とフーリエ変換との関連について調べよ．

問題 23 ギブズ現象 (Gibbs phenomenon) について調べよ．

問題 24 フーリエ変換と不確定性原理との関連について調べよ．
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17 解答
問題 1 ［解］　 省略 □

問題 2 ［解］　 まず，

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

なので，x4 + x3 + x2 + x+ 1 を因数分解すれば良い。因数分解は「検討をつけて試して
みる」というやり方でも良いので，

x4 + x3 + x2 + x+ 1 = (x2 + ax+ 1)(x2 + bx+ 1)

を満たす a, b が存在するかを調べてみる。右辺を展開すると

x4 + (b+ a)x3 + (1 + ab+ 1)x2 + (a+ b)x+ 1

となるので，

a+ b = 1

ab = −1

となる a, b を求めれば良い。２次方程式

t2 − t− 1 = 0

を解いて，

a, b =
1±

√
5

2

□

問題 3 ［解］　 省略
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問題 4 ［解］　 それぞれ等比級数の和の公式でべき級数展開してから和をとる：

1

1− x
=

∞∑
k=0

xk

2

3− x
=

2

3
· 1

1− x
3

=
2

3

∞∑
k=1

xk

3k

=
∞∑
k=1

2

3k+1
xk

3

4− x
=

∞∑
k=1

3

4k+1
xk

なので，

1

1− x
+

2

3− x
+

3

4− x
=

∞∑
k=1

(
1 +

2

3k+1
+

3

4k+1

)
xk

問題 5 ［解］　 計算して加法定理で整理するだけなので，省略。

問題 6 ［解］　 ex のテーラー展開は（0! = 1 であることに注意），

ex = lim
m 7→∞

m∑
k=0

(
x4k

(4k)!
+

x4k+1

(4k + 1)!
+

x4k+2

(4k + 2)!
+

x4k+3

(4k + 3)!

)
であり，また，cosx, sin x については，

cos θ = lim
m7→∞

m∑
k=0

(
θ4k

(4k)!
− θ4k+2

(4k + 2)!

)
sin θ = lim

m7→∞

m∑
k=0

(
θ4k+1

(4k + 1)!
− θ4k+3

(4k + 3)!

)
である。
x に iθ を代入して整理することにより（i4k = 1 となることを使う），オイラーの公式

eiθ = cos θ + i sin θ が得られる：

eiθ = lim
m 7→∞

m∑
k=0

(
θ4k

(4k)!
+ i

θ4k+1

(4k + 1)!
− θ4k+2

(4k + 2)!
− i

θ4k+3

(4k + 3)!

)
= lim

m 7→∞

m∑
k=0

(
θ4k

(4k)!
− θ4k+2

(4k + 2)!

)
+i · lim

m7→∞

m∑
k=0

(
θ4k+1

(4k + 1)!
− θ4k+3

(4k + 3)!

)
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問題 7 ［解］　

1. u(x, y) = x2 − y2, v(x, y) = 2xy

∂u

∂x
= 2x,

∂v

∂x
= 2y,

∂u

∂y
= −2y,

∂v

∂y
= 2x

であり，コーシーリーマンの関係式を満たしている：

∂u

∂x
= 2x =

∂v

∂y
,

∂v

∂x
= 2y = −∂u

∂y

したがって，関数

f(z) = u(x, y) + i v(x, y) = (x2 − y2) + i · 2xy

は正則であり，

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
= 2x+ i · 2y = 2z

ただし，f(z) = z2 であることに気づけば，コーシーリーマンの関係式を使うまで
もなく，f ′(z) = 2z であることがわかる。

2. u(x, y) = x2 + y2, v(x, y) = 2xy

∂u

∂x
= 2x,

∂v

∂x
= 2y,

∂u

∂y
= 2y,

∂v

∂y
= 2x

であり，

∂v

∂x
= 2y ̸= −2y = −∂u

∂y

なのでコーシーリーマンの関係式を満たさず，正則ではない。「y = 0 のときどうな
のか」という点は微妙なので，無視して良い。「補充１」を読んだ人のみが考えれば
良いと思う。

3. u(x, y) = x, v(x, y) = −y
∂u

∂x
= 1,

∂v

∂x
= 0,

∂u

∂y
= 0,

∂v

∂y
= −1

であり，

∂u

∂x
= 1 ̸= −1 =

∂v

∂y

なのでコーシーリーマンの関係式を満たさず，正則ではない。
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4. f(z) = z = x− iy なので，u(x, y) = x, v(x, y) = −y であり，3. と同じ。正則では
ない。

5. u(x, y) = ex cos y, v(x, y) = ex sin y

∂u

∂x
= ex cos y,

∂v

∂x
= ex sin y,

∂u

∂y
= −ex sin y, ∂v

∂y
= ex cos y

なので，コーシーリーマンの関係式を満たす：

∂u

∂x
= ex cos y =

∂v

∂y
,

∂v

∂x
= ex sin y = −∂u

∂y

したがって，

ez = u(x, y) + i u(x, y) = ex (cos y + i sin y)

と定義すると，関数w = ez は正則であることがわかる。これは，「コーシーリーマンの関
係式を満たすならば正則」が試験問題以外で使われる数少ないケースの１つなのだが，ez

をテーラー展開で定義すれば，やはりコーシーリーマンの関係式は不要。

問題 8 ［解］　 f(φ(t)) = c(a+ ib1 + it) + c0, φ
′(t) = i なので，∫

φ

f(z)dz =

∫ b2−b1

0

f(φ(t))φ′(t)dt

=

∫ b2−b1

0

(
c(a+ ib1 + it) + c0

)
· i dt

=

∫ b2−b1

0

−ct+ i
(
c(a+ ib1) + c0

)
dt

=

[
−ct

2

2
+ i
(
c(a+ ib1) + c0

)
t

]b2−b1
0

= −c(b2 − b1)
2

2
+ i
(
c(a+ ib1) + c0

)
(b2 − b1)
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問題 9 ［解］　 f(φ(t)) = c(a+ ib2 − it) + c0, φ
′(t) = −i なので，∫

φ

f(z)dz =

∫ b2−b1

0

f(φ(t))φ′(t)dt

=

∫ b2−b1

0

(
c(a+ ib2 − it) + c0

)
· (−i) dt

=

∫ b2−b1

0

−ct− i
(
c(a+ ib2) + c0

)
dt

=

[
−ct

2

2
− i
(
c(a+ ib2) + c0

)
t

]b2−b1
0

=
−c(b2 − b1)

2

2
− i
(
c(a+ ib2) + c0

)
(b2 − b1)

□

問題 10 ［解］　

J+
a2

= −c(b2 − b1)
2

2
+ i
(
c(a2 + ib1) + c0

)
(b2 − b1)

J−
a1

=
−c(b2 − b1)

2

2
− i
(
c(a1 + ib2) + c0

)
(b2 − b1)

なので，

J+
a2
+ J−

a1
= ic(a2 − a1)(b2 − b1)

問題 11 ［解］　 例題 3 の結果と合わせて，

I+b1 + J+
a2
+ I−b2 + J−

a1
= 0

□

問題 12 ［解］　
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1. f(z) = z2, φ(t) = eit, 0 ≤ t ≤ 2π∫ 2π

0

(
eit
)2 · ieitdt = i

∫ 2π

0

(
eit
)3
dt

= i

[
e3it

3i

]2π
0

= 0

（ei·3t は周期 2π
3
の周期関数なので，t = 0 と t = 2π で等しい値をとる）。

2. f(z) = z2, φ(t) = eit, 0 ≤ t ≤ π∫ π

0

(
eit
)2 · ieitdt = i

[
e3it

3i

]π
0

= i
ei·3π − 1

3i

=
−1− 1

3
= −2

3

（ei·3π = ei·π = cos(π) + i sin(π) = −1 を用いた）

3. f(z) = zr, φ(t) = eit, 0 ≤ t ≤ 2π, r = 0, 1, 2, . . .∫ 2π

0

(
eit
)r · ieitdt = i

∫ 2π

0

(
ei·t
)r+1

dt

= i

[
ei·(r+1)t

i(r + 1)

]2π
0

= 0

4. f(z) = 5z3 + z + 1, φ(t) = eit, 0 ≤ t ≤ 2π∫
φ

(5z3 + z + 1)dz = 5

∫
φ

z3dz +

∫
φ

zdz +

∫
φ

1dz

= 5 · 0 + 0 + 0 = 0

5. f(z) = z−r, φ(t) = eit, 0 ≤ t ≤ 2π, r = 2, 3, 4, . . .∫ 2π

0

(
eit
)−r · ieitdt = i

∫ 2π

0

(
eit
)−r+1

dt

= i

[
ei(−r+1)t

i(−r + 1)

]2π
0

= 0
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（−r + 1 ̸= 0 なので，このように計算できる）。

6. f(z) = z−1, φ(t) = eit, 0 ≤ t ≤ 2π∫ 2π

0

(
eit
)−1 · ieit dt = i

∫ 2π

0

1 dt

= i [ t ]2π0

= 2πi

以上の結果をまとめると，∫ 2π

0

zr =

{
0 r ̸= −1

2πi r = −1

つまり，単位円に沿っての zr の線積分の値は，r ̸= −1 の場合を除いて 0 であり，
r = −1 のときは 2πi。

7. f(z) = z−1, φ(t) = e−it, 0 ≤ t ≤ 2π∫ 2π

0

(
e−it
)−1 ·

(
−ie−it

)
dt = −i

∫ 2π

0

1 dt

= −2πi

問題 14 ［解］　

f(z) =
3z2 + 2iz − 14i+ 3

(z2 + 1)(z − 7)

を部分分数展開すると，

f(z) =
1

z − i
− 1

z + i
+

3

z − 7

であり，線積分の経路はD5 の境界．z = 7 はD5 に含まれないので無視して良く，ε > 0

を十分小さくとって，∫
Dε(i)

1

z − i
dz +

∫
Dε(−i)

− 1

z + i
dz

を計算すれば良い．これらは，それぞれ 2πi, −2πi なので，線積分の値は 0. □
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Remark. 部分分数展開は

3z2 + 2iz − 14i+ 3

(z2 + 1)(z − 7)
=

a

z − i
+

b

z + i
+

c

z − 7

となる a, b, c を求めるために，方程式

a(z + i)(z − 7) + b(z − i)(z − 7) + c(z2 + 1) = 3z2 + 2iz − 14i+ 3

を解くのだが，ここで連立方程式と考えてしまうと，計算は煩雑である．それよりも，左
辺に i,−i, 7 を代入すると，未知数 a, b, c のうちの１つだけが残ることに着目して，まず
右辺 g(z) の値

g(i) = −2− 14i, g(−i) = 2− 14i, g(7) = 150

を計算しておき，

a · 2i(i− 7) = −2− 14i 　なので　 a = 1

b(−2i)(−i− 7) = 2− 14i 　なので　 b = −1

c(72 + 1) = 150 　なので　 c = 3

と求める方が簡単． □
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