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第1章 第１回

1.1 生保数理のガイダンス

1.1.1 理論の世界と現実の世界

理論としての保険数学

1. まず，保険数学の理論を押さえる

2. 現実の世界に翻訳する作業は，その後

3. この講座では，主に理論について述べる

理論と現実とのギャップ

1. ギャップは非常に大きい。慣性の法則と「地上の世界」での運動とのギャップ
に匹敵する

2. しかし，ニュートン力学の成功からも分かるように，理論と現実のギャップは，
理論の弱点とは限らない

3. ただし，ニュートン力学は，最初の時点で「天体の運動」という「地に足が付
いていない」世界で展開できたのだが，保険数学には，そのような便利な世界
は存在しない

ゲームの世界での保険数学

1. ギャップのなかでも，「等価」という関係が成立するという前提が，最大のギャップ

2. あまりにも深刻なギャップなので，非現実の世界での話として，理論を構築
する
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「お金」の単位は Gold とする。これは，Au ではなくゲームの世界
でのお金（のようなもの）の単位

したがって，マネーという危険な用語から離れることが可能

3. Gold は，時間の経過と共に自動的に増える（このことを，「等価」という関係
で言い換える）

4. これは，金利という（マネーの次に危険な）用語を使って解釈することもでき
るが，

5. この講座では，天下りで等価という関係を導入する

1.1.2 保険数学の２つの柱

等価と生命表

保険数学は，

1. 等価（という関係。いわゆる金利から決まる関係）

2. 確率（x 歳の人が t 年間生き延びる確率）

の２つの概念を大きな柱として構成される。

確率は，とりあえず，

「生命表」という表から決まる

と考えておくと良い。最初から微妙な問題を考えると混乱する。連合生命が登場す
ると，生命表だけでは片付かなくなるのだが，それは，その時になって考えること
にする。

等価という関係は，金利に関係する定数から決まり，以下の３つが基本用語：

1. 等価

2. 現在価値（現価）

3. 収支相等
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1.1.3 保険数学の３つの流れ

時間の扱い

保険数学に限らず，時間が絡むモデルは，時間 t をどのようなものとして扱うか
という点で，大きく２つに分かれる：

1. 時間を離散的なものとして扱う（離散モデル）

2. 連続的なものとして扱う（連続モデル）

それぞれのタイプで使用する数学の道具は，

1. 離散モデルでは，

(a) t = j での値 fj と t = j + 1 での値 fj+1の差 fj+1 − fj（差分）

(b) t = m,m+ 1,m+ 2, . . . , n での和
n∑

t=m

ft

2. 連続モデルでは，

(a) t の関数 f(t) の微分 d
dt
f(t)

(b) 積分
∫ n

m

f(t)dt（連続モデルでの
∑
には積分の記号

∫
が対応）

多くの分野では，離散モデルと連続モデルを並行して扱うことは少なく，そのど
ちらか一方しか用いない（例えば，物理学では大抵は連続モデル）。しかし，保険数
学では，その両者を用いるだけでなく，もう一つ，(k) モデルとでも呼びたいもの
が登場する：

1. 離散モデル：　 t = 0, 1, 2, . . .

2. (k) モデル： t = 0, 1
k
, 2
k
, . . .

3. 連続モデル： t は実数

したがって，教科書を書く場合，

1. ひとつのモデルでの流れを最後まで進んでから，他のモデルに移る

2. ３つのモデルのそれぞれについて説明しながら，流れを進む

というスタイルがあるわけだが，テキスト（生命保険数学（上巻）・（下巻））では，
後者のスタイルを選んでいる。
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(k) について

純粋に数学の立場から言うと，(k) モデルは，時間の単位を 1/k に変えた離散モ
デルに過ぎない。したがって，理論的には必要ないのだが，

1. 時間の単位は，多くの場合，１年間という意味を持ち，例えば k = 12 とした
1
12
は１ヶ月， 1

365
は１日，といった固有の意味をもつのだが，それらを

t = 1 という離散モデルの視点から見た，1/k という期間

と考えたいことが多い。

2. 特に，1/k での変化を「線形」という観点で捉えたいことが多い

3. (k) モデルでの値を，離散モデル（t = 0, 1, 2, . . . とするモデル）の値で近似す
る近似式を作っておくと，k → ∞ とすることにより，連続モデルでの値を求
めることが出来る。つまり，(k) モデルは，離散モデルと連続モデルを繋ぐ役
割を持つ。

テキストは，ひとつのテーマについて

1. t = 0, 1, 2, . . . の離散モデルで説明

2. (k) モデルに移り，また，近似式を導く

3. k → ∞ とすることにより，連続モデルに移る

という，３つの流れをジグザグに進む。

ここでの方針

「初めての保険数学」という意味では，t = 0, 1, 2, . . . に限定してしまうのも，ひ
とつの方針だと思う。自分で勉強する場合も，(k) があまりにも煩わしいならば，ま
た，微分や積分があまり好きでないならば，まず，t = 0, 1, 2, . . . で一通り勉強する
のも良いと思う。だが，ものによっては連続モデルの方が簡単なこともあるし，ま
た，この講座はそれほど時間が足りない訳ではないので，一応は３つの流れを並行
して進む。ただし，やはり (k) は記号が見苦しいので（式を読むだけで疲れる），先
に進むに従って，扱いは軽くなる予定。
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なお，「年金数理」は，ほぼ完全に t = 0, 1, 2, . . . の離散モデル。

1.1.4 理系優位と文系（経済学）優位

複式簿記？

保険数学と年金数理の理論に限定すると，圧倒的に理系が有利である。経済学に
関する素養は（もしくは，そう言った方面に対する感性は）必要がないだけでなく，
むしろ邪魔になる。

一方，「営業保険料の責任準備金」で「初期費用の償却」などというものが登場す
ると，これは理系泣かせ。

圧倒的な理系優位

生保数理の試験について言うと，

1. 圧倒的に理系優位（正確は，大学受験で数学の受験経験者が優位）

2. 数学そのものの力よりは，限られた時間で長い式の計算を間違えずやり遂げる
能力が必要

3. ただし，この能力は，急速に落ちる

試験対策には，過去問を解くなどのいわゆる試験対策の他に，

限られた時間（であると同時に，細切れの時間で勉強せざるを得なかっ
た人にとっては長い時間）で集中して，また，間違い（これは必ず発生
する）でパニックにならない能力

を取り戻す（もしくは，新たに身につける）対策が必要。
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1.2 等価の等式

1.2.1 等価

基礎的な定数

等式

v = (1 + i)−1

(
=

1

1 + i

)
v = 1− d

1 + i = eδ

を満たす実数 i, d, v, δ，ただし 0 ≤ i, 0 < v ≤ 1, 0 ≤ d < 1, 0 ≤ δ, が与えられてい
るとする。i, v, d, δ のうちの１つの値から，残りの３つの値は決まる。

† e は，大学入試問題で言うところの「自然対数の底」を表す。

Remark. i は利率，δ は利力，d は前払い利息としての利率を意味する。v, d, i の
間に成り立つ関係，例えば i = d

1−d
は，適当に代入計算をすることにより簡単に確

認できる。

(k) 型の定数

k = 1, 2, 3, . . . に依存して，i(k), d(k) を等式

1 +
i(k)

k
= (1 + i)

1
k (1.1)

1− d(k)

k
= (1− d)

1
k (1.2)

を満たす数値として定める。

簡単な近似式

i(k) と i の間の近似式について考える。
要点は，金利を意味する定数 i は比較的小さいと想定していることであり，
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iとか i(k) は 1に比べて小さいので，i2, (i(k))2 はさらに小さく，i3, (i(k))3

はさらにさらに小さい

ということ。1 + i =
(
1 + i(k)

k

)k
の右辺を２項定理で展開すると

1 + i = 1 +

(
k

1

)
i(k)

k
+

(
k

2

)(
i(k)

k

)2

+

(
k

3

)(
i(k)

k

)3

+ · · ·+
(

k

k − 1

)(
i(k)

k

)k−1

+

(
i(k)

k

)k

となるが，両辺共に第１項に比べて第２項以降は小さいので，それらを捨ててしま
うと，

1 ≒ 1

という近似式が得られるが，これは（そもそも等式であり）全く意味がない。次に，
両辺の第２項まで考慮して右辺第３項以降を捨ててしまうと，

1 + i ≒ 1 + k · i
(k)

k
= 1 + i(k)

となり，近似式

i ≒ i(k)

を得る。これは，i も i(k) も似たようなものという大らかな感性なのだが，普通はこ
れを近似式とは呼ばない。そこで，右辺第３項まで考慮すると（つまり，i(k) の３乗
以上の項は捨ててしまうと）

1 + i ≒ 1 + i(k) +
k(k − 1)

2
·
(
i(k)

k

)2

= 1 + i(k) +
k − 1

2k

(
i(k)
)2

となり，初めて意味のある近似式

i ≒ i(k) +
k − 1

2k

(
i(k)
)2

を得る（なお，テキストの近似式は，右辺を第４項まで考慮したもの）。

このようにして意味のある近似式を得たのだが，残念なことに，これは

i を i(k) で近似する近似式
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であり，i(k) という派生的な数値を基本的な数値 i で近似する形をしていない。そこ
で，i(k) を i で近似する近似式に変えたいので，まず，移項して

i(k) ≒ i− k − 1

2k

(
i(k)
)2

とするのだが，このままでは右辺に i(k) が入っているので近似式の形になっていな
い。そこで，右辺の i(k) にこの近似式（のようなもの）の右辺を代入して

i(k) ≒ i− k − 1

2k

(
i− k − 1

2k

(
i(k)
)2)2

とする。このようにしたところで，やはり括弧のなかに i(k) が入り込んでいるので
なにも改善していないように見える。しかし，括弧の２乗(

i− k − 1

2k

(
i(k)
)2)2

の展開を考えると，展開した結果の３つの項は，最初の i2 の項以外は i と（それと
同じ程度の小ささの）i(k) との３次以上の項になるので，捨ててしまうことが出来
る。したがって，(

i− k − 1

2k

(
i(k)
)2)2

≒ i2

であり，近似式

i(k) ≒ i− k − 1

2k
i2

を得る。
d(k) を d で近似する近似式も，同じ流れで求めることが出来る：

d(k) ≒ d+
k − 1

2k
d2

k → ∞ の極限

等式 (1.1), (1.2) を△t = 1
k
とおいて書き直した等式

1 + i(k)△t = (1 + i)△t

1− d(k)△t = (1− d)△t = (1 + i)−△t （⇐ 1− d = (1 + i)−1）
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を変形して，それぞれ，

i(k) =
(1 + i)0+△t − (1 + i)0

△t
(1.3)

d(k) =
(1 + i)0−△t − (1 + i)0

−△t
(1.4)

と書き直しておき，k → ∞ の極限（したがって，△t → 0 の極限）を考える。

(1.3),(1.4) の右辺は共に，△t → 0 の極限をとれば関数 S(t) = (1+ i)t の t = 0 に
おける微分の形となっている。したがって，S ′(0) = log(1+ i) = δ に収束するので，

lim
k→∞

i(k) = δ

lim
k→∞

d(k) = δ

であり，i(k), d(k) は共に δ に収束することが分かる。

等価

現時点 t と 1 年後の t+ 1 で比較をする：

1. t における 1 (Gold) は，1 年後の t+ 1 には 1 + i (Gold) になる

2. t における S (Gold) は，t+ 1 には S · (1 + i) (Gold)

3. t における 1 (Gold) は，t+ 1 には元金 1 と利息 i (Gold)

4. t+ 1 における 1 (Gold) は，t における v (Gold)

5. t における 1 (Gold) は，t における d (Gold) と t+ 1 における 1 (Gold)

6. t における d (Gold) は，t+ 1 における i (Gold)

最初だけ「になる」で終わらせたが，他は省略したのかと言うと，そうでもない。例
えば，4. は，時間が逆向きなので「になる」とは言えず，

（１年後の）t+ 1 において 1 (Gold) を受け取ることも，（現在）t にお
いて v (Gold) を受け取るのも同じこと
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と考えた方が現実味がある。
それならば，「になる」も「と同じこと」に統一すれば良いのだが，「何が同じなの
か」ということで「価値」などと言うものを持ち出すと面倒な事態に陥るので，開
き直って，

等価

という（形式的には）無定義用語を導入して，「と等価」で押し通す：

1. t における 1 は，t+ 1 における 1 + i と等価

2. t における S は，t+ 1 における S · (1 + i) と等価

3. t における 1 は，t+ 1 における 1 と i と等価

4. t+ 1 における 1 は，t における v と等価

5. t における 1 は，t における d と t+ 1 における 1 と等価

6. t における d は，t+ 1 における i と等価

こうなると，

・・・・・・における・・・・・・は，

という構文がうるさい。そこで，数式として書くことができるように，

t における S (Gold) を
[
t

S

]
と表す

「・・・・・・と・・・・・・」は記号 “+” で書く

等価であることを，記号 “∼” で表す

と決めてしまう：[
t

1

]
∼
[
t+ 1

1 + i

]
(1.5)

[
t

S

]
∼
[

t+ 1

S · (1 + i)

]
(1.6)[

t

1

]
∼
[
t+ 1

1

]
+

[
t+ 1

i

]
(1.7)
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[
t

v

]
∼
[
t+ 1

1

]
(1.8)[

t

1

]
∼
[
t

d

]
+

[
t+ 1

1

]
(1.9)[

t

d

]
∼
[
t+ 1

i

]
(1.10)

(1.5) 式の両辺に S をかけることにより，(1.6) を導くことが出来る。ただし，係

数をかける演算は
[
t

1

]
の 1 に作用することに注意。+ の記号は単なる列挙の機能し

か持たないのだが，t が共通の場合は[
t

1

]
+

[
t

i

]
∼
[

1

1 + i

]
のように実際の “+” の機能を持つ。
また，(1.9) 式で移項して[

t

1

]
−
[
t

d

]
∼
[
t+ 1

1

]
つまり，1 (Gold) を預金して，直ちに前払い利息として d を引き出すと，1 年後の
預金残高は 1 に復活。

関係式[
t

v

]
∼
[
t+ 1

1

]
を t+ 1 に対して用いると[

t+ 1

v

]
∼
[
t+ 2

1

]
なので，[

t

v2

]
∼
[
t+ 1

v

]
∼
[
t+ 2

1

]
であり，これを繰り返すと，[

t

vn

]
∼
[
t+ n

1

]
15



であることがわかる。これを一般化して，[
t1
S1

]
∼
[
t2
S2

]
⇐⇒ S1 · vt2−t1 = S2

と定義する。

また，[
t

1

]
∼ S ·

[
0

1

]
を満たす S を，

t における 1 の（t = 0 における）現在価値

と言う。

等価であるということは，逆に，現在価値が等しいことと定義することも出来る。

Remark. t = 0 以外の t に対しても[
t

1

]
∼ S ·

[
f

1

]
を満たす S を，

[
t

1

]
の t = f における現在価値ということもできる。

等価か否かは，原点の選び方に依存せずに定まる：[
t1
S1

]
∼
[
t2
S2

]
　ならば　

[
t1 − t

S1

]
∼
[
t2 − t

S2

]

期始払い年金と期末払い年金

n = 1, 2, . . . に対して，än⌉, an⌉ を

än⌉ =

[
0

1

]
+

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n− 1

1

]

an⌉ =

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n− 1

1

]
+

[
n

1

]
と定義する。
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• än⌉ を，期間 n の期始払い確定年金

• an⌉ を，期間 n の期末払い確定年金

という。

このとき，

an⌉ = än⌉ −
[
0

1

]
+

[
n

1

]
än+1⌉ = än⌉ +

[
n

1

]
än+1⌉ =

[
0

1

]
+ an⌉

än⌉, an⌉ の t = 0 における現在価値を，それぞれ än⌉, an⌉ で表す：

än⌉

[
0

1

]
∼ än⌉

an⌉

[
0

1

]
∼ an⌉

また，än⌉, an⌉ の t = n における現在価値を，それぞれ s̈n⌉, sn⌉ で表す：

s̈n⌉

[
n

1

]
∼ än⌉

sn⌉

[
n

1

]
∼ an⌉[

n

1

]
∼ vn

[
0

1

]
なので，

vn · s̈n⌉ = än⌉

vn · sn⌉ = an⌉

据置期間

n = 1, 2, . . .，f = 0, 1, 2, . . . に対して，f |än⌉ を

f |än⌉ =
[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]
と定義し，
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据置期間 f の期始払い n 年確定年金

という。このとき，３つの等式

äf⌉ =

[
0

1

]
+ · · ·+

[
f − 1

1

]

äf+n⌉ =

[
0

1

]
+ · · ·+

[
f − 1

1

]
+

[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]

f |än⌉ =
[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]
を比べることにより，等式

f |än⌉ = äf+n⌉ − äf⌉

を得る。

f |an⌉ についても，同様の等式が成立する。これから，色々な「据置期間 f の・・・・・・」
が登場するが，常にこのタイプの等式が成立する。

[
f + j

1

]
∼ vf

[
j

1

]
なので，据置期間 f の期始払い確定年金について，等式

f |än⌉ ∼ vf · än⌉

が成立する。期末払い確定年金についても同様：

f |an⌉ ∼ vf · an⌉

Remark. この等式は，t = f での現価と t = 0 での現価を比較して得る等式。生存
確率が関係するものについても，この考え方で据置期間 f を処理する等式を導くこ
とが出来るのだが，少し注意が必要になる。

18



1.3 確率を必要としない等価の等式
保険数学の核心はテキストの第４章であり，例えば生命年金や死亡保険などにつ
いて，等価と確率の両者が絡む等式を扱う。しかし，そのかなりの部分は，生命表
を表す文字 ℓx+t は t = 0, 1, 2, . . . についての数列に過ぎず，これを

与えられた数列

と思ってしまえば，第１章の内容と似たようなものになる。そこまで言わなくても
等式を導くアイデアは同じなので，なるべく共通性が分かる形で等式を導く。

1.3.1 基本的なテクニック

数学としての要点は，等式

aj = bj + aj+1, j = 0, 1, 2, . . . , n− 1 (1.11)

を満たす数列の処理である。

２つのアプローチ

数学としては同じことなのだが，大きく分けて２つのアプローチがあり，

1. １つは，

a0 = b0 + a1 であり， a1 = b1 + a2 なので

a0 = b0 + b1 + a2 であり， a2 = b2 + a3 なので

a0 = b0 + b1 + b2 + a3 であり， a3 = b3 + a4 なので
...

a0 =
n−1∑
j=0

bj + an

と推論することであり，
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2. もう一つは，等式 (1.11) の両辺の総和を j = 0 から j = n− 1 まで取って

n−1∑
j=0

aj =
n−1∑
j=0

bj +
n−1∑
j=0

aj+1

=
n−1∑
j=0

bj +
n∑

j=1

aj

としておいて，左辺と右辺第２項を比較すること。左辺の j = 0 の項と右辺第
２項の j = n の項以外は打ち消すので，等式

a0 =
n−1∑
j=0

bj + an (1.12)

が得られる。

† 後者のテクニックは，数列の総和を求めるために使われるテクニック

総和
∑n−1

j=0 cj は，等式

aj+1 − aj = cj, j = 0, 1, 2, . . . , n− 1 (1.13)

を満たす数列 aj を見つければ，簡単に求めることが出来る

の変型である。中間の項が打ち消し合う様子は等式 (1.13) の方が見やすい（のだが，
保険数学では等式 (1.11) の形の方が自然）。

Remark. 数学的な扱いやすさという点では，総和を考えるやり方が優るのだが，
保険数学としてのイメージが掴みやすいという点で，前者の「ドミノ倒し的連鎖」
の魅力も捨てがたい。

単純な形

関係式 (1.9)[
t

1

]
∼
[
t

d

]
+

[
t+ 1

1

]
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は最も重要な関係式であり，右辺の
[
t+ 1

1

]
に再び関係式 (1.9)を（t を t + 1 に置

き換えて）用いると[
t

1

]
∼

[
t

d

]
+

[
t+ 1

1

]
∼

[
t

d

]
+

[
t+ 1

d

]
+

[
t+ 2

1

]
であり，更に，この操作を（ドミノ倒し的に）任意回数続けることができるので，

[
t

1

]
∼

n個︷ ︸︸ ︷[
t

d

]
+

[
t+ 1

d

]
+ · · ·+

[
t+ n− 1

d

]
+

[
t+ n

1

]
(1.14)

という関係式が得られる。

特に，t = 0 では[
0

1

]
∼
[
0

d

]
+

[
1

d

]
+ · · ·

[
n− 1

d

]
= d · än⌉ ∼ d än⌉

[
0

1

]
+

[
t+ n

1

]
なので，現在価値に言い換えると

1 = än⌉ + vn

という等式が得られる。

関係式 (1.14) は，次のように考えて導出することもできる：
関係式 t+ j における (1.9)[

t+ j

1

]
∼
[
t+ j

d

]
+

[
t+ j + 1

1

]
の両辺の総和を j = 0, 1, 2, . . . , n − 1 として取ると，左辺と右辺第２項は，左辺の
j = 0 と右辺第２項の j = n− 1 以外は打ち消し合い，関係式[

t

1

]
∼
[
t

d

]
+

[
t+ 1

d

]
+ · · ·+

[
t+ n− 1

d

]
+

[
t+ n

1

]
を得る。

Remark. 保険数学の感性としては，
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1. 銀行に 1 を預け，

2. 直ちに，前払い利息 d を引き出すと，

3. １年後の残高は 1 なので，

4. 前払い利息 d を引き出すと，

5. ２年後の残高は 1 なので，

6. 以下同様に繰り返す

というドミノ倒し的に繰り返す感性が魅力的。しかし，物事が複雑になるにつれ，

両辺の総和を取って打ち消し合わせる

という数学的技巧の方が，使い出が良くなる。

Remark. (k) が付く場合も，[
t

1

]
∼
[

t
d(k)

k

]
+

[
t+ 1

k

1

]
を nk 回用いることにより，t が 1/k ずつ増すとしてのドミノ倒し型の導出で関係式

[
t

1

]
∼

nk個︷ ︸︸ ︷[
t

d(k)

k

]
+

[
t+ 1

k

d(k)

k

]
+ · · ·

[
t+ n− 1

k

d(k)

k

]
+

[
t+ n

1

]
(1.15)

を得る。

等式

än⌉ についての等式と同様にして，また，現在価値の評価時点を t = n に変える
ことにより，an⌉, s̈n⌉, sn⌉ についての等式も導かれ，まとめると，

1 = d än⌉ + vn

1 = i an⌉ + vn

(1 + i)n = d s̈n⌉ + 1

(1 + i)n = i sn⌉ + 1
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† 終価についての等式は，än⌉, an⌉ についての等式の両辺に (1+ i)n をかけたものに
過ぎない。

Remark. 終価についての等式は，生命年金に対しては一般化できないので，重要
度は落ちる。än⌉ と an⌉ では，確定年金に関する限りでは常に同等の重要性を持つ
印象なのだが，生命年金になると期末払いの生命年金は，少し扱いづらい面があり，
期始払いの生命年金ばかりが現れることになる。

(k) モデルでは，ä
(k)
n⌉ , a

(k)
n⌉ は

ä
(k)
n⌉ =

1

k

nk−1∑
j=0

[ j
k

1

]

a
(k)
n⌉ =

1

k

nk∑
j=1

[ j
k

1

]
と定義され（年に k 回の支払いがされ，１回の支払額は 1/k），現在価値は

ä
(k)
n⌉ =

1

k

nk−1∑
j=0

v
j
k

a
(k)
n⌉ =

1

k

nk∑
j=1

v
j
k

となる。ä
(k)
n⌉ についても，関係式 (1.15) （で t = 0 とした式）から直ちに

1 = d(k)ä
(k)
n⌉ + vn (1.16)

が得られ，また，関係式[
t

1

]
∼
[
t+ 1

k

i(k)

k

]
+

[
t+ 1

k

1

]
から関係式 (1.15) に相当する関係式を導いておくことにより，

1 = i(k)a
(k)
n⌉ + vn (1.17)

が得られる。
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ä
(k)
n⌉ を än⌉ で近似する近似式は，

ä
(k)
n⌉ =

1− vn

d(k)
, än⌉ =

1− vn

d
, したがって

ä
(k)
n⌉ =

d

d(k)
· än⌉

としてから，d と d(k) の間の近似式を使って導くことが出来るが，次のように考え
て導くことも可能：
k = 12 として「一ヶ月」という便利な言葉を使うと

1. än⌉ では期初に 1 = 1
k
·k を受け取るのだが，それに対して ä

(k)
n⌉ では，1/k を 0ヶ

月，1ヶ月， 2ヶ月，. . .，11 ヶ月遅れて受け取るので金利分の損失が生じる。

2. 正しくは金利分の損失の平均を計算すべきなのだが，支払いの遅れの平均を計
算すると

0
k
+ 1

k
+ 2

k
+ · · ·+ k−1

k

k
=

1

k2
· (k − 1)k

2
=

k − 1

2k

3. つまり，k−1
2k
は遅延の時間平均を表す。

4. 1 が k−1
2k
遅れて支払われるとした近似式は

ä
(k)
n⌉ ≒ (1− d)

k−1
2k än⌉

5. しかし，どうせ近似をしているのだから単利計算でも良いだろうということ
で，更に近似して

ä
(k)
n⌉ ≒

(
1− k − 1

2k
d

)
än⌉

を得る。

以上，k 回の遅延を時間平均をとって１回の遅れに置き換えてしまうという，かな
り大胆な発想の近似だが，簡潔で強力な手段である。

Remark. 後で登場する死亡保険 A
(k)
1
x:n⌉
と A1

x:n⌉
を比較する場合も同じことで，

k = 12 とすると，A
(k)
1
x:n⌉
の場合は死亡の発生した月末，A1

x:n⌉
では死亡の発生した年
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末なので，死亡保険金支払いが早まる時間平均は（最初の月では 11ヶ月，最後の月
では 0ヶ月なので），

k−1
k

+ k−2
k

+ · · ·+ 0
k

k
=

k − 1

2k

であり，

A
(k)
1
x:n⌉

≒ (1 + i)
k−1
2k A1

x:n⌉

となるが，さらに単利計算で近似して

A
(k)
1
x:n⌉

≒
(
1 +

k − 1

2k
i

)
A1

x:n⌉
(1.18)

減債基金

数値 S に対してR, R̂ を，それぞれ関係式

S

[
0

1

]
∼ R

⌈
0

1

∣∣∣∣+R

⌈
1

1

∣∣∣∣+R

⌈
n− 1

1

∣∣∣∣ (1.19)

R̂

⌈
0

1

∣∣∣∣+ R̂

⌈
1

1

∣∣∣∣+ R̂

⌈
n− 1

1

∣∣∣∣ ∼ S

[
n

1

]
(1.20)

を満たす数値として定める。また，関係式[
0

1

]
∼ d

⌈
0

1

∣∣∣∣+ d

⌈
1

1

∣∣∣∣+ · · ·+ d

⌈
n− 1

1

∣∣∣∣+ [n1
]

の両辺に S をかけた関係式

S

[
0

1

]
∼ Sd

⌈
0

1

∣∣∣∣+ Sd

⌈
1

1

∣∣∣∣+ · · ·+ Sd

⌈
n− 1

1

∣∣∣∣+ S

⌈
n

1

∣∣∣∣
の右辺の最後の項に (1.20) を用いて，関係式

S

[
0

1

]
∼ (Sd+ R̂)

⌈
0

1

∣∣∣∣+ (Sd+ R̂)

⌈
1

1

∣∣∣∣+ · · ·+ (Sd+ R̂)

⌈
n− 1

1

∣∣∣∣
を得る。これと (1.19) により，

Sd+ R̂ = R
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一方，(1.19), (1.20) により，

S = Rän⌉

R̂s̈n⌉ = S

なので，

Sd+
S

s̈n⌉
=

S

än⌉

であり，等式

d =
1

än⌉
− 1

s̈n⌉
(1.21)

を得る。

Remark. この等式は，

• R は元金 S に対しての期間 n の（期始払い）元利均等返済の金額

• R̂ は満期金額 S についての期間 n の（期始払い）積立額

と解釈され，

• 元金 S に対しての前払い利息を支払って元金を繰り越しながら，積み立てを
して返済する（減債基金），としても（金額は Sd+ R̂）

• 元利均等返済をしても（金額はR）

Sd+ R̂ = R なので同じこと，という等式となっている。

期末払いのケースも，同じように考えて等式

i =
1

an⌉
− 1

sn⌉
(1.22)

を導くことができる。ただし，実際には，an⌉ =
1−vn

i
等の式を直接代入して計算し

てしまった方が簡単である（等式 (1.21) も同じこと）。

これらの等式の（試験問題としての）要点は
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nが与えられていても，与えられていなくても，än⌉, s̈n⌉（もしくは，an⌉,
sn⌉）の値と d （もしくは i）の値という３つの値について，簡単に計算
できる等式が成立している

ということであり，特に，n が明示されている

ä20⌉ = 13.085, s̈20⌉ = 34.19 のとき d を求めよ

といった問題では，条件過多となっていることである。ä20⌉ = 13.085 という条件だ
けでも d の値は決まるが，これは罠のようなものであり，ニュートン法を使える環
境が必要になる。一方，ä20⌉ = 13.085 と s̈20⌉ = 34.19 の両方を使えば，四則演算だ
けで十分。

1.4 債務残高の漸化式
５章「責任準備金」や「年金数理」の内容のうち，かなりの部分は１章での考え
方をそのまま使うことができる。これらは，保険数学・年金数理のなかでも少し難
易度が高いのだが，だからこそ，微妙な問題が絡む前に

単なる数式の問題

として済ましてしまうのが，早道だと思う。

1.4.1 離散モデルの難所

同時に発生するイベント

等価という観点で評価している限りでは，特に厄介な問題はないのだが，債務残
高や責任準備金といった「ある時点における評価」を考えるときには，離散モデル
特有の厄介な問題が絡む。それは，時間を t = 0, 1, 2, . . . と離散的に考えているとき
には，

複数のイベントが同じ瞬間に起きる可能性を排除できない

ということが原因であり，例えば，債務残高の評価では

1. t = j 時点で債務の返済が行われるというイベント

2. t = j 時点で債務残高の評価（これもイベントと言えばイベント）
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という２つが同時に行われる場合が問題になる。この場合，

どちらが先なのか

を約束により決めてしまう必要がある。つまり，数学ではなく「約束事」（規約）が
必要になる点が厄介なのである。この「約束事」が一意に決まっているならば覚え
れば良いだけなのだが，保険数学では少し揺らぎがある。

期始と期末

おそらく，２つの発想がある：

1. どちらの期間に属するかにより決定する発想。

期間，つまり，t = j から t = j + 1 までの閉区間

[j, j + 1] , j = 0, 1, 2, . . .

は，[j − 1, j] と [j, j + 1] で重複している。そこで，まず，t = j で発生するす
べてのイベントを，

期始 期間 [j, j + 1] に属し，その期の期始に発生するイベント

期末 期間 [j − 1, j] に属し，その期の期末に発生するイベント

のどちらかであると考える。その上で，

期始 t = j 時点で評価を行った直後に，その期の期初のイベントが発生する
と考える

期末 [j − 1, j] の期末に発生するすべてのイベントが発生した後で，t = j 時
点での評価を行う

と決めてしまう。

2. テキスト５章の冒頭に説明されている方針で，（評価以外の）イベントを保険
料納付・生存給付・死亡給付のいずれかに分類して決める規約

期末払いの生命年金の責任準備金，というものを考えると，両者の「約束事」に
ずれが生じるのだが，最初は，気にしない方が良い。ここでは，

期始か期末か

28



の観点で，債務残高の評価を行う。

数学としては同じことなのだが，

t = j 時点における 1 (Gold)

が

• [j, j + 1] に属すると考えたいときには，記号
⌈
j

1

∣∣∣∣
• [j − 1, j] に属すると考えたいときには，記号

∣∣∣∣j1
⌉

を用いることにする。数学としては⌈
j

1

∣∣∣∣ = ∣∣∣∣j1
⌉
=

[
j

1

]
であり，同じこと。

1.4.2 単純型

期始払いのケース

n ≥ 1 とする。S, T , 及び n 個の数値R0, R1, . . . , Rn−1 に対して，関係式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+ ⌈ 1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

(1.23)

が成立しているとする。このとき，t = 0, 1, 2, . . . , n に対して，n+ 1個の関係式を
考える：

• t = 0 に対しては関係式 (1.23)

• t = 1 に対しては[
0

S

]
−
⌈
0

R0

∣∣∣∣
∼
⌈
1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]
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• t = 2 に対しては[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣
∼
⌈
2

R2

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

• 一般に t = 1, 2, . . . , n− 1 に対して，[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
t− 1

Rt−1

∣∣∣∣
∼
⌈
t

Rt

∣∣∣∣+ ⌈t+ 1

Rt+1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
] (1.24)

• t = n に対しては[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
n− 1

Rn−1

∣∣∣∣
∼
[
n

T

] (1.25)

これらの関係式の左辺を tU
p，右辺を tU

f で表すことにする。つまり，t = 0, 1, 2, . . . , n

に対して

0U
p =

[
0

S

]
tU

p =

[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
t− 1

Rt−1

∣∣∣∣, t = 1, 2, . . . , n

tU
f =

⌈
t

Rt

∣∣∣∣+ ⌈t+ 1

Rt+1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

t = 0, 1, 2, . . . , n− 1

nU
f =

[
n

T

]

と定める。このとき，(1.23), (1.24), (1.25) により，

tU
p ∼ tU

f , t = 0, 1, 2, . . . , n (1.26)

となっている。
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tU
p, tU

f を，tU
p, tU

f の t においての現在価値として定める：

tU
p

[
t

1

]
∼ tU

p (1.27)

tU
f

[
t

1

]
∼ tU

f (1.28)

関係式 (1.26) により，tU
p = tU

f である。

† tU
p, tU

f とアンダーライン付きの記号とした理由は，tU
p と tU

p, tU
f と tU

f の対
応が，通常の「オブジェクトと，その t = 0 においての 現在価値」という対応から
逸脱しているため。

期末払いのケース

n ≥ 1 とする。S, T , 及び n 個の数値R1, R1, . . . , Rn に対して，関係式[
0

S

]
∼
∣∣∣∣ 1R1

⌉
+

∣∣∣∣ 2R2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

]
(1.29)

が成立しているとする。このとき，t = 0, 1, 2, . . . , n に対して，n+ 1 個の関係式を
考える：

• t = 0 に対しては関係式 (1.29)

• t = 1 に対しては[
0

S

]
−
∣∣∣∣ 1R1

⌉
∼
∣∣∣∣ 2R2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

]
• 一般に t = 1, 2, . . . , n− 1 に対して，[

0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ tRt

⌉
∼
∣∣∣∣t+ 1

Rt+1

⌉
+

∣∣∣∣t+ 2

Rt+2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

] (1.30)
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• t = n に対しては[
0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ nRn

⌉
∼
[
n

T

] (1.31)

これらの関係式の左辺を tU
p で，右辺を tU

f で表すことにする。つまり，t =

0, 1, 2, . . . , n に対して

0U
p =

[
0

S

]
tU

p =

[
0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ tRt

⌉
, t = 1, 2, . . . , n

tU
f =

∣∣∣∣t+ 1

Rt+1

⌉
+

∣∣∣∣t+ 2

Rt+2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

]
t = 0, 1, 2, . . . , n− 1

nU
f =

[
n

T

]
と定める。このとき，t = 0, 1, 2, . . . , n について

tU
p ∼ tU

f

となっている。

tU
p, tU

f を，tU
p, tU

f の t においての現在価値として定める：

tU
p

[
t

1

]
∼ tU

p (1.32)

tU
f

[
t

1

]
∼ tU

f (1.33)

したがって，期末払いの場合も，tU
p = tU

f .

† 期始払いと期末払いとで，同じ記号 tU
p, tU

f に異なる定義をしていることに注意。

tU
p と tU

p の漸化式

これから，t+1U
p を tU

p で表す漸化式を導くが，現在価値を評価する時点が t+1,

t と異なっていることに注意（評価する対象と評価する時点が両方とも異なる）。
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まず，現在価値という数値ではなく，時間軸上に展開されたオブジェクトである

tU
p については，項が１つ追加されるだけであり，漸化式は簡単に求められる：

期始払い t 時点での tU
p は

tU
p =

[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
t− 1

Rt−1

∣∣∣∣
であり，求める漸化式は

t+1U
p = tU

p −
⌈
t

Rt

∣∣∣∣, t = 0, 1, 2, . . . , n− 1 (1.34)

期末払い t 時点での tU
p は

tU
p =

[
0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ tRt

⌉
であり，求める漸化式は

t+1U
p = tU

p −
∣∣∣∣t+ 1

Rt+1

⌉
(1.35)

つぎに，tU
p の漸化式を，tU

p の漸化式に書き直す。

期始払い：

t+1U
p

[
t+ 1

1

]
= tU

p

[
t

1

]
−
⌈
t

Rt

∣∣∣∣ = (tU
p −Rt)

[
t

1

]
(1.36)

∼ (1 + i) (tU
p −Rt)

[
t+ 1

1

]
なので，

t+1U
p = (1 + i) (tU

p −Rt) , t = 0, 1, 2, . . . , n− 1 (1.37)

期末払い：

t+1U
p

[
t+ 1

1

]
= tU

p

[
t

1

]
−
∣∣∣∣t+ 1

Rt+1

⌉
∼ (1 + i) tU

p

[
t+ 1

1

]
−Rt+1

[
t+ 1

1

]
=

(
(1 + i) tU

p −Rt+1

) [t+ 1

1

]
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なので，

t+1U
p = (1 + i) tU

p −Rt+1, t = 0, 1, . . . , n− 1 (1.38)

Remark. (1.36) 式では，⌈
t

Rt

∣∣∣∣ (= Rt

⌈
t

1

∣∣∣∣) = Rt

[
t

1

]

と記号が変化している。
⌈
t

1

∣∣∣∣ = [t1
]
なので数学的には「言い訳」をする必要はない

のだが，動機を言うならば

1. Rt については，どの期に属するかを意識したいが，

2. tU
p は t における評価であり，どの期に属するかは考えない

ということであり，式変形をして tU
p と結びつくにしたがって，期から切り離され

た記号が自然になる，という気持ちの問題である。

金利負担と元本返済

期末払いのケースの漸化式 (1.38) において Rt+1 が i · tU
p に等しい場合には，

t+1U
p = tU

p となる。したがって，Rt+1 が債務の返済と解釈されてるケースでは，
i · tUp は債務残高を増加させずに維持するための支払い，つまり債務残高の金利負
担と解釈される（１年前の債務残高 tU

p の金利が i · tUp なので当たり前，と考えて
も良い）。したがって，

rt+1 = Rt+1 − i · tUp

と置くと，これは t+1 時点での元本返済額に相当すると解釈される。Rt+1 = rt+1+

i · tUp を (1.38) に代入すると

t+1U
p = tU

p − rt+1

であり，したがって，

t+1U
p = S − (r1 + r2 + · · ·+ rt+1) (1.39)
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となる。t+ 1 = n では

T = S − (r1 + r2 + · · ·+ rn)

となっていることが確かめられる。

例 1. 元金 S を n 年間の元利均等期末払いで返済する場合，

• n 年後の債務残高は 0 なので，T = 0 であり，

• 返済額は一定なので，R = Rj, j = 1, 2, . . . , n と置くことが出来る。

したがって，期末払いの場合の関係式 (1.29) は[
0

S

]
∼

∣∣∣∣1R
⌉
+

∣∣∣∣2R
⌉
+ · · ·+

∣∣∣∣nR
⌉
+

[
n

0

]
= Ran⌉

[
0

1

]
であり，S = Ran⌉. また，

tU
p ∼

[
0

S

]
−
[
1

R

]
−
[
2

R

]
− · · · −

[
t

R

]
=

[
0

S

]
−Rat⌉

[
0

1

]
= (S −Rat⌉)(1 + i)t

[
t

1

]
tU

f ∼
[
t+ 1

R

]
+

[
t+ 2

R

]
+ · · ·+

[
n

R

]
+

[
n

0

]
= Ran−t⌉

[
t

1

]
であり，

tU
p = (1 + i)t(S −Rat⌉), tU

f = R · an−t⌉

また，[t, t+ 1]期末の返済額R （t+ 1 時点での返済額）は，tU
p = tU

f であること
を用いて計算すると，

1. 元金返済部分が

rt+1 = R− i · tU f

= R− i ·R · an−t⌉

= R− i ·R1− vn−t

i
= Rvn−t
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2. 利息返済部分が，

R− rt+1 = R(1− vn−t)

と分解される。これは t+ 1 時点の返済額の分解であり，t 時点では

元金返済部分 rt = Rvn−t+1

利息部分 R− rt = R(1− vn−t+1)

債務残高 Ran−t⌉　（tU
f の形で求めた値）

となる。

Remark. ここでは，一般論で得られている等式から求めたが，ドミノ倒し的な考
え方で求めるならば，この場合，t = n から逆に戻っていくと良い。しかし，この
アプローチは自分で手を動かして考えるならともかく，記述には向かない。債務残
高を（帳簿を付けながら追うイメージで）追跡したいならば，

t時点から t+1時点で，債務残高は tU
f = Ran−t⌉ から t+1U

f = Ran−t−1⌉

に減少するのだから，tU
f − t+1U

f（計算するとRvn−t）が t+ 1 時点で
の返済の元金返済部分，残りが利息部分

と考えるのが簡単だと思う。

期始払いのケースの漸化式 (1.37) では，Rt = d · tUp のとき

(1 + i)(tU
p − d · tUp) = (1 + i)v · tUp = tU

p

なので，d · tUp を前払い利息としての金利負担，

rt = Rt − d · tUp

を元本返済額に相当すると解釈する。この場合も，

Rt = i · t−1U
p + rt

を (1.37) に代入すると

tU
p = (1 + i) t−1U

p −Rt

= (1 + i) t−1U
p − i · t−1U

p − rt

= t−1U
p − rt
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となり，漸化式

tU
p = t−1U

p − rt, t = 1, 2, . . . , n (1.40)

を得る。したがって，

tU
p = S − (1 + i)(r1 + r2 + · · ·+ rt) (1.41)

となる。特に，t = n とすれば，右辺 tU
p は nU

p = 0 なので

T = S − (r1 + r2 + · · ·+ rn)

となることが確かめられる。

Remark. いずれにせよ，t と t+ 1 に注意しなければならないので，そして返済の
直前なのか直後なのかに注意しなければならないので，とても面倒。しかも，漸化
式を，（ここでは t から t+ 1 として記述したのだが）t− 1 から t と考えることもあ
るので，なおさら混乱する。要するに・・・・・・間違える。

(k) の場合と連続モデル

(k) が付く場合は，期始払いを例にとって，最初の関係式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+ ⌈ 1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

を総和の記号で[
0

S

]
∼

∑
t=0,1,...,n−1

⌈
t

Rt

∣∣∣∣ +

[
n

T

]
と書き換えておいた式の類似として[

0

S

]
∼

∑
t= 0

k
, 1
k
,...,n−1

k

⌈
t

Rt

∣∣∣∣ · 1k +

[
n

T

]
(1.42)

を考える。1/k が付くこと，つまり返済額はRk/k であることに注意。この辺りの
記号は，すべて年率換算の記号。

tU
p, tU

f , tU
p, tU

f も同じく定義され，
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1. 漸化式は

t+ 1
k
Up = tU

p −
⌈
t

Rt

∣∣∣∣ · 1k
t+ 1

k
Up =

(
tU

p − Rt

k

)(
1 +

i(k)

k

)

2. 期間 [t, t+ 1] 期始での債務残高に対する前払い利息は

d(k)

k
· tUp

なので，

3. 元金返済部分 rt/k は

rt
k

=
Rt

k
− d(k)

k
· tUp

4. したがって，

t+ 1
k
Up =

(
tU

p − Rt

k

)(
1 +

i(k)

k

)
=

(
tU

p − d(k)

k
· tUp − rk

k

)(
1 +

i(k)

k

)
= tU

p − rk
k

(
1 +

i(k)

k

)

であり，

Rt = d(k) · tUp + rt (1.43)

t+ 1
k
Up = tU

p −
(
1 +

i(k)

k

)
rt
1

k
(1.44)

という関係式を得る。期末払いのケースも同様。

k → ∞ の極限を考えるためには，△t = 1
k
とおいて漸化式を

t+△tU
p = (tU

p −Rt△t) (1 + i(k)△t)
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と書き直してから右辺を展開して tU
p を移項して

t+△tU
p − tU

p

△t
= tU

p · i(k) −Rt −Rt · i(k)△t

としておくと，漸化式は k → 0 の極限で，

d tU
p

dt
= δ · tUp −Rt

という微分方程式の形になることが分かる。

1.4.3 複合型

離散モデル

それでは，関係式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+⌈ 1

R1

∣∣∣∣+ ⌈ 2

R2

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣
+

∣∣∣∣ 1R′
1

⌉
+

∣∣∣∣ 2R′
2

⌉
+ · · ·+

∣∣∣∣n− 1

R′
n−1

⌉
+

∣∣∣∣ nR′
n

⌉
+

[
n

T

] (1.45)

が成立している場合について考えよう。要点は，⌈
t

Rt

∣∣∣∣ は t 時点での tU
p の評価に含めないが，

∣∣∣∣ tR′
t

⌉
は含める

ということである。なお，R′
t はRt の微分ではない（単にRt とは別の記号R′

t）。

この場合，t = 0, 1, 2, . . . , n に対して，tU を

0U
p =

[
0

S

]
tU

p =

[
0

S

]
−
(⌈

0

R0

∣∣∣∣+ · · ·+
⌈
t− 1

Rt−1

∣∣∣∣)−
(∣∣∣∣ 1R′

1

⌉
+ · · ·+

∣∣∣∣ tR′
t

⌉)
t = 1, 2, . . . , n

nU
f =

[
n

T

]
tU

f =

(⌈
t

Rt

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣)+

(⌈
t+ 1

R′
t+1

∣∣∣∣+ · · ·+
⌈
n

R′
n

∣∣∣∣)+

[
n

T

]
t = 0, 1, · · · , n− 1
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と定義することになる。この定義により，漸化式は

t+1U
p = tU

p −
⌈
t

Rt

∣∣∣∣− ∣∣∣∣t+ 1

R′
t+1

⌉
, t = 0, 1, . . . , n− 1

という形をとる。したがって，

t+1U
p

[
t+ 1

1

]
= tU

p

[
t

1

]
−Rt

⌈
t

1

∣∣∣∣−R′
t+1

∣∣∣∣t+ 1

1

⌉
= (tU

p −Rt)

[
t

1

]
−R′

t+1

[
t+ 1

1

]
∼ (tU

p −Rt) (1 + i)

[
t+ 1

1

]
−R′

t+1

[
t+ 1

1

]
なので，漸化式

t+1U
p = (1 + i) (tU

p −Rt)−R′
t+1, t = 0, 1, 2, . . . , n− 1 (1.46)

を得る。

(1.45) から始めたのだが，この関係式を移項して

0 ∼
[
0

S

]
−
⌈
0

R0

∣∣∣∣ −
⌈
1

R1

∣∣∣∣− ⌈ 2

R2

∣∣∣∣− · · · −
⌈
n− 1

Rn−1

∣∣∣∣
−
∣∣∣∣ 1R′

1

⌉
−
∣∣∣∣ 2R′

2

⌉
− · · · −

∣∣∣∣n− 1

R′
n−1

⌉
−
∣∣∣∣ nR′

n

⌉
−
[
n

T

]
(1.47)

としておくと，

1. 右辺は 0 と等価なオブジェクト（これを零オブジェクトと呼ぶことにしよう）

2. この零オブジェクトを t の前後に分けて

(a) 前半を tU
p

(b) 後半の符号を逆転させたものを tU
f

と定める。

3. 離散モデルの宿命として，分点にある項を前後のどちらに入れるかの規約が

必要になるが，
⌈
t

Rt

∣∣∣∣ は後半に，∣∣∣∣ tR′
t

⌉
は前半に含めることにしている。また，[

0

S

]
は前半に，

[
n

T

]
は後半に含める。
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というだけのこと。
「符号を逆転させたもの」と決めているため，後で過去法による責任準備金と将
来法による責任準備金では，収入から支出を引くか，支出から収入を引くかが逆転
することになる。

(k) の場合と連続モデル

(k) の類似を辿ることも可能であり，漸化式は

t+ 1
k
Up = (1 +

i(k)

k
)

(
tU

p −Rt ·
1

k

)
−R′

t+ 1
k
· 1
k
, t =

0

k
,
1

k
, . . . ,

nk − 1

k
(1.48)

となる。

k → ∞ を微分方程式の形にするためには，△t = 1
k
とおいて

t+△tU
p − tU

p = i(k)tU
p△t−

(
1 +

i(k)

k

)
Rt△t−R′

t+△t△t

t+△tU
p − tU

p

△t
= i(k)tU

p −
(
1 +

i(k)

k

)
Rt −R′

t+△t

と書き換えておいてから，△t → 0 の極限をとる。

i(k) → δ, 1 +
i(k)

k
→ 1, R′

t+△t → R′
t

なので，

d tU
p

dt
= δ tU

p −Rt −R′
t (1.49)

Remark. ここで定義した tU と，責任準備金を表す tV の間には大きな違いがあ
る。それは，

1. 責任準備金は１人あたりの金額であるのに対して，

2. ここでの tU はある集団での総額としての金額を表している

という違いである（したがって，確定年金等の契約者の生死を考慮しないで良い場
合には，責任準備金と考えて良い）。これについては，S, T , Rt, R

′
t, tU

p をそれぞ
れ ℓx S, ℓx+n T , ℓx+t Rt, ℓx+t R

′
t, ℓx+t · tV p と書き換えれば良いだけのことなのだが，

微分方程式（Tiele の微分方程式）の形まで書き直すためには，
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ℓx+t が減少するために１人あたりの金額が増える効果

を取り落とさないようにしなければならず，(1.49) 式とは異なった形になる。これ
については，後で触れる。
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第2章 第２回

2.1 生命表
表題は「生命表」としたが，本当は「生存確率」とすべき。後で連合生命が登場す
ると，生存確率は生命表よりも広い概念であることがわかる。結論から言うと，生
存確率についての一般論は

すごく難しい

また，生命表に限っても，それの正確な意味を考え始めると，やはり難しい。生命
表をどのようにして作るのか，という議論が２章に登場するが，それは「すごく難
しい」。

等価という概念も，難しいと言えば難しいのだが，それは「架空の世界の話」，つ
まり，「数学者の言うこと」と割り切れば，むしろ簡単。一方，生存確率はとことん
難しく，しかも，死亡確率は生存確率の余事象と片付けて良いのかというと，それ
も微妙であり，とことん厄介。

それでは，これから「難しい話」に突入するのかというと，そうではない。考え
始めると難しいからこそ，

最初は考えない

に限る。生命表についての，とても単純な話を始めよう。

2.1.1 ℓx と tpx

生命表 ℓx

10万人の新生児の同窓会を考える。１年後には人数が減っているのだが，同窓会
と言ってもこれは「生存人数」なので，減った数は死亡数である。
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x 歳で生存している人数を ℓx とする（したがって，ℓ0 = 100, 000）。

この数列

ℓ0, ℓ1, ℓ2, ℓ3, . . .

を生命表という。

ℓ68 は令和に生まれた 68 歳なのか，昭和に生まれ 68 歳なのか，それとも九州の
縄文人が鬼界カルデラの噴火で絶滅した頃に生まれた 68 歳なのか，などという疑
問は持たないこと。

生存確率

x 歳の同窓会に集まった ℓx 人については，t 年後の同窓会に集まる人数は ℓx+t 人
であることがわかっているのだから，自分が t 年間生存できる確率 tpxは

tpx =
ℓx+t

ℓx

この数値 tpx を

(x) の t 年生存確率

と言う。

なお，この同窓会の x 歳の人を，(x) で表している。

すり替え

確率 tpx と言ったり，この数値 tpx と言ったり，なにやらフラフラして怪しげであ
る。これは，実際に怪しいのであり，早速，概念の修復が必要になる。

(x) が t 年間生存できる確率 tpx のデータが与えられているとする。このとき，
ℓ0 = 100, 000 と置いて，

ℓx = ℓ0 · tpx

と定義する。これを生命表という。

それならば，「最初からそう定義しろ」と言いたい気持ちは分かる。しかし，
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1. 定義としては，ℓx は tpx から定められているのだが，

2. ℓx を ℓ0 人の同窓会の人数を追跡したもの

と考えるのが，これからの方針である。後で過去法による責任準備金が登場すると，
試行の結果として実現された人数として ℓx を通して考えるのが簡単なのだ。

言い方を変えると

1. 同窓会の人数 ℓx が整数値でないことには目をつむる

2. 試行の結果は，確率から計算した結果と一致していると考える

という，むちゃと言えばむちゃな方針である。もう少し「お行儀」の良さを求める
ならば，

ℓx を人数と考えて（つまり，いい加減な考え方で）結論を導いた後で，
ℓx = ℓ0 · tpx という正確な定義に戻って吟味する

としても良い（と言っておいて，実際の吟味までは立ち入らない）。

その他の記号

1. ℓx = 0 となる最初の年齢 x を想定するときには，それを ω で表す：

ℓω = 0, ℓω+1 = 0, ℓω+2 = 0, . . .

2. (x) が t 年間で死亡する確率を tqx で表す：

tqx = 1− tpx

3. px = 1px, qx = 1qx と置く。

4. ℓx 人の集団での 1 年間の死亡数を dx で表す：

dx = ℓx − ℓx+1

確率の計算には，積事象の確率として面倒な乗算が必要になることが多い。

ℓx+1 = px · ℓx, ℓx+2 = px+1 · ℓx+1, ℓx+3 = px+2 · ℓx+2, . . .
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なので，

ℓx+t = px · px+1 · · · · · px+t−1 · ℓx

であり，t 年間生存確率は

tpx = px · px+1 · · · · · px+t−1

これは，

p0, p1, p2, p3, . . . を基礎データとして議論を進めると，やたらに積の計算
をしなければならない

ということを意味する。その点，生命表を基礎データとするならば，t 年間の生存
確率は１回の割り算のみで計算できる。

等式

t+spx = tpx+s · spx (2.1)

が成立することは，

t+spx =
ℓx+t+s

ℓx
, tpx+s =

ℓx+s+t

ℓx+s

, spx =
ℓx+s

ℓx

であることから明らか。

t|qx = tpx · qx+t

と置く。これは

(x) が t 年生存して，次の 1 年間，つまり期間 [t, t+ 1] で死亡する確率

を表す：

t|qx =
dx+t

ℓx
=

ℓx+t − ℓx+t+1

ℓx
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2.1.2 生命表のモデル・平均余命

生命表 ℓx と ℓx+t

時間を連続と考える連続モデルでも，生命表が与えられていると考える。

1. 年齢 x の関数

x 7→ ℓx

2. 経過時間 t の関数

t 7→ ℓx+t

死力

死力の定義

µx+t = − 1

tpx

d

dt
tpx

= − 1

ℓx+t

· {ℓx+t}′

Remark. t = 0 とすれば，

µx = −
[

1

ℓx+t

· {ℓx+t}′
]
(0)

= − 1

ℓx
· d

dx
ℓx

なので，

µx = − 1

ℓx
· d

dx
ℓx

を定義として，µx+t は µx の x に x + t を代入したもの，と考えることも出来るの
だが，おそらく幸せになれない。

△t がごく僅かの時間ならば（例えば，１年に対しての１日，△t = 1/365）

µx+t ≒ − 1

ℓx+t

ℓx+t+△t − ℓx+t

△t
=

ℓx+t − ℓx+t+△t

ℓx+t

· 1

△t

であり，
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1. ℓx+t は t 時点における人数

2. ℓx+t − ℓx+t+△t は [t, t+△t] の間での，この集団内の死亡数

3. したがって， ℓx+t−ℓx+t+△t

ℓx+t
は，t 時点における僅かの時間△t での死亡確率で

あり，

4. それを年率換算したものが µx+t の近似値

ということであり，△t → 0 の極限として µx+t を定義していることになる。
死力の定義式を

tpx µx+t = − d

dt
tpx

とした形も使い勝手がよく，例えば∫ ∞

0
tpx µx+tdt =

∫ ∞

0

{
− d

dt
tpx

}
dt

= [−tpx]
∞
0 = 0− (−1)

= 1

つまり，「いつかは必ず死ぬ」という等式∫ ∞

0
tpx µx+tdt = 1

が得られる。なお，tpx → 0 (t → ∞) であるだけでなく「広義積分として収束する
ことを証明しなければならない」ということが気になるならば，ω を導入してω−x

までの定積分に置き換えれば良い。また，t = ∞ （正確には t → ∞ ）までの定積
分に限らず，例えば t = 1 までの定積分を今度は ℓx+t についての等式

ℓx+t µx+t = − d

dt
ℓx+t

で計算すると，等式∫ 1

0

ℓx+t µx+tdt =

∫ 1

0

{
− d

dt
ℓx+t

}
dt

= [−ℓx+t]
1
0 = −ℓx+1 − (−ℓx)

= dx

を得る．
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また，対数微分の形

µx+t = −{tpx}′

tpx

にしてから積分すると（0 から t までの定積分を計算したいので，変数を s に書き
換えておいてから積分する）∫ t

0

µx+sds =

∫ t

0

−{spx}′

spx
ds

= [− log (spx)]
t
0

であり，log (0px) = log 1 = 0 なので，∫ t

0

µx+sds = − log (tpx)

よって，

tpx = e−
∫ t
0 µx+sds (2.2)

離散的なデータ・補間・近似・モデル

生命表は，離散的な時間 t = 0, 1, 2, 3, . . . に対してのデータ

t 7→ ℓx+t t = 0, 1, 2, . . .

である。しかし，死力や即時支払いの死亡保険などを考えるためには，連続的な時
間 t （要するに実数値をとる t ）に対しての関数

t 7→ ℓx+t t は実数

が必要になる。

1. 離散的データを補間して実数値関数を作る

(a) 全体を補間

i. 折れ線で補間（各区間 [t, t+ 1] で１次式）
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ii. 3 次関数をつなぎ合わせる。このとき，t = j での微分を決める必要
がある。

(b) t = j の近く （x = t+ j の近く）での微分を得るための局所的な補間

i. t = j を中心として左右１点ずつ，t = j − 1, j, j + 1 を通る 2 次関数
を作り，微分する

ii. t = j を中心として左右２点ずつ，t = j − 2.j − 1, j, j + 1, j + 2 を通
る 2 次関数を作り，微分する

2. 離散的データに比較的当てはまる関数，もしくは，理論的に扱いやすい関数を
ℓx+t のモデルとする

(a) ℓx+t = ℓx · e−ct

(b) グラフが (x, ℓx) と (ω, 0) を結ぶ直線となる 1 次関数（ド・モアブルのモ
デル）

(c) ゴムパーツのモデル

(d) メーカムのモデル

(e) もっと複雑な色々なモデル

平均余命

連続モデルでの定義

◦
ex=

∫ ∞

0

t · tpx µx+t dt

部分積分をすることにより，

◦
ex =

∫ ∞

0

t · tpx µx+t dt

=

∫ ∞

0

t · {−tpx}′ dt

= [t · (−tpx)]
∞
0 −

∫ ∞

0

1 · (−tpx) dt

=

∫ ∞

0
tpx dt

なので，

◦
ex=

∫ ∞

0
tpx dt (2.3)
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Remark. 一般に，平均余命についての不等式は難しい。重要なことは，

平均余命 x 7→◦
ex は，x の単調減少関数になるとは限らない

ということ。

生命表は経過時間 t の関数として t 7→ ℓx+t と考えておく方が後で混乱しないのだ
が，平均余命は，明らかに年齢 x の関数 x 7→◦

ex である。したがって，
◦
ex の x につ

いての微分

d

dx

◦
ex

を考えることになるのだが，これは間違いやすいので注意：

d

dt
tpx =

d

dt

ℓx+t

ℓx
=

d
dt
ℓx+t

ℓx
(2.4)

=
−ℓx+t µx+t

ℓx
= −tpx µx+t (2.5)

d

dx
tpx =

d

dx

ℓx+t

ℓx
・・・・・・分母分子の両方を微分 (2.6)

=
{ℓx+t}′ ℓx − ℓx+t {ℓx}′

(ℓx)2
(2.7)

=
−ℓx+t µx+t · ℓx + ℓx+t · ℓx µx

(ℓx)2
(2.8)

= −tpx µx+t + tpxµx (2.9)

この公式

d

dx
tpx = −tpx µx+t + tpxµx (2.10)

を使って，
◦
ex の微分を求める：

d

dx

◦
ex =

d

dx

∫ ∞

0
tpx dt

=

∫ ∞

0

d

dx
tpx dt

=

∫ ∞

0

{−tpx µx+t + tpxµx} dt

= −
∫ ∞

0
tpx µx+tdt+ µx

∫ ∞

0
tpxdt

= −1 + µx·
◦
ex
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公式 2.10 と

d

dx

◦
ex= µx·

◦
ex −1

は，共に試験向きの公式なので，またその場で導くと間違いやすいので，覚えてし
まうと良い。

2.1.3 生命表と生命保険

定義と基本等式

生命表 t 7→ ℓx+t が与えられているとする。
期間n 年の期始払い生命年金 äx:n⌉, 死亡保険A1

x:n⌉
, 生存保険A

x:
1
n⌉
, 養老保険Ax:n⌉

を次のように定義する（年齢 x がベクトル表示で x となっているが気にしないでほ
しい）：

äx:n⌉ =
1

ℓx

n−1∑
t=0

ℓx+t

[
t

1

]
(2.11)

A1
x:n⌉

=
1

ℓx

n−1∑
t=0

dx+t

[
t+ 1

1

]
(2.12)

A
x:

1
n⌉

=
1

ℓx
· ℓx+n

[
n

1

]
(2.13)

Ax:n⌉ = A1
x:n⌉

+A
x:

1
n⌉

(2.14)

それぞれのオブジェクトの，契約開始時点 t = 0 における現在価値は

äx:n⌉

[
0

1

]
∼ äx:n⌉

A
x:

1
n⌉

[
0

1

]
∼ A

x:
1
n⌉
, A1

x:n⌉

[
0

1

]
∼ A1

x:n⌉
, Ax:n⌉

[
0

1

]
∼ Ax:n⌉
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各
[
t

1

]
を vt

[
0

1

]
と書き換えると

äx:n⌉ =
1

ℓx

n−1∑
t=0

vt ℓx+t

A1
x:n⌉

=
1

ℓx

n−1∑
t=0

vt+1 dx+t

A
x:

1
n⌉

= vn
ℓx+n

ℓx
Ax:n⌉ = A1

x:n⌉
+ A

x:
1
n⌉

もしくは，

ℓx äx:n⌉ =
n−1∑
t=0

vt ℓx+t

ℓx A1
x:n⌉

=
n−1∑
t=0

vt+1 dx+t

ℓx A
x:

1
n⌉

= vnℓx+n

Ax:n⌉ = A1
x:n⌉

+ A
x:

1
n⌉

既に示したように，等式

1 = däx:n⌉ + Ax:n⌉ (2.15)

が成り立つ。この等式には，年齢を表す添え字 x が入っているのだが，この等式は，
実は生命表（もしくは，もっと一般的に生存確率）とは無関係であり，

生命年金 äx:n⌉ を停止させるイベントが死亡保険A1
x:n⌉
の支払いを引き起

こすイベントと同じであり，そのイベントが期間 n で発生しない場合に
は生存保険A1

x:n⌉
の支払いが行われる

という条件のみで成立する。したがって，ここで考えている単生命に限らず，後で
扱う複雑な連合生命についても，同じく成立する（これが，単生命の年齢 x ではな
く複数の年齢を表す気持ちで x とした理由）。
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連続モデルの積分による表示は

ℓx āx:n⌉ =

∫ n

0

vt ℓx+t dt

=

∫ n

0

e−
∫ t
0 (δ+µx+s)dsdt

ℓx Āx:n⌉ =

∫ n

0

vt ℓx+t µx+t dt

ℓx (IA)1x:n⌉
=

∫ n

0

t vt ℓx+t µx+t dt

年払保険料

一般に，なんらかの保険と考えられるオブジェクトA に対して，

A ∼ mP · äx:m⌉

を成立させる数値 mP を

A の，期間m 年の年払い保険料

という。
死亡保険A1

x:n⌉
, 生存保険A

x:
1
n⌉
, 養老保険Ax:n⌉ の期間m 年の年払い保険料を，そ

れぞれ

mP1
x:n⌉

, mP
x:

1
n⌉
, mPx:n⌉

と表し，特にm = n の場合には

P1
x:n⌉

, P
x:

1
n⌉
, Px:n⌉

と表す。したがって，

A1
x:n⌉

= P1
x:n⌉

· äx:n⌉ (2.16)

A
x:

1
n⌉

= P
x:

1
n⌉

· äx:n⌉ (2.17)

Ax:n⌉ = Px:n⌉ · äx:n⌉ (2.18)
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2.1.4 試験問題の核心（の核心）：その１

äx:n⌉，Ax:n⌉, Px:n⌉ の間の２つの等式

1 = d äx:n⌉ + Ax:n⌉

Ax:n⌉ = Px:n⌉ äx:n⌉

は（これを基本セット１と言うことにしておこう），試験問題（の元ネタ）の宝庫
である。流石に今では，そのままの形で出題されることはないのだが，他の等式を
トッピングとして添付することにより，かなりの難問まで生成することができる。
トッピングについては後で触れることにして，原形の形での趣旨は

dを既知として，３つの未知数 äx:n⌉, Ax:n⌉, Px:n⌉ についての２つの等式
なので，未知数の１つを与えると残りの２つがわかる

ということ。d も未知とするならば，未知数は４つなので，そのうちの２つを与え
ることになる。

このことだけ意識しておけば，後は連立１次方程式を解くだけのことで，d を既
知定数として

1. äx:n⌉ を用いて，Ax:n⌉ と Px:n⌉ を表す

2. Ax:n⌉ を用いて， äx:n⌉ と Px:n⌉ を表す

3. Px:n⌉ を用いて，äx:n⌉ とAx:n⌉ を表す

という３通りの解を求めることが出来る。

1. äx:n⌉ で表す：

Ax:n⌉ = 1− d äx:n⌉ (2.19)

Px:n⌉ =
1

äx:n⌉
− d (2.20)

2. Ax:n⌉ で表す：

äx:n⌉ =
1− Ax:n⌉

d
(2.21)

Px:n⌉ =
dAx:n⌉

1− Ax:n⌉
(2.22)
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3. Px:n⌉ で表す：

äx:n⌉ =
1

d+ Px:n⌉
(2.23)

Ax:n⌉ =
Px:n⌉

d+ Px:n⌉
(2.24)

おそらく，これらの式を覚える必要はなく，

d を既知として，３つのうちの１つで残りの１つを求めることが可能

という方針だけ意識しておけば，必要に応じて連立方程式を解けば良いだけのこと。
(k)が付く場合でも，また，連続モデルの場合でも，基本セット１は同じ形のセット

1 = d ä
(k)
x:n⌉ + A

(k)
x:n⌉

A
(k)
x:n⌉ = P

(k)
x:n⌉ ä

(k)
x:n⌉

1 = d āx:n⌉ + Āx:n⌉

Āx:n⌉ = P̄
(∞)
x:n⌉ āx:n⌉

となるので，同じこと。

Remark. ただし，P
(k)
x:n⌉ の定義は多少微妙であり，P̄

(∞)
x:n⌉ という記号も装飾過剰に

見えるが，後で述べるように，紛れを排除するためにはやむを得ない。

Remark. d(k) が既知でなく３つの内の２つが与えられているとして i(k) を求める
問題では，d(k) まで正しく求められたのに，最後に

i(k) =
d(k)

1− d(k)
· · · · · ·この式は誤り

として誤答となることがないように注意。

３つのタイプの組合せ

時間を

1. 離散的に扱うモデル
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(a) t = 0, 1, 2, . . . , n として扱う離散モデル

(b) t = 0
k
, 1
k
, 2
k
, . . . , nk

k
として扱う (k) タイプの離散モデル

2. t を実数 0 ≤ t ≤ n として扱う連続モデル

の３つのタイプにより，対象としている保険（ここでは養老保険）と保険料納付の
扱いが異なるが，

保険と保険料納付の扱いが同じタイプであるときに限らないと基本セッ
ト１にはならない。

例えば，Ax:n⌉, ä
(k)
x:n⌉ という異なるタイプとなると

1 ̸= d ä
(k)
x:n⌉ + Ax:n⌉

であり，基本セットの形にはならない（d を d(12)に変えても等号は成立しない）。し
たがって，保険と保険料納付の扱いが同じタイプにシンプルな記号を割り当てたい
ところなのだが，現実の世界では，むしろ，死亡保険即時支払いで保険料月払いと
いうタイプの方が多いと思う。結論として言えることは，

P に付ける記号のすっきりとしたシステムはない

ということであり，

• なにも飾りがついていないならば，Ax:n⌉ と äx:n⌉

• P̄x:n⌉ ならば，死亡保険は即時支払いの Āx:n⌉。保険料納付については，äx:n⌉ で
計算するが，āx:n⌉ とすることも考えられる。

• P
(k)
x:n⌉ ならば，保険料は (k) タイプの ä

(k)
x:n⌉ で計算する。 P

(∞)
x:n⌉ は k → ∞ の連

続払い。死亡保険についても (k), (∞) の効力が及ぶかは微妙なのだが，すく
なくとも (k) のときは効力が及ぶと約束していると思われる。

• 死亡保険即時支払いは P̄ として表され，上付き添え字の位置が空いているの
で，P̄

(k)
x:n⌉，P̄

(∞)
x:n⌉ という記号で意味を確定させることは可能。

• その他の場合は，文章で補うしか手段は無い。

要するに，複雑である。

Remark. 色々な組合せ（順列）があるので，それにしたがって近似式も色々なバ
リエーションがある。
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Remark. 保険の契約期間と，保険料納付の期間が同一でない場合も，基本セット
にはならない。

近似式

ä
(k)
x:n⌉, A

(k)
1
x:n⌉
を，(k) のつかない形で近似する近似式は，

ä
(k)
x:n⌉ ≒ äx:n⌉

{
1− k − 1

2k
(d+ P1

x:n⌉
)

}
A

(k)
1
x:n⌉

≒ A1
x:n⌉

{
1 +

k − 1

2k
i

}
が使い勝手が良い。特に，各種の年払保険料の近似式は，この形でないと複雑な形
になりすぎ使い物にならない。
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第3章 第３回

3.1 基本の問題

3.1.1 基本中の基本

保険数学の基本セットとなる等式

1 = d äx:n⌉ + Ax:n⌉

Ax:n⌉ = Px:n⌉ äx:n⌉

と，それから導かれる等式（その場で導くことも簡単）

1. äx:n⌉ で表す：

Ax:n⌉ = 1− d äx:n⌉ (3.1)

Px:n⌉ =
1

äx:n⌉
− d (3.2)

2. Ax:n⌉ で表す：

äx:n⌉ =
1− Ax:n⌉

d
(3.3)

Px:n⌉ =
dAx:n⌉

1− Ax:n⌉
(3.4)

3. Px:n⌉ で表す：

äx:n⌉ =
1

d+ Px:n⌉
(3.5)

Ax:n⌉ =
Px:n⌉

d+ Px:n⌉
(3.6)
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で解ける問題は，アクチュアリー試験のなかで最も簡単な部類の問題となるのだが，
まず，ここから始めることにしよう。

１．（純粋形）

[1] i = 5%, äx:n⌉ = 14.28 のとき，Ax:n⌉ を求めよ．

Ans. 0.320

[2] i = 5%, äx:n⌉ = 14.28 のとき，Px:n⌉ を求めよ．

Ans. 0.02240896

[3] i = 5%, Ax:n⌉ = 0.580 のとき，äx:n⌉ を求めよ．

Ans. 8.82

[4] i = 5%, Ax:n⌉ = 0.580 のとき，Px:n⌉ を求めよ．

Ans. 0.06576

[5] i = 5%, Px:n⌉ = 0.1355 のとき，äx:n⌉ を求めよ．

Ans. 5.46

[6] i = 5%, Px:n⌉ = 0.1355 のとき，Ax:n⌉ を求めよ．

Ans. 0.74

[7] äx:n⌉ = 11.467，Ax:n⌉ = 0.666 のとき，i を求めよ．

Ans. 3%
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[8] äx:n⌉ = 11.467，Ax:n⌉ = 0.666 のとき，Px:n⌉ を求めよ．

Ans. 0.05808

[9] äx:n⌉ = 6.6600，Px:n⌉=0.13054 のとき，Ax:n⌉ を求めよ．

Ans. 0.8694

[10] äx:n⌉ = 6.6600，Px:n⌉=0.13054 のとき，i を求めよ．

Ans. 2%

[11] Ax:n⌉ = 0.74379，Px:n⌉ = 0.11168 のとき，äx:n⌉ を求めよ．

Ans. 6.66

[12] Ax:n⌉ = 0.74379，Px:n⌉ = 0.11168 のとき，i を求めよ．

Ans. 4%

とにかく，ここまでで悩んではいけない。まず，これらの問題が “手のひら”状態
で楽に解けるようになるのが第一歩。

過去問の例

[85-(9)] Ax = 0.400, äx = 10.6 のとき、利率 i を求めよ。

[84-(7)] Px:n⌉ = 0.02923, äx:n⌉ = 13.0123 のとき、i の値を求めよ
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[83-(10)] ax = 12.36, Ax = 0.738　のとき、iの値を求めよ。

[82-(12)] äx の値が 0.1 だけ増加するとき、Ax の値はいくら変化するか。
Ax の変化について、一番適切なものをつぎの中から選べ。
ただし、利率は年 5% で一定とする。

(A) 約 0.0048 だけ増加する。 (B) 約 0.0048 だけ減少する。
(C) 約 0.0050 だけ増加する。 (D) 約 0.0050 だけ減少する。
(E) 与えられた情報だけでは、Ax の変化は判定できない。

２．（純粋形の応用）

[1] δ = 4.879%, P
(∞)
x = 0.0666 のとき，Āx を求めよ．

Ans. 0.57717

Remark. (k) がついたり (∞) やバーがついても，それらが，そろっていれば同じ
こと。ä

(12)
x と δ が混ざっているとかだと話は別だが。

[2] 67歳の男性が期間 13年，保険金額１億円の養老保険に加入した．保険金
は死亡時の月末に支払われ，保険料は全期払い込み平準で月払いとする．このとき，
この保険の月払い保険料を求めよ．ただし，

i(12) = 4.8889%, A
(12)
67:13⌉ = 0.57766556

であるものとする．

Ans. 555,000円

Remark. ä
(k)
67:13⌉ = 8.673657122, P

(12)
67:13⌉ = 0.066600 となる．弾みで，「12で割る」こ

とを忘れることを期待して作った問題．

（軽いヒネリ）

[3] ax = 10.467, i = 3% のとき，Px を求めよ．
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Ans. 0.05808

Remark. äx = 1 + ax を絡めただけ．

3.1.2 基本の問題（トッピング付き）

据置期間 f 年の n年生命年金

ℓx · f | äx:n⌉ =
n+f−1∑
t=f

ℓx+t

[
t

1

]
, f | äx:n⌉ =

n+f−1∑
t=f

tpx

[
t

1

]
と，f + n 年生命年金

ℓx · äx:n+f⌉ =

n+f−1∑
t=0

ℓx+t

[
t

1

]
, äx:n+f⌉ =

n+f−1∑
t=0

tpx

[
t

1

]
との間には，

f | äx:n⌉ = äx:f+n⌉ − äx:f⌉

という関係が成り立つ。等価という同値関係とも無関係に成り立つ等式である。
また，等式

f | äx:n⌉ = vf · fpx · äx+f :n⌉ (3.7)

が成り立ち，特に f = 1 として，等式

äx:n+1⌉ = äx:1⌉ + 1|äx:n⌉
= 1 + v · px · äx+1:n⌉

を得る。等式

äx:n+1⌉ = 1 + v · px · äx+1:n⌉ (3.8)

は，出題向きの等式であり，基本セットのトッピングとして多用されている。多く
の場合，n+ 1 と n があからさまに出現するのはヒントになるので，

äx = 1 + v px äx+1

の形で使われる。
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[３．１] px = 0.9990, äx+1 = 44.9249, Px = 0.0026144 であるとき，äx の値を
求めよ．

[解答]

äx = 1 + vpxäx+1

1 = (d+ Px)äx

から金利 d,v を消去すると，äx（これをX とおく）についての２次方程式

X2 − (1 + c1 + c1c2)X + c1 = 0

が得られる．ただし，

c1 = pxäx+1 = 44.8800, c2 = Px = 0.0026144

この方程式の解はX = 45 とX = 1（正確には 0.997333） であり，X = 45 を採用
して解答は äx = 45． なお，X = 0.997333 のケースでは金利が負になるのでナン
センスなのだが，このようなゴミの意味付けというものはいまいち分からない．

注　この問題は，「i の値を求めよ」として出題することもできる。しかし，その場
合，まず äx を（２次方程式を解いて）求めてから，その値を使って d を計算するな
らば，上の問題と同じことだが，おそらく自然に解くならば，äx を消去して d につ
いての２次方程式をたてる，という方針をとることになる。しかし，そうするとこ
の問題の数値では誤差が入りやすい方程式になってしまい，なかなかうまく行かな
いはず。

据置期間 f 年の死亡保険

ℓx · f |A1
x:n⌉

=

f+n−1∑
t=f

dx+t

[
t+ 1

1

]
については，等式

f |A1
x:n⌉

= A
x:

1
f⌉
· A 1

x+f :n⌉

が成立する。

この等式も，f = 1 として終身死亡保険（終身養老保険）とした形（等式 Ax =

v qx + 1|Ax を使って導く）

Ax = v qx + v px Ax+1 (3.9)
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で，「基本セットへのトッピング」として用いられる。ただし，この辺りから，難易
度はかなり上がる。

[３．２] px = 0.998, Ax+1 = 0.73827, äx = 7.53 とするとき，i の値を求めよ．

［解答］
c1 = px = 0.998, c2 = Ax+1 = 0.73827, c3 = äx = 7.53 と置く．この問題では Px

は関与していないので，使う式は

Ax = vqx + vpxAx+1

1 = däx + Ax

だけ。すなわち

Ax = (1− d)(1− c1) + (1− d)c1c2

= (1− d)(1− c1 + c1c2)

1 = dc3 + Ax

1− c1 + c1c2 = c4 とおいて，Ax を消去すると

1− c3d = (1− d)c4

これは d の１次方程式だから，解はすぐに求まり

d =
1− c4
c3 − c4

= 0.038463

よって，i = 4.0% である。

[３．３] px = 0.998, Ax+1 = 0.762575, Px = 0.0948837 とするとき，i の値を求
めよ．

［解答］
c1 = px = 0.998, c2 = Ax+1 = 0.762575, c3 = Px = 0.0948837 と置く．この場合，

Ax = vqx + vpxAx+1

1 = däx + Ax

Ax = Pxäx
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がすべて必要で，これを書き直すと，1− c1 + c1c2 = c4 とおいて

Ax = c4(1− d)

1 = däx + Ax

Ax = c3äx

ここで，Ax を消去すると

c3äx = c4(1− d)

1 = (d+ c3)äx

となり，さらに，äx を消去して整理すると，２次方程式

d2 − (1− c3)d+ c3(
1

c4
− 1) = 0

すなわち，

d2 − 0.9051163d+ 0.02946425 = 0

が得られる．これを解いて，d < 1となる解を選ぶと，d = 3.3818%であり，i = 3.50%

となる。

なお，他の値については

Ax = 0.737246377, äx = 7.02099,

となっている．

[３．４] d, äx, Ax, Px, Px+1, px のうちのどの３つを与えると２次方程式で解く
ことになるかを調べよ．
[解答]

Px+1 を与えないことには px の出番がなく，x+1 が絡まない問題になってしまう
ので，Px+1 は与える．また，px を隠してしまうと連立方程式の形に持って行くの
は無理．したがって，Px+1 = c1, px = c2 と与えることにする．このとき，

äx+1 =
1

d+ c1

Ax+1 =
c1

d+ c1
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また，

äx = 1 + vc2äx+1

Ax = v(1− c2) + vcxAx+1

だから

äx = 1 +
c2v

d+ c1

Ax = v(1− c2) + vc2
c1

d+ c1

が得られる．d を与えると äx, Ax が決まってしまい，したがって Px も決まり２次
方程式にはならないので，d は隠す．後は äx, Ax, Px のいずれかひとつを与えるこ
とになるが，まず，äx, Ax を与えるとこの段階で方程式が決まるので，いくぶん “

易しい”問題かもしれない．しかし，１次方程式になるか２次方程式になるかは，式
のちょっとした違いにより決まり，äx = c3 を与えると１次方程式

c3(d+ c1) = d+ c1 + c2(1− d)

になるがAx = c4 を与えた場合には２次方程式

c4 = (1− d)(1− c2) + (1− d)c2
c1

d+ c1

になる．最後にPx = c5 を与えた場合がもっともいろいろなことを使う問題になり，
äx = 1

d+äx
を使って

1

d+ c5
= 1 +

c2v

d+ c1

これは２次方程式になる．
しかし，実際にその２次方程式が電卓の有効数字で解けるかということは別問題で

[82-(14)] Px = 0.015, Px+1 = 0.016, px = 0.99884 のとき、iの値はつぎのと
おりである。

(A) 4% (B) 5% (C) 5.5% (D) 6% (E) 6.5%

のような数値の場合，（d2 の項を無視して１次方程式にしてから計算してしまうと
いった）数値計算のセンスを使わないとちょっと無理（したがって実際にはなかな
か出題しづらい問題）．
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3.2 責任準備金

3.2.1 責任準備金の定義

債務残高の等式と責任準備金

責任準備金は，数学としての扱いでは債務残高と変わりはない。ただし，責任準
備金と言った場合には，契約者の集団に対しての総額ではなく，評価時点で残存し
ている契約者１人あたりの数値を意味する。

債務残高の評価は，一般的に等式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+⌈ 1

R1

∣∣∣∣+ ⌈ 2

R2

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣
+

∣∣∣∣ 1R′
1

⌉
+

∣∣∣∣ 2R′
2

⌉
+ · · ·+

∣∣∣∣n− 1

R′
n−1

⌉
+

∣∣∣∣ nR′
n

⌉
+

[
n

T

]
から始めたのだが，責任準備金については，

1. １人あたりということが絡む

2. 収支を

(a) 一時払い保険料（もしくは，その一部）と契約終了時点での生存給付

(b) 年払い保険料と（期始払い）生命年金

(c) 死亡給付

に分けて考える

という理由で，次の形の一般形を考える：

ℓx

[
0

A

]
+

n−1∑
t=0

ℓx+t · Pt

⌈
t

1

∣∣∣∣
∼

n−1∑
t=0

ℓx+t

⌈
t

Et

∣∣∣∣+ n−1∑
t=0

dx+t

∣∣∣∣t+ 1

St

⌉
+ ℓx+n

[
n

E

]
(3.10)

† 最初の形との対応は

S = ℓx · A, Rt = ℓx+t (−Pt + Et), R′
t+1 = dx+t · St, T = ℓx+n · E
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Remark. ある保険の契約者の集団に対しての，保険会社の視点で考えると，左辺
は収入を表すオブジェクトであり，一方，右辺は支出を表すオブジェクトである。関
係式 (3.10) は，この両者が等価であることを主張している。記号の意味は

• A は契約開始時点での一時払い保険料（もしくは，その一部）

• Pt は [t, t+ 1] 期の保険料（期始払い）

• Et は t 時点での生存者に対する生存給付

• St は [t, t+ 1] 期での死亡に対する死亡給付（期末に支払う）

• E は契約終了時点での生存給付

であり，いずれも１人あたりの金額。

関係式 (3.10) は，

収入 - 支出 が零と等価

という形（零オブジェクトの形）{
ℓx

[
0

A

]
+

n−1∑
t=0

ℓx+t · Pt

⌈
t

1

∣∣∣∣
}

−

{
n−1∑
t=0

ℓx+t

⌈
t

Et

∣∣∣∣+ n−1∑
t=0

dx+t

∣∣∣∣t+ 1

St

⌉
+ ℓx+n

[
n

E

]}
∼ 0 (3.11)

で書くことができるが，これを t 時点で分割して

• t 時点までの収入 － t時点までの支出，つまり，t 時点までの純収入と

• t 時点以降の支出 － t 時点以降の収入，つまり，t からの純支出

の和が零，という考えておき，移項することにより

• t 時点までの純収入 tU
pは，

• t 時点以降の純支出 tU
f
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と等価，という関係式

tU
p ∼ tU

f

を作ることができる。

「t 時点まで」と「t 時点以降」には重複があるので，tU
p, tU

f を明示的に定義
する：

tU
p def

=

{
ℓx

[
0

A

]
+

t−1∑
s=0

ℓx+s

⌈
s

Ps

∣∣∣∣
}

−

{
t−1∑
s=0

ℓx+s ·
⌈
s

Es

∣∣∣∣ +
t−1∑
s=0

dx+s ·
∣∣∣∣s+ 1

Ss

⌉}
,

t = 1, 2, . . . , n− 1

tU
f def

=

{
n−1∑
s=t

ℓx+s ·
⌈
s

Es

∣∣∣∣+ n−1∑
s=t

dx+s ·
∣∣∣∣s+ 1

Ss

⌉
+ ℓx+n

[
n

E

]}

−
n−1∑
s=t

ℓx+s

⌈
s

Ps

∣∣∣∣
t = 1, 2, . . . , n− 1

t = 0, n の場合については，

1. nU
f =

[
n

E

]
とすることは問題がないのだが，

2. 0U
p =

[
0

A

]
とするか否かは，解釈（と使い方）に依存し，一概には言えない。

しかし，t = 0, n での責任準備金は余り重要ではないので，気にしないことにする。

tU
p, tU

f はいずれもオブジェクトであり，どの時点で評価するかということとは
無関係に定義されている。ここから，

1. t 時点での現在価値 tU
p, tU

f を評価し，

2. tU
p, tU

f の１人あたりの金額 tV
p, tV

f を求める
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ということになる：

tU
p

[
t

1

]
∼ tU

p, ℓx+t · tV p = tU
p

tU
f

[
t

1

]
∼ tU

f ℓx+t · tV f = tU
f

定義はこれで終わりであり，また，常に，過去法による責任準備金 tV
p と将来法に

よる責任準備金 tU
f の等価

tU
p = tU

f

が成り立つ。

Remark. 数式としての扱いに限れば，過去法と将来法の等価は自明であり，強調
するに値しない。しかし，過去法による評価は，実際に t 時点に立てば確率ではな
く試行の結果である一方，t 時点においても，将来法は確率に基づいて計算するこ
とになる。したがって，両者は必ずしも一致しない。また，年金数理のような，制
度発足時点での収支相等からのずれを伴う場合には，過去法は実際のファンド残高，
将来法は将来のサービスとしての債務という扱いになり，単なる数式の問題では済
まなくなる（のだと思う）。しかし，ここでは数理に徹するので，過去法と将来法の
一致は，(3.10) 式により自明。

責任準備金は以上で定義されているので，級数を用いて数式で表すことは可能で
ある。ここからは，生命年金，死亡保険，生存保険，養老保険といった「記号が定
められた基本的なもの」について，また，それらを一時払いとする場合，年払いに
する場合など，やはり「記号が定められた基本的なもの」について，

責任準備金を「それら定められた記号」で表す

という展開になる。
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3.2.2 過去法

A
x:

1
t⌉
を用いた表現

過去法による責任準備金の定義式

tU
p =

{
ℓx

[
0

A

]
+

t−1∑
s=0

ℓx+s

⌈
s

Ps

∣∣∣∣
}

−

{
t−1∑
s=0

ℓx+s ·
⌈
s

Es

∣∣∣∣ +
t−1∑
s=0

dx+s ·
∣∣∣∣s+ 1

Ss

⌉}
,

t = 1, 2, . . . , n− 1

において，多くの場合，右辺の各項は「期間を表す記号 n を t に変えただけの簡単
な記号」で表すことができる。特に，Ps, Es, Ss が s に依存せずに定数P,E, S の場
合，右辺は

ℓx

{
A

[
0

1

]
+ P · äx:t⌉

[
0

1

]
− E · äx:t⌉

[
0

1

]
− S · A1

x:t⌉

[
0

1

]
　
}

なので，

tU
p = ℓx

(
A+ P · äx:t⌉ − E · äx:t⌉ − S · A1

x:t⌉

)[0
1

]
もっと一般に，右辺の各項を「期間を表す記号 n を t に変えただけの簡単な記号」
（これをX と置く）で表すことができたならば，tU

p を

tU
p = ℓxX

[
0

1

]
と表すような「簡単な記号で書かれた」項X を書き下すことが出来る。
その場合，tU

p や責任準備金 tV
p は t 時点での評価なので

ℓx+t · tV p

[
t

1

]
= tU

p

であり，また，生存保険A
x:

1
t⌉
の定義により，

ℓx+t ·
[
t

1

]
= A

x:
1
t⌉
· ℓx
[
0

1

]
なので，

A
x:

1
t⌉
· tV p = X

という等式が得られる。つまり，
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1. t まで生存するとその時点で責任準備金 tV
p を受け取る生存保険の，t = 0 で

の現在価値（一時払い保険料）は，

2. t までのオブジェクトの断片の，t = 0 時点での現在価値に等しい

という一般的等式が得られる。上の例では

A
x:

1
t⌉
· tV p = A+ P · äx:t⌉ − E · äx:t⌉ − S · A1

x:t⌉

äx:n⌉,A
x:

1
n⌉
, A1

x:n⌉
, Ax:n⌉ など，オブジェクトとして表記が定義されているものに

ついては，例えばAx:n⌉ ならば，零オブジェクト

Ax:n⌉

[
0

1

]
− Ax:n⌉ ∼ 0

についての責任準備金として，その責任準備金 tV (Ax:n⌉) を定義する。

代表的なものとしては，

A
x:

1
t⌉
· tV (äx:n⌉) = äx:n⌉ − äx:t⌉

A
x:

1
t⌉
· tV (A

x:
1
n⌉
) = A

x:
1
n⌉

A
x:

1
t⌉
· tV (A1

x:n⌉
) = A1

x:n⌉
− A1

x:t⌉

A
x:

1
t⌉
· tV (Ax:n⌉) = Ax:n⌉ − A1

x:t⌉

（過去法であることを示す添え字 p は省略）。

ここまでは，tV (·) の括弧の中に該当するオブジェクトを書いて表す，という記号
の使い方として，一貫性があり，また，テキストでの括弧の中に現在価値を書いて
表すやり方とも大きな差はない。しかし，保険料年払いの場合には，該当するオブ
ジェクトの記号は用意していないので，保険料を n 年平準年払いとしたときの生存
保険A

x:
1
n⌉
, 死亡保険A1

x:n⌉
, 養老保険Ax:n⌉ についての零オブジェクト

P
x:

1
n⌉

· äx:n⌉ − A
x:

1
n⌉

∼ 0

P1
x:n⌉

· äx:n⌉ − A1
x:n⌉

∼ 0

Px:n⌉ · äx:n⌉ − Ax:n⌉ ∼ 0
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の責任準備金を，それぞれ

tV
x:

1
n⌉
, tV 1

x:n⌉
, tV x:n⌉

と表すことにする（したがって，一般的に x がベクトル表示となっている以外はテ
キストの記号と同じ。ただし，tV の後の括弧の中に保険料の値を書く表記は用い
ない）。

これらについても，

A
x:

1
t⌉
· tV

x:
1
n⌉

= P
x:

1
n⌉

· äx:t⌉ (3.12)

A
x:

1
t⌉
· tV 1

x:n⌉
= P1

x:n⌉
· äx:t⌉ − A1

x:t⌉
(3.13)

A
x:

1
t⌉
· tV x:n⌉ = Px:n⌉ · äx:t⌉ − A1

x:t⌉
(3.14)

となる。

Remark. (3.14) 式の右辺の A1
x:t⌉
は，これで正しく，Ax:t⌉ ではないことに注意。

t < n 時点では生存保険金は支払われないし，t = n 時点でも，責任準備金を評価し
た直後に生存保険金を支払うとしている（ので nV x:n⌉ = 1）。

また，両辺を äx:t⌉ で割った形では

P
x:

1
t⌉
· tV

x:
1
n⌉

= P
x:

1
n⌉

(3.15)

P
x:

1
t⌉
· tV 1

x:n⌉
= P1

x:n⌉
− P1

x:t⌉
(3.16)

P
x:

1
t⌉
· tV x:n⌉ = Px:n⌉ − P1

x:t⌉
(3.17)

であり，いずれの等式も

P
x:

1
t⌉
と P1

x:t⌉
について成り立つ等式

となっている。特に，(3.17) を，Px:t⌉ の定義式と連立させると，

Px:t⌉ = P
x:

1
t⌉
+ P1

x:t⌉

P
x:

1
t⌉
· tV x:n⌉ = Px:n⌉ − P1

x:t⌉

であり，これは，

５つの未知数 Px:n⌉, P
x:

1
t⌉
, P1

x:t⌉
, Px:t⌉, tV x:n⌉ について成立する２つの方

程式
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なので，５つの内の任意の３個を既知数として与えれば，残りの２個を問う問題を
作ることができる。
例えば，テキストの「第５章　練習問題（１）」の (5)

tVx = 0.190, Px = 0.02, P
x:

1
t⌉
= 0.072 のとき，P1

x:t⌉
および Px:t⌉ を求めよ

といったタイプの問題。

Remark. この問題では，終身養老保険の終身年払いとして添え字 n が現れないよ
うにしている。これはテキストでの問題なので特に理由はないと思うが，試験問題
では，n が表れないようにする効果は，

過去法で考えるか将来法で考えるかの判別を，分かりづらくする

という点にある。実際，後で見るように，将来法を使っている場合には n − t の形
の添え字が現れるのだが，終身になると n と共に n− t も式から消えて見えなくな
る。ただし，将来法ではP

x:
1
t⌉
のような添え字 t が現れることはないので，その辺り

で見抜くことは可能。

なお，テキストの「第５章　練習問題（１）」の (3) は (3.16) 式を求める問題。

3.2.3 過去法の再帰式

再帰式

責任準備金の再帰式は t+1V と tV の間の関係式なのだが，まず，t+1U
p と tU

p の
差を考えると，

tU
p =

{
ℓx

[
0

A

]
+

t−1∑
s=0

ℓx+s

⌈
s

Ps

∣∣∣∣
}

−

{
t−1∑
s=0

ℓx+s ·
⌈
s

Es

∣∣∣∣ +
t−1∑
s=0

dx+s ·
∣∣∣∣s+ 1

Ss

⌉}
,

t+1U
p =

{
ℓx

[
0

A

]
+

t∑
s=0

ℓx+s

⌈
s

Ps

∣∣∣∣
}

−

{
t∑

s=0

ℓx+s ·
⌈
s

Es

∣∣∣∣ +
t∑

s=0

dx+s ·
∣∣∣∣s+ 1

Ss

⌉}
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なので，

t+1U
p − tU

p = ℓx+t ·
⌈
t

Pt

∣∣∣∣− ℓx+t ·
⌈
t

Et

∣∣∣∣− dx+t ·
∣∣∣∣t+ 1

St

⌉
であり，したがって，

ℓx+t+1 · t+1V

[
t+ 1

1

]
− ℓx+t · tV

[
t

1

]
= ℓx+t · Pt

⌈
t

1

∣∣∣∣− ℓx+t · Et

⌈
t

1

∣∣∣∣− dx+t · St

∣∣∣∣t+ 1

1

⌉
である。ここで，

[
t+ 1

1

]
を，それと等価な v

[
t

1

]
に変えることにより

v · ℓx+t+1 · t+1V = ℓx+t · tV + ℓx+t · Pt − ℓx+t · Et − v · dx+t · St (3.18)

という形の再帰式を得る。

† 数学の関係式としては，
⌈
t

1

∣∣∣∣, ∣∣∣∣t1
⌉
,

[
t

1

]
は同じであり，使い分けは不要。

Remark. イメージとしては，両辺に 1 + i を乗じた形

ℓx+t+1 · t+1V = (1 + i) ℓx+t (tV + Pt − Et)− dx+t · St

を再帰式として捉え，

1. t 時点で生存している契約者の集団 ℓx+t 人に対して１人あたりの

(a) 責任準備金を評価すると ℓx+t · tV
(b) 次の瞬間に，保険料 Pt が収入され，生存給付Et を支出

(c) 結果として，責任準備金は tV · tV + Pt − Et に変わっている

2. それから１年間経過した t+ 1 時点（の一瞬前）では，責任準備金の総額は

ℓx+t · (1 + i) · (tV + Pt − Et)

3. その一瞬後に，その集団に対して総額

dx+t · St

の死亡給付がなされ，その一瞬後に t+ 1 時点での責任準備金総額の評価が行
われるので，その値は

(1 + i) ℓx+t (tV + Pt − Et)− dx+t · St
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4. この総額は，t+ 1 時点で生存している契約者 ℓx+t+1 人の責任準備金の総額に
等しいので，

ℓx+t+1 · t+1V = (1 + i) ℓx+t (tV + Pt − Et)− dx+t · St

と考えた方が複雑なケースでの追跡がしやすいと思う。

(k) モデル

再帰式 (3.18) は，時間の単位を 1/k に，期間を nk に，v を v1/k （もしくは，
1 + d(k)

k
）に変えるだけで，自動的に (k) の場合に書き換えられる。

ただし，Pt, Et は，(k) モデルの場合には，年率換算（単純に k 倍するという線
形の発想による換算）を意識して，Pt/k, Et/k と表すことにしておく：

v
1
k · ℓx+t+ 1

k
· t+ 1

k
V

= ℓx+t

(
tV +

Pt

k
− Et

k

)
− v

1
k

(
ℓx+t+ 1

k
− ℓx+t

)
· St (3.19)

† 残念なことに，t = k/j としての [t, t+ 1
k
] 期における死 ℓx+t+ 1

k
− ℓx+t を表す記号

は用意されていない。金利についての記号 i(k), d(k) の発想に倣うならば

d
(k)
x+t

k
= ℓx+t+ 1

k
− ℓx+t

と定義すれば良いのだが，d(k) と紛らわしいので，この記号は使用しない。ただし，
概念としてこの記号を意識しておくと，(k) モデルの d

(k)
x+t から k → ∞ として瞬間

死亡率 δk に移る過程が辿りやすいと思う。

Remark. 保険料が定値の場合には Pt

k
は P (k)

k
であり，年金額が 1 ならば Et

k
は 1/k。

微分方程式による記述

(3.18) は再帰式ではあっても t+1V − tV を求める形にはなっていない。(3.19) に
ついても同様。それならば，差の形に直せば良さそうなものだが，差の形を簡潔な
式で表すことは，一般的には無理。
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面白いことに，と言うよりは，このことこそ無限小解析（微分法）の強みなのな
のだが，k のままでは難しかった作業が k → ∞ にすると簡単になることが多い。そ
れでは，現代の「微分積分学」の教科書的教養から離れて，古典的な無限小解析の
発想で k → ∞ を考察してみよう：

1. △t
def
= 1

k
とおく。k → ∞ は△t → +0 を意味する。

2. △V
def
= t+ 1

k
V − tV とおく。

3. △ℓ
def
= ℓx+t+ 1

k
− ℓx+t とおく。

このように記号を定めた上で，(3.19) を(
1− d(k) · △t

)
· (ℓx+t +△ℓ) · (tV +△V )

= ℓx+t (tV + Pt · △t− Et · △t)

−
(
1− d(k) · △t

)
· △ℓ · St

と書き換え，展開して△t, △ℓ, △V について

1. 0 次の項

2. 1 次の項

3. 2 次以上の項

にまとめる。
左辺は，

1 · ℓx+t · tV
+ 1 · ℓx+t · △V + 1 · △ℓ · tV − d(k) · △t · ℓx+t · tV
+ 1 · △ℓ · △V − d(k) · △t · ℓx+t · △V − d(k) · △t · △ℓ · tV
− d(k) · △t · △ℓ · △V

となる。8 個の項が出てきて面倒なのだが，実は後で見るように，2 次以上の項は
具体的に計算する必要はなく，慣れれば最初から捨ててしまって良い。
同様に，右辺は，

ℓx+t · tV
+ ℓx+t · (Pt − Et) · △t+△ℓ · St

− d(k) · △t · △ℓ · S
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となっている。

微分という考え方が通用するための必須の条件は，つまり，t 7→ tV が微分可能
であるための必要条件の１つは，0 次の項が打ち消し合って存在しないことである。
この条件は，左辺と右辺の 0 次の項が共に ℓx+t · tV なので満たされている。
次に，t 7→ ℓx+t が微分可能であること，つまり

lim
△t→0

△ℓ

△t
が収束する

ということ必要なので，これを仮定し，

µx+t
def
= − 1

ℓx+t

· lim
△t→0

△ℓ

△t

と定義する（死力の定義）。

厳密には，この段階で，左辺と右辺を見比べて，△t → 0 のとき△V → 0 となる
ことを確認しておく。

左辺と右辺の差（これは零）を△t で割ると，0 次の項は打ち消し合い，2 次以上
の項はすべて△t → 0 のとき 0 に収束するので，

ℓx+t ·
△V

△t
+

△ℓ

△t
· tV − d(k) · ℓx+t · tV − ℓx+t (Pt − Et) +

△ℓ

△t
· St

は 0 に収束する。 △t → 0 の極限をとると

ℓx+t ·
d

dt
tV − ℓx+t · µx+t · tV − δ · ℓx+t · tV − ℓx+t (Pt − Et)− µx+t · ℓx+t · St → 0

であり，ℓx+t で割って死力の定義を用いると

d

dt
tV = (µx+t + δ) · tV + Pt − Et − µx+t · St (3.20)

という微分方程式（Thiele の微分方程式）が得られる。

Remark. 右辺第１項の δ との積は利力 δ による責任準備金の増加，Pt−Et は保険
料収入と生存給付に依る増減，第３項は死亡給付の支払いと納得がいくのだが，第
１項の µx+t との積 µx+t · tV は分かりづらいかも知れない。これは，契約者の人数
が減少することに依る「１人あたりの分け前」の増加という効果。
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3.2.4 将来法

将来法による責任準備金

将来法による責任準備金についても，Et, St, Pt が定値E, S, P である場合に「基
本的な記号」で表してみよう。定値である場合には

tU
f =

{
E

n−1∑
s=t

ℓx+s ·
⌈
s

1

∣∣∣∣+ S

n−1∑
s=t

dx+s ·
∣∣∣∣s+ 1

1

⌉
+ ℓx+n

[
n

E

]}

− P
n−1∑
s=t

ℓx+s

⌈
s

1

∣∣∣∣
であり，

tU
f =

{
E

n−1∑
s=t

ℓx+s ·
⌈
s

1

∣∣∣∣+ S
n−1∑
s=t

dx+s ·
∣∣∣∣s+ 1

1

⌉
+ ℓx+n

[
n

E

]}

− P
n−t−1∑
s=0

ℓx+t+s

⌈
t+ s

1

∣∣∣∣
=

{
E

n−t−1∑
s=0

ℓx+t+s ·
⌈
t+ s

1

∣∣∣∣+ S
n−t−1∑
s=0

dx+t+s ·
∣∣∣∣t+ s+ 1

1

⌉
+ ℓx+n

[
n

E

]}

− P
n−t−1∑
s=0

ℓx+t+s

⌈
t+ s

1

∣∣∣∣
= ℓx+t

{
E äx+t:n−t⌉ + S A 1

x+t:n−t⌉
+ A

x+t:
1

n−t⌉

}
− ℓx+t · P · äx+t:n−t⌉

となるので，

tV = E · äx+t:n−t⌉ + S · A 1
x+t:n−t⌉

+ A
x+t:

1
n−t⌉

− P · äx+t:n−t⌉ (3.21)

を得る。

養老保険の責任準備金

(3.21) から導かれる等式をまとめておこう。特に重要なケースは，養老保険で保
険料が年払いのケースである：

tV x:n⌉ = Ax+t:n−t⌉ − Px:n⌉ · äx+t:n−t⌉ (3.22)
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右辺には，äx+t:n−t⌉, Ax+t:n−t⌉, Px:n⌉ が現れるが，基本セット

1 = d · äx:n⌉ + Ax:n⌉

Ax:n⌉ = Px:n⌉ · äx:n⌉
1 = d · äx:n−t⌉ + Ax+t:n−t⌉

Ax+t:n−t⌉ = Px+t:n−t⌉ · äx+t:n−t⌉

を用いて，右辺を

1. すべて，d と äx:n⌉, äx+t:n−t⌉ で表す

2. すべて，d とAx:n⌉, Ax+t:n−t⌉ で表す

3. すべて，d と Px:n⌉, Px+t:n−t⌉ で表す

という３通りの書き換えを行うことが出来る。面白いことに，最初の２つでは，d

は消えてしまい右辺に残らない：

基本セット２（責任準備金）

tV x:n⌉ = 1−
äx+t:n−t⌉

äx:n⌉
(3.23)

tV x:n⌉ =
Ax+t:n−t⌉ − Ax:n⌉

1− Ax:n⌉
(3.24)

tV x:n⌉ =
Px+t:n−t⌉ − Px:n⌉

Px+t:n−t⌉ + d
(3.25)

これは，責任準備金の基本セットとでも言うべき等式で，

(3.23) 式： ３つの未知数 tV x:n⌉, äx+t:n−t⌉, äx:n⌉ の間の等式。したがって，３つの
未知数の２つを既知として与えることにより，残りの１つを問うことが出来る

(3.24)式： ３つの未知数 tV x:n⌉, Ax+t:n−t⌉, Ax:n⌉ の間の等式。したがって，３つの
未知数の２つを既知として与えることにより，残りの１つを問うことが出来る

(3.25)式： ４つの未知数 d, tV x:n⌉, Px+t:n−t⌉, Px:n⌉ の間の等式。したがって，４つ
の未知数の３つを既知として与えることにより，残りの１つを問うことが出
来る
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という仕掛けにより，問題の宝庫となる。

[83-(4)] äx = 10, äx+t = 9 とするとき、tVx の値は次のどれか。

(A) 0.9 (B) 0.7 (C) 0.5 (D) 0.3 (E) 0.1

[84-(9)] Ax = 0.5, Ax+t = 0.6 のとき、tVx の値は次のどれか。

(A) 0.5 (B) 0.4 (C) 0.3 (D) 0.2 (E) 0.1

[85-(8)] P1
x:n⌉

= 0.005, Px:n⌉ = 0.025, Px = 0.015 のとき、nVx は次のうちど

れか。

(A) 0.200 (B) 0.300 (C) 0.400 (D) 0.500 (E) 0.600

Ans. tV x = 0.5

Remark. この問題は，ここに置くのは不適切であり，実は過去法により解く問題。
まず，n を t に書き換えると，P1

x:t⌉
= c1, Px:t⌉ = c2, Px = c3 が与えられているとし

て，tV x を求める問題であり，過去法の責任準備金として

A
x:

1
t⌉
· tV x = Px · äx:t⌉ − A1

x:t⌉

の両辺を äx:t⌉ で割った形で

P
x:

1
t⌉
· tV x = Px − P1

x:t⌉

つまり（ P
x:

1
t⌉
= Px:t⌉ − P1

x:t⌉
= c2 − c1 なので）

(c2 − c1) · tV x = c3 − c1
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[88-(7)] i = 6%, Px:20⌉ = 0.028, 10V x:20⌉ = 0.357 のとき、Px+10:10⌉ の値に最も
近いものは次のうちどれか。

(A) 0.060 (B) 0.065 (C) 0.070 (D) 0.075 (E) 0.080

Ans. D

Remark. n = 20, t = 10 と置けば，養老保険の（将来法による）責任準備金を年
払い保険料で表す式

tV x:n⌉ =
Px+t:n−t⌉ − Px:n⌉

Px+t:n−t⌉ + d

を用いる形であり，d = i/(1+ i) = 0.0566なので，Px+t:n−t⌉を未知数X, tV x:n⌉ = c1,

Px:n⌉ = c2 として

c1 =
X − c2
X + d

をX の１次方程式として解けば良い。

[88-(8)] tV
x:

1
n⌉

= 0.450, t+1V
x:

1
n⌉

= 0.583, ℓx+t = 50000, ℓx+t+1 = 45000, i =

5%のとき、P
x:

1

n⌉
の値に最も近いものは、次のうちどれか。

(A) 0.0434 (B) 0.0455 (C) 0.0476 (D) 0.0497 (E) 0.0518

Ans. D

Remark. 漸化式を使う問題：

ℓx+t+1 · t+1V
x:

1
n⌉

= ℓx+t

(
tV

x:
1
n⌉

+ P
x:

1
n⌉

)
(1 + i)

[82-(15)] px = 0.5, A1
x:1⌉

= 0.4, 1Vx = 0.05 のとき Px の値はつぎのとおりで

ある。

(A) 0.36 (B) 0.38 (C) 0.40 (D) 0.42 (E) 0.44
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Ans. D

Remark. これは，終身養老保険についての漸化式

ℓx+t+1 · t+1V x = (1 + i) (tV x + Px) ℓx+t − dx+t

を t = 0 として使う問題：

ℓx+1 · 1V x = (1 + i) (0V x + Px) ℓx − dx = (1 + i) (0 + Px) ℓx − dx

= (1 + i) · Px · ℓx − dx

px · 1V x = (1 + i) · Px − qx

i の値は与えられていないのだが，これは

A1
x:1⌉

= v · qx = v(1− px)

から求められ，1 + i = 1.25.

3.2.5 複雑な問題

保険数学での責任準備金は

1. 保険というオブジェクトが与えられ，その現在価値A を求める

2. 保険料の納付を表すオブジェクトが与えられ，A から保険料を求める

3. t における責任準備金を求める

という流れをとる。しかし，設定によっては，保険というオブジェクトの仕様に，そ
の責任準備金が絡むものも考えられる：

保険金年度末支払いの終身保険に特約をつけて，契約から n 年以内に被
保険者が死亡すれば，その年度末に通常の死亡保険金に責任準備金を付
加して支払うこととし，その対価として n 年間に特別保険料を平準で徴
収することにした。このような特別保険料を計算してみよう。

この設定では，死亡保険の支払額自身に責任準備金を先取りして組み入れているの
で，通常のアプローチで計算しようとしても，循環論証のようになってしまう。そ
こで
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1. 普通の終身保険の平準保険料に特別保険料を加えた額を P ′ とし，

2. n 年以内の（つまり，t ≤ n での）責任準備金を tV
′ とする。

このとき，t = n 時点での nV
′ を将来法で考えると，将来支出も将来収入も通常の

設定に戻っているので，nV
′ = nV x

また，t ≤ n での漸化式は

ℓx+t−1 (t−1V
′ + P ′) (1 + i)− dx+t−1 · (1 + tV

′) = ℓx+t · tV ′, t = 1, 2, . . . n

このような漸化式では，両辺の総和をとって中間の項を打ち消し合わせることが常
套手段なのだが，この場合は前処理が必要：
両辺に vt をかけると

ℓx+t−1 · t−1V
′ · vt−1 + ℓx+t−1 · P ′ · vt−1 − dx+t−1 · (1 + tV

′) · vt = ℓx+t · tV ′ · vt

これで，左辺第１項と右辺は総和をとるとうまく打ち消し合う形になっているのだ
が，それだけでは，左辺第２項に tV

′ が現れているので，P ′ を求めることは出来な
い。しかし，幸いなことに，左辺第２項の dx+t−1 · tV ′ · vt を右辺に移項すると，右
辺は ℓx+t−1 · tV ′ · vt となるので，両辺を ℓx+t−1 で割って

t−1V
′ · vt−1 + P ′ · vt−1 − qx+t−1 · 1 · vt = tV

′ · vt

この式の両辺を t = 1 から n まで総和をとると，

0V
′ · v0 + P ′

n∑
t=1

vt−1 −
n∑

t=1

qx+t−1 · vt = nV
′ · vn

となる。ここで，0V
′ = 0, nV

′ = nV x なので

P ′ · än⌉ −
n∑

t=1

qx+t−1 · vt = nV x · vn

であり，P ′ が求まる。

Remark. 「幸いなことに」と言ったが，死亡した被保険者に責任準備金を支払う
ということは，

生存している被保険者が減るために１人あたりの責任準備金が増加する

という効果が無効になるということで，後付けの説明としてならば，漸化式の ℓx+t−1

と ℓx+t の違いがなくなることは納得できる。
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第4章 第４回

4.1 営業保険料と責任準備金（初年度経費の償却）

4.1.1 営業保険料

営業経費として，α, β, γ, γ′ を考える：

1. 初年度経費 α

2. 保険料の払い込みと同時に発生する経費 β

3. 保険料払込期間に発生するその他の経費 γ

4. 保険料払い込み終了後の残りの契約期間で発生する経費 γ′

これらは，例えば β は保険料に比例して発生する，α は保険金額に比例して発生
する等，テキストでは一応は設定されているが，他の設定もあり得る。これらの費
用まで考慮して収支相等となるように定めた保険料を営業保険料という。保険料が
平準の場合，営業保険料も平準とすることが多い．営業保険料の計算は簡単なので，
省略する。

4.1.2 初年度経費α

営業保険料まで考慮しての責任準備金 tV
∗ について考える。

この場合，経費 α, β, γ, γ′ について大切な点は，これらの費用の発生時期の違い
である。

まず，β と γ は，営業保険料に組み込まれているのだが，この上乗せ部分の収入
と費用の発生が同時だと見なしてしまう。したがって，なんらかの意味で責任準備
金を考える場合，これらは既に打ち消し合っていると考えて，無視してしまって構
わない。
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γ′ も営業保険料に組み込まれているのだが，これは

1. 対価として上乗せされた部分の収入が終わった後に（保険料払い込み期間終了
後に）

2. 経費が発生する

という時間のずれがあるので，無視するわけにはいかない。しかし，先に余分に保
険料を預かってから，その後にそれが減っていくことになるので，保険会社の経営
の健全性という意味では，責任準備金についての制度を決める際には重要ではない。
取りあえず，これも無視しておいて，後から考慮すれば良い。

一方，α は保険契約を得るために必要な経費であり，額も大きく，なによりも，

1. 最初に発生し

2. その後から長い年月（保険料払込期間）をかけて収支相等となる

という性格のものであり，無闇に大きな値を許すと，経営の健全性という意味で危
険な要因となる。したがって，α をどのように責任準備金に組み入れるかという制
度上の問題が発生する。これは，数学の問題ではなく制度の問題であり，数学とい
う立場からは「営業保険料まで考慮した場合の責任準備金は，任意に定義して良い」
ということになるので，ここまでの章の内容とは発想が異なる。

4.1.3 バランスシート（貸借対照表）

たぶん，良く理解している人から見れば怪しげな説明なのだろうが，敢えてバラ
ンスシートについて説明する。バランスシートは

1. 左側・・・・・・資産

2. 右側・・・・・・負債 ＋ 純資産

という形をとり，左側の合計金額と右側の合計金額は常に等しい。

今，三億円の自己資金をもっている人が，銀行から二億円を借りたとしよう。こ
の瞬間のバランスシートは

左側（資産） 五億円の銀行預金
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右側（負債 ＋ 純資産） 　二億円（負債）　＋　三億円（純資産）

という形であり，バランスは取れている。また，純資産は名前の通り「純資産」で
あり，これの増減が「利益が生じたのか，損したのか」を反映する。
次に，この五億円をすべて株式投資につぎ込んだとしよう。１年後に，株式の価
格が四億円に減っていた場合，バランスシートでは左右の金額が等しいということ
は公理のような要請なので，（銀行からの負債の利息を無視したとしても）自己資本
は二億円になる。
しかし，投資した株が２年以内に必ず２倍に値上がりすることが，「ダチョウの占
い」（これは絶対的信頼性がある）により保証されいてるとしよう。この場合に，所
有株式を現在の市場価格で四億円と評価するのは知識の欠如による評価であり，「市
場価格により評価する」ということが制度として決められていない限り，必然性は
ない。
もう少し真面目な話にすると，所有する株式の評価を時価ではなく取得価格とす
ることも，制度としてあり得る。

また，投資したものが工作機械だとした場合，その機械の１年後の価値をどう評
価するかは，制度の問題であり（税金に絡むので深刻な問題），少なくとも数学が
カバーする問題ではない。

このように，バランスシートの左側には「制度の問題」が絡むのだが，幸いなこ
とに，保険数学では，左側（資産）はすべて現金（銀行預金）と考えても良さそう
なので，バランスシートの左側の解釈では悩まなくて良い。

したがって，バランスシートの左側（資産）は制度からは独立に決まっていると
考えて良く，残る問題は

負債　＋　純資産

の配分ということになる。

通常の負債では，それは契約により確定しているので，解釈の問題は生じない。
したがって，資産から負債を引いた値として，自己資本の値が従属変数のように決
まることになる。
保険数学でのバランスシートは，保険会社から見ての，ある保険の被保険者集団
との関係であり

1. 資産は，払い込まれた（営業）保険料から生存給付や死亡給付，解約返戻金な
どの純保険数学的支出と，経費を引いた残り（制度から独立に決まる）
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2. 通常のバランスシートの負債に相当する部分は，被保険者に対して将来行わな
ければならない支出額から収入額を引いた，ある意味での負債（将来法的な考
え方による負債）

となる。しかし，

1. 将来行わなければならない支出総額は，その保険の契約により確定しているの
だが

2. 収入総額については，営業保険経費の上乗せ部分の解釈について，ある程度の
任意性がある。

この任意性を利用して，「営業保険料の上乗せ部分」をどのように反映させるかに
より，

「将来収入として責任準備金を計算する際の保険料」を制度として決
める。

そしてその結果として，tV
′ を決める色々な方式が生まれることになる。つまり，

t = 0, 1, 2, . . . n−1での（制度で設定した数値としての）年払保険料を決めることに
より，それを基準として「負債」に相当する部分を決めることにする。これを，（各
制度での）責任準備金とよび，tV

′ で表す。

4.1.4 養老保険 (γ′ = 0)

基本的方針

期間 n の保険金即時支払い保険料平準年払いの養老保険を例にとって，責任準備
金を考える。話を簡単にするため，γ′ は零とする。β と γ については，費用の発生
とそれらの対価の収入が同時であるとして，無視することが出来る。したがって，

β = γ = γ′ = 0

であるとして，初年度費用 α の「償却」のみを問題にすることになる。

バランスシートの左側に任意性はない（としておく）。また，責任準備金（バラン
スシートの右側の「負債」に相当）は
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保険契約により定められた将来支出 － （責任準備金算出の基準として
定めた保険料から決まる将来収入）

として決める。

初年度費用が発生した瞬間に（より正確には，その一瞬後に）資産は α だけ減る
ことなる。
だが，ここで β と γ が零でなくても無視することが出来た理由を思い出してみよ
う。それは，β や γ という費用を同時に収入される営業保険料の相当部分により支
払われると考えることが出来るためで，結果として

1. 資産は減ることはなく

2. 営業保険料の β や γ 相当部分は零

と考えられるためだった。その発想を活かして，α についても初年度営業保険料か
ら支払われると考えてしまうことにする。したがって，初年度費用による資産の減
少は生じない：

払い込まれた初年度保険料の値から α だけ減額する。

とは言っても，なにから減額するかは，まだ指定していないのだが，元々の保険料
は平準なのだから，２年度以降の（t = 1 時点以降の）保険料も平準とするのが自
然であろう。そこで，責任準備金を計算する基準とする保険料を

1. 初年度保険料は P1

2. それ以降の保険料は P2

としてみよう。

制度１

テキスト上巻で扱ってきた，純粋な保険数学の世界での考え方を流用するならば，
実際に収入される保険料（α の対価としての部分を含む）から減額するのが自然で
あろう：

1. 基準とする保険料は，実際に収入される平準保険料であり

P̄x:n⌉ +
α

äx:n⌉

なので，
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2. P1, P2 は

(a) P1 = P̄x:n⌉ +
α

äx:n⌉
− α

(b) P2 = P̄x:n⌉ +
α

äx:n⌉

3. したがって，t での責任準備金は

¯
tV

[nZ]
x:n⌉ =

¯
tV x:n⌉ −

α

äx:n⌉
· äx+t:n−t⌉ (4.1)

（責任準備金の記号についている「飾り」の意味は後で説明する）

制度２

次に，純粋な保険数学の世界での純保険料 P̄x:n⌉ から減額してみると

1. 基準とする保険料は α を考慮していない保険料であり，

P̄x:n⌉

なので，

2. P1, P2 は

(a) P1 = P̄x:n⌉ − α

(b) P2 = P̄x:n⌉

3. したがって，t での責任準備金は

¯
tV

[1Z]
x:n⌉ =

¯
tV x:n⌉ (4.2)

両者の比較

制度１と制度２では，制度２の方が厳しい制度（経営の健全性を強く要求する制
度）である。理由は単純で，

¯
tV

[nZ]
x:n⌉ <

¯
tV

[1Z]
x:n⌉

からであり，これは，バランスシートの左側が共通の値である以上，制度１で評価
した純資産の方が，制度２で評価した純資産よりも大きく評価されているため。
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制度２では，何時になっても（契約終了時点までは），− α
äx:n⌉

· äx+t:n−t⌉ という項が

残っているのだが，これは責任準備金という契約者集団からの債務に負の項が残っ
ていること，つまり，初年度費用の一部を契約者集団への債権とみなしていること
を意味している。一方，制度２では，t = 1 の時点で，負の項は消えて「純粋な保険
数学の世界での保険料」による責任準備金と一致している。

チルメル式責任準備金

一般化して両者を結ぶ制度を考えるならば，チルメル期間と呼ばれるh, 1 ≤ h ≤ n

を設定して，基準とする保険料を

1. 初年度保険料は P1

2. ２年度から（t = 1 から）h 年度まで（t = h− 1 まで）の保険料は P2

3. それ以降は P̄x:n⌉

4. P1 = P2 − α

とすることになる。収支相等が成立することにより，P1, P2 の値は

P1 = P̄x:n⌉ +
α

äx:h⌉
− α

P2 = P̄x:n⌉ +
α

äx:h⌉

と求められる。実際，契約開始時点においての h年間の将来収入現価を求めると(
P̄x:n⌉ +

α

äx:h⌉

)
· äx:h⌉ − α = P̄x:n⌉ · äx:h⌉

であり，h 年経過時点で制度２ と一致する．

このように設定した責任準備金を，

チルメル期間 h のチルメル式責任準備金

と呼び，記号

¯
tV

[hZ]
x:n⌉
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で表す：

¯
tV

[hZ]
x:n⌉ =

 ¯
tV x:n⌉ − α

äx:h⌉
· äx+t:h−t⌉ 1 ≤ t ≤ h

¯
tV x:n⌉ h < t ≤ n

制度１，制度２は，それぞれチルメル期間 n，チルメル期間 1 のチルメル式責任
準備金と考えることが出来る。

また，充足保険料式責任準備金，純保険料式責任準備金は，γ′ が零でない場合も
含めての，また，保険料払込期間が n より短いm の場合も含めての，チルメル期間
n, 1 のチルメル式責任準備金になる。

Remark. P1, P2 の値は，収支相等が成立するために

0 = (P1 − P̄x:n⌉) + (P2 − P̄x:n⌉)(äx:h⌉ − 1) (4.3)

= P1 − P2 + (P2 − P̄x:n⌉) · äx:h⌉

となることが必要であり，

α = (P2 − P̄x:n⌉) · äx:h⌉

となることから導かれる。初年度費用 α は既に初年度保険料 P1 で支払われている
と考えているので，等式 4.3 の左辺は零なのだが，分かりづらい。むしろ，初年度
保険料からは α を支払わないと考えて，つまり，初年度保険料も P2 と考えて，右
辺を初年度費用 α とする収支相等の等式

α = (P2 − P̄x:n⌉) · äx:h⌉

と考えてP2 を求め，その後で初年度費用をP1 = P2−αと考えた方がわかりやすい。

償却という意味

純資産と負債の合計に等しい預金を資産として保有する状態で，金額 α の工作機
械を買ったとしよう。預金は α だけ減るのだが，左側の資産には工作機械の評価額
αが計上されるので，資産の額は変わらない。これは，工作機械が将来に渡って利益
を生むことを前提とするならば，工作機械を売却することが出来ないとしても，そ
れなりの価値があると考えることが出来るため。しかし，経年変化等により工作機
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械の評価額は年々減少して計上されることになる。この評価額の減少を，資産とし
て計上された α の償却という（たぶん，そんなところ）。

Remark. 償却の方法（というよりは税務署の認める方式？）には，定額償却，定
率償却などがあり，さらに定率償却には残存価値のようなものがあるのだが，これ
らは年金数理の試験にも絡むので，結局，バランスシートについての勉強をするこ
とが必要。ただし，簿記の本は細部に立ち入りすぎなので，経済学の教科書に書い
てある説明（昔の感覚だと，サミュエルソンの「経済学」という楽しく読める読み
物）で十分だと思う。

それでは，初期費用として α が外部に（例えば保険勧誘の報奨金として）支払わ
れたとしよう。その瞬間に資産は α だけ減少するのだが，工作機械の評価額と同じ
センスで，「契約者への将来の支出を上回る保険料を受け取ることが出来る」という
理由で，α を資産に計上してしまう。したがって，資産は，預金は α 減るのだが新
たな資産 α が計上されるので，変わらない。しかし，年月の経過と共に，将来受け
取る（支出を上回）保険料の受取期間は減っていくので，初期に α と評価した「資
産」を償却する必要がある。
こうして，

α

äx:h⌉

を，

α を h 年で償却している

と見なすことが出来るようになる。

Remark. ただし，通常の償却と異なり，生命年金の形での（定額）償却となって
いることに注意。

Remark. ここで「責任準備金を計算するための基準の保険料」と言った P1, P2

を，テキストでは「純保険料」と言っているのだが，これは，おそらく，β, γ, γ′ を
営業保険料の守備範囲とする一方，α は「償却すべきなにか」と捉えて純保険料の
側に入れているためではないかと思う。この広義の「純保険料」と区別するために，
「純粋な保険数学の世界での保険料」という長たらしい言い回しを用いた（困ったこ
とだ）
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以上，頼りない説明で申し訳ないが，試験に関する限り，あまり心配はないと思
う。要するに，

チルメル式責任準備金とP1, P2 を定義として覚えて，それを基にして考
えれば良い

ということ。

4.2 連合生命

4.2.1 単純な連合生命

単生命

x 歳のアライグマと y 歳のフェネックの連合生命について考える。

アライグマの小箱というものがあって，この小箱には

1. ランプと

2. 時間と共に変化する年齢カウンタ x

が付いていて，ランプは，アライグマが生存している間は点灯しているが，死亡す
ると消灯する。フェネックの小箱も同様。
生保数理は，アライグマとフェネックそのものを観察する必要はなく，２つの小
箱のランプと年齢カウンターについての情報のみで展開することが出来る。

重要な点は，

どのような保険契約であろうと，契約時点ではランプは点灯している

ということ（当たり前だ！）。

連合生命

アライグマの小箱とフェネックの小箱が入った箱があって，

1. ２つの小箱の年齢カウンター x と y を表示する年齢カウンター

x = (x, y)
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2. ２つの小箱のランプから，ある回路で状態が決定されるランプ

が付いているとする。ただし，このランプの状態を決定する回路は

1. ２つの小箱のランプが両方とも点灯している初期状態では点灯

2. 消灯すると，二度と点灯することはない

という条件を満たすように設計されているとする。
この（外側の）箱を年齢 x の連合生命という。連合生命は，回路設計を指定する
ことにより，決まる。

重要なことは，

どのような連合生命についての保険契約であろうと，契約開始時点では
（外側のランプが点灯しているだけでなく）箱の中に隠された２つのラ
ンプも両方点灯している

ということ（当たり前なのだが，少し嫌な気配が漂う）。外側のランプが点灯してい
るだけでなく，内側の小箱のランプがすべて点灯している状態を

完全な状態

ということにしよう。

「回路設計」の具体例を考えよう。

連合生命１： tpx = tpx · tpy の場合

最初に，x = (x, y)で tpx = tpx · tpy の場合について考える。
テキストの記号に従って，tpx を tpxy と書く：

tpxy = tpx · tpy

また，

tqxy = 1− tpxy

t|qxy = tpxy − t+1pxy

と定義する。したがって，

tqxy = 0|qxy + 1|qxy + · · ·+ t−1|qxy
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Remark. この連合生命は，

x 歳のアライグマと y 歳のアライグマの，いずれか一方が死ぬと連合生
命として死亡

という連合生命だが，それだけでなく，重要な仮定として

アライグマが死亡という事象と，フェネックが死亡という事象は独立

ということを仮定している。実際には，連合生命としての保険に加入するような関
係ならば（アライグマとフェネックが保険に加入するかは別として），共に行動す
ることも多く濃厚接触の状態にあるので，生存の確率が独立であることを仮定する
ことは難しい。しかし，連合生命のモデルとしては，独立性を仮定する。保険数学
としての連合生命では，多くの場合，特に明言しなくても独立性を仮定している。

Remark. 生存確率 tpx の余事象として死亡確率を考える立場から tqx を定義した。
ただし，生存は継続である一方，死亡は瞬間での出来事であり，その点は慎重に扱
う必要がある（後で，死亡の順序に依存する連合生命を考えるが，そのときには特
に注意が必要）。

この連合生命は，連合生命を構成するアライグマとフェネックが生命表を持つな
らば，生命表を持つ：

t+spxy = t+spx · t+spy

= (tpx+s · spx) (tpy+s · spy)
= tpx+s · tpy+s · spx · spy
= tpx+s,y+s · spxy

ここで「生命表を持つ」と言った意味は，等式

t+spxy = tpx+s,y+s · spxy

が成立することなのだが，なぜそれを「生命表を持つ」というかは，次の連合生命
２の場合と比較して説明することにする。

いつまでもアライグマとかフェネックを振り回すでもないので，それぞれの年齢
を示す文字 x, y を流用して，(x), (y) と呼ぶことにする。
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連合生命２： tqx = tqx · tqy の場合

これは，x = (x, y) であって，(x), (y) 両者が死亡して初めて死亡とする連合生命
に対応する。この連合生命を考えているときには，添え字 xy に overline を引いて

tpxy といった記号を用いる。

tpxy は，条件

t+spxy = tpx+s,y+s · spxy

を満たさない。これは，右辺の tpx+s,y+s が，

完全な状態の連合生命を初期状態として想定しているため

である。つまり，

最初の (x),(y) が，s 年経過時点した時点で両者共に生存している場合以
外では，その時点からの生存確率を tpx+s,y+s とすることが出来ない

という（残念な）事情のためであり。この連合生命の場合，s 年経過した時点で（箱
を開けて）３通りのケースに分けて，式を立てる必要がある：

t+spxy = tpx+s,y+s · (spx spy)

+ tpx+s · (spx sqy)

+ tpy+s · (sqx spy)

右辺の項は，それぞれ最初から時間が s 経過した時点で

1. 両者共に生存

2. (x) のみ生存（年齢は x+ s 歳になっている）

3. (y) のみ生存（年齢は y + s 歳になっている）

の場合に対応する。

生命表を持つということ

等式

t+spxy = tpx+s,y+s · spxy (4.4)
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は成立するが，等式

t+spxy = tpx+s,y+s · spxy · · · · · ·（この式は成立しない） (4.5)

は成立しない。
等式 (4.4) が成立する結果として，任意の数値 ℓxy を基準として選んでおき

ℓx+t,y+t = tpxy · ℓxy

と定義すると，t1 ≤ t2 に対して

ℓx+t2,y+t2

ℓx+t1,y+t1

=
t2pxy · ℓxy
t1pxy · ℓxy

=
t2−t1px+t1,y+t1 · t1pxy

t1pxy
= t2−t1px+t1,y+t1

となるので，x′ = x+ t1, y
′ = y + t1, t = t2 − t1 と置くと

ℓx′+t,y′+t

ℓx′y′
= tpx′y′

であり，x, y 以降の年齢x′, y′ についても，ℓx′+t,y′+t が「生存確率を与える表」となっ
ていることがわかる（これが，「生命表を持つ」ということの意味）。ただし，x′, y′

は x′ − x = y′ − y となるものに限る。

一方，tpxy については，等式 (4.5) が成立しないので，このような望ましい性質
をもった表を定義することが出来ない。これは，tpx+s,y+s の意味を考えてみると分
かる：

tpx+s,y+s は，(x+ s), (y + s) の両者共に生存している状態から t 年経過
後の生存確率を表している。一方，t+spxy は，初期状態では完全ではあ
るものの，s 年経過後に両者共に生存していることかどうかは問題にし
ていない。

より複雑なケース

連合生命を構成する人数が 3 人，4 人と増すに従って，より複雑な連合生命を考
えることが可能になる。

tpxy のタイプの連合生命ならば，tpxyz, tpxyzu, tpxyzuv と人数が増えても，実質的に
は単生命と同じことで（生命表を持つということの強み），なにも問題は生じない。
一方，tpxyz となると，等式 (4.4) に対応する等式の右辺は
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1. (x),(y),(z) が生存の場合

2. (x) と (y) が生存，(z) が死亡の場合

3. (y) と (z) が生存，(x) が死亡の場合

4. (z) と (x) が生存，(y) が死亡の場合

5. (x) が生存，(y) と (z) が死亡の場合

6. (y) が生存，(z) と (x) が死亡の場合

7. (z) が生存，(x) と (y) が死亡の場合

という 7 通りの場合に分けて（つまり，(x),(y),(z) が死亡という場合を除く 23 − 1

通りの場合に分けて）7 つの項を書かなければならない。さらに，(x), (y), (z), (u)

の連合生命となると，右辺には 24 − 1 = 15 項が表れることになり，人数が増える
に従って，項の数は指数関数的に増加する。

さらにものごとを複雑にする要因は，連合生命としての生存の条件（ランプが点
灯しているための条件）を

1. (x) and (y) が生存

2. (x) or (y) が生存

とするときの，“and”と “or”が混ざって現れても良いためであり，例えば，(x), (y),
(z) の連合生命としての生存を

（ (x) and (y) が生存 ）or （ (z) が生存 ）

とする連合生命を考えることも可能。したがって，構成人数が多い連合生命につい
て，その一般形を議論することは無謀である。

また，m 人から成る連合生命であり，m 人のなかの少なくとも r 人が生存して
いるときは生存，という連合生命を考えることも可能。
例えば，m = 5 で (x), (y), (z), (u), (v) のなかの少なくとも r = 2 人が生存する確
率を記号

tp 2
xyzuv

で表す。tp 2
xyzuv

を tpx 等で表すためには，排反事象

101



• 5 人が生存している場合

• 4 人だけが生存している場合

• 3 人だけが生存している場合

• 2 人だけが生存している場合

に分けて計算する必要があるので，t 年経過後に r 人だけが生存している確率を，
記号

tp [r]

xyzuv

で表すことにすると，

tp 2
xyzuv

= tp [5]

xyzuv
+ tp [4]

xyzuv
+ tp [3]

xyzuv
+ tp [2]

xyzuv

となる。さらに，例えば，tp [3]

xyzuv
も，(x), (y), (z), (u), (v) のどの 3 人が生存してい

るかで 10 通りの場合があり，式を書くと（長い式になることを見せたいだけで，ど
うでも良いのだが）

tp [3]

xyzuv
= tpx tpy tpz tqu tqv + tpx tpy tqz tpu tqv + tpx tpy tqz tqu tpv

+tpx tqy tpz tpu tqv + tpx tqy tpz tqu tpv + tpx tqy tqz tpu tpv

+tqx tpy tpz tpu tqy + tqx tpy tpz tqu tpy + tqx tpy tqz tpu tpy

+tqx tqy tpz tpu tpy

となる（要するに 5 個のなかから 3 個を選ぶ組合せに従って 10 通りの積を書けば
良い）。

tp [2]

xyzuv
も 10 通り，tp [4]

xyzuv
は 5 通り，tp [5]

xyzuv
はひとつの項 tpx tpy tpz tpu tpv とな

るので，tp [3]

xyzuv
は合計

1 + 5 + 10 + 10 = 26

個の項の和として表される（つまり，やっていられない）。

その他，幾らでも複雑な連合生命を考えることが出来るのだが，基本的には，確
率の問題として丁寧に計算をすれば，（後で扱う条件付き生命確率を除けば）連合生
命を構成する個々の単生命についての基本的記号まで還元することができる。
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死力 µxy は

t+△t pxy − tpxy = tpxy · µx+t · △t+ tpxy · µy+t · △t

なので，

µx+t,y+t = µx+t + µy+t.

t+△t pxy − tpxy = tpx · tqy · µx+t · △t+ tqx · tpx · µy+t · △t

なので，

tpxy µx+t,y+t = tpx · tqx · µx+t + tqx · tpy · µy+t.

4.2.2 順序付き生命確率

順序付きの生命確率は，端的に言って，とても難しい。一般論は難しいので，む
しろ，連続モデルでの積分表示から考えた方がわかりやすいと思う。

連合生命の死力

順序付き死亡確率 tq1
x y
と tq1

x
2
y
の死力について考える：

1. tq1
x y
は，t 年間の間に，(y) に先だって (x) が死ぬ確率

2. tq1
x

2
y
は，t 年間の間に，最初に (x) が死亡し，次に (y) が死亡する確率

を意味する。

ここでは，死力を記号µx+t ではなく，µx+(t)であらわす。連合生命では，µx+t,y+t

という記号の使い方は，慣れていないと危険。

(x), (y) の死亡が独立であるという仮定により，極めて短い期間 [s, s + △s] で
(x), (y) 両者の死亡が発生する確率は無視して良い。したがって，期間 [s, s+△s] で
この連合生命が消滅する確率は，

1. tq1
x y
については，

• (y) は s 時点で生存していて，

103



• (x) は [s, s+△s] で死亡する

という事象の確率として，

spy
(
spx µx+(s)△s

)
であると考えて良く，この連合生命 x = (x, y) の死力 µx+(s) は

spx · µx+(s) = spx · spy · µx+(s) (4.6)

を満たす。また，

tq1
x y

=

∫ t

0
spx · spy · µx+(s) ds (4.7)

であり，

t|q1
x y

=

∫ t+1

t
spx · spy · µx+(s) ds (4.8)

2. tq1
x

2
y
については，

• (x) は s 時点で既に死亡していて

• (y) は [s, s+△s] で死亡する

という確率として，

sqx
(
spy µy+(s)△s

)
であると考えて良く，この連合生命 x = (x, y) の死力 µx+(s) は

spx · µx+(s) = sqx · spy · µy+(s) (4.9)

を満たす。この連合生命の場合，積分での表示は慎重に扱う必要がある。

積分による表示

少し後で，t|q
x
1

2
y
のような記号を使うことになる．ここでの記号 t| は，

t から始まる観察期間（この場合は [t, t+ 1]）を設定している
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ということを意味する．t| が付かない場合は，観察期間は t = 0 から始まると考え
る．この観察期間に関係して，数字が x, y の上にあるか下にあるかにより，以下の
ような意味の違いが生じる．

1. 2 が y の上に書かれていることは，(y) の死亡が観察期間内に（２番目の死亡
として）生じていることを表す．

2. 1 が x の下に書かれていることは，(x) の死亡は（１番目の死亡ではあるが）
必ずしも観察期間内に生じなくても良いということを表す．

3. したがって，t|q1
x

2
y
ならば，観察期間内 [t, t + 1]で (x) が最初に死亡し，次に

(y) が死亡することを表す．

4. ただし，記号 tq
x
1

2
y
の場合，記号には観察期間は現れないが，観察期間を [0, t]

と考えることができる（「それ以前の死亡」は考える必要がないため）．数字
は，特に最初の死亡 x の数字は，上でも下でも同じことになるが，ここでは

下に書く理由があるときのみ下に書く

という方針をとる．したがって， tq1
x

2
y
と書くべきなのだが，f |tq

x
1

2
y
の f を零

に近づけたものと考えると，tq
x
1

2
y
と書きたい気もする．この辺りは，曖昧．

tq
x
1

2
y
の積分表示は，(x) の死亡と (y) の死亡の２つの瞬間が関わるので，本来は重

積分となるのだが，(x),(y) のどちらか一方の死亡に着目して，（重積分ではなく）普
通の積分で表すことができる：

1. (y) が s 時点で死亡（その時点で (x) は既に死亡）として積分すると，

tq
x
1

2
y
=

∫ t

0
sqx · spy · µy+(s) ds (4.10)

であり，

t|q
x
1

2
y
=

∫ t+1

t
sqx · spy · µy+(s) ds (4.11)

となる。なお，t ≤ s ≤ t+ 1 に対して sqx を排反事象の確率

• [0, t] で (x) が死亡する確率 tqx
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• [t, s] で (x) が死亡する確率 sqx − tqx

に分けて考えると，

t|q
x
1

2
y

=

∫ t+1

t
sqx · spy · µy+(s) ds

=

∫ t+1

t

(tqx + sqx − tqx) · spy · µy+(s) ds

= tqx

∫ t+1

t
spy · µy+(s) ds+

∫ t+1

t

(sqx − tqx) · spy · µy+(s) ds

であり，右辺第１項は tqx · t|qy, 第２項は t|q1
x

2
y
に等しいので，等式

t|q
x
1

2
y
= tqx · t|qy + t|q1

x
2
y

(4.12)

を導くことも出来る（この等式は，両辺それぞれの意味を考えれば明らか）。

2. (x) が s 時点で死亡（その時点で (y) は生存していてその後の t− s の間に死
亡）として積分する。ただし，「その時点で (y) は生存していてその後の t− s

の間に死亡」を「その時点で (y)は生存しているが t時点では生存していない」
と言い換えてから積分する：

tq
x
1

2
y
=

∫ t

0
spx · µx+(s) · (spy − tpy) ds (4.13)

この等式 (4.13) は間違いを誘発しやすい等式である（被積分関数に t が入って
いることに注意）。

t|q
x
1

2
y
= t+1q

x
1

2
y
− tq

x
1

2
y

(4.14)

であり，

tq
x
1

2
y
=

∫ t

0
spx · µx+(s) · (spy − tpy) ds

なのだが，単純に積分区間の差をとって

t+1q
x
1

2
y
− tq

x
1

2
y
=

∫ t+1

t
spx · µx+(s) · (spy − tpy) ds
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とは出来ない（t+ 1 までの積分のときには tpy ではなく t+1py）。したがって，
前処理が必要であり，

t+1q
x
1

2
y

=

∫ t+1

0
spx · µx+(s) · (spy − t+1py) ds

=

∫ t+1

0
spx · µx+(s) · (spy − tpy) ds+

∫ t+1

0
spx · µx+(s) · (tpy − t+1py) ds

としてから差をとると（最後の右辺第１項は tq
x
1

2
y
と同じ被積分関数なので），

t|q
x
1

2
y

=

∫ t+1

t
spx · µx+(s) · (spy − tpy) ds+

∫ t+1

0
spx · µx+(s) · (tpy − t+1py) ds

=

∫ t+1

t
spx · µx+(s) · spy ds

−
∫ t+1

t
spx · µx+(s) ds · tpy · · · · · ·この項と

+

∫ t+1

0
spx · µx+(s) ds · tpy · · · · · ·この項で

−
∫ t+1

0
spx · µx+(s) ds · t+1py

=

∫ t+1

t
spx · µx+(s) · spy ds

+

∫ t

0
spx · µx+(s) ds · tpy · · · · · ·この項になる

−
∫ t+1

0
spx · µx+(s) ds · t+1py

= t|q1
x y

+ tqx · tpy − t+1qx · t+1py

となるので，等式

t|q
x
1

2
y
= tqx · tpy + t|q1

x y
− t+1qx · t+1py (4.15)

を得る。
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ただし，積分の外に出せる項は先に出しておいて考えた方が簡単：

t+1q
x
1

2
y

=

∫ t+1

0
spx · µx+(s) · (spy − t+1py) ds

=

∫ t+1

0
spx · µx+(s) · spy ds

−
∫ t+1

0
spx · µx+(s) ds · t+1py

=

∫ t+1

0
spx · µx+(s) · spy ds− t+1qx · t+1py

同じく，

tq
x
1

2
y

=

∫ t

0
spx · µx+(s) · (spy − tpy) ds

=

∫ t

0
spx · µx+(s) · spy ds− tqx · tpy

したがって，

t+1q
x
1

2
y
− tq

x
1

2
y

=

∫ t+1

t
spx · µx+(s) · spy ds− t+1qx · t+1py + tqx · tpy

= t|q1
x y

+ tqx · tpy − t+1qx · t+1py

であり，等式

t|q
x
1

2
y
= tqx · tpy + t|q1

x y
− t+1qx · t+1py (4.16)

を得る。

等式 (4.16) は，

t|q
x
1

2
y
と t|q1

x y
の関係を，順序の関係しない基本的記号（この場合 tqx, tpy, t+1qx, t+1py）

のみを用いて与える等式

として重要である。

Remark. x,y の２名のうちで y が２番目の死亡ならば，x が１番目の死亡である
ことは必然．したがって，t|q

x
1

2
y
を t|q

x
2
y
と書いても良い．
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4.2.3 復帰年金

寡婦年金

期間n 年の，(x) の死亡により開始される (y) への生命年金を寡婦年金と言う。正
確に定義すると，

契約開始時点から n 年間の間で，(x) が死亡した場合，(x) が死亡した
期間を [j, j + 1) として，

1. t = j を（仮想的な）契約開始時点としての，

2. 期間 n− j 年の

3. 期末払いの

(y) への生命年金を支払う

ということになる。

期末払い生命年金として定義しているのだが，期始払い・期末払いという解釈を
離れて記述するならば，

(x) が [j, j + 1) で死亡すると，t = j + 1, j + 2, . . . , n において (y) が生
存している限り 1 を支払う

ということ。この現在価値を，記号

ax|y::n⌉

で表す。

Remark. 期末払いと考えるか，期始払いと考えるかだが，これは一長一短：

1. t = j + 1 から開始される期始払いとして扱うと，（期始払い生命年金は開始時
点の 1 は必ず支払われることになってしまうので）t = j + 1 で (y) が死亡し
ていないという条件を加える必要がある。

2. その点は，期末払いと考えれば，自動的に (y) の生存チェックが行われるので
簡単になる。

109



3. しかし，期末払いと考えると，契約開始時点は t = j （確率 1 で (x) の死亡
以前）であり，このような契約は死神の助力が不可欠。したがって，あくまで
も，「仮想的な契約開始時点」である。また，(x) の死亡時点で既に (y) が死亡
している可能性もあるので，その意味でも「仮想的」。

しかし，責任準備金が絡まない限り，本質的な違いにはならないので，気にするこ
とはないと思う。

それでは，期始払い・期末払いという解釈からは離れて

ax|y:n⌉
def
=

n−1∑
j=0

(j+1qx − jqx) ·
n∑

ℓ=j+1

vℓ · ℓpy (4.17)

と定義することにしよう。

復帰年金

(4.17) の形で定義しておけば，x, y が単生命の年齢でなく，連合生命の年齢カウ
ンター x,y であっても，x, y を x,y に変えただけの同じ式で定義を拡張することが
出来る（復帰年金）：

ax|y:n⌉
def
=

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=j+1

vℓ · ℓpy

}
(4.18)

ただし，x を構成する連合生命と y を構成する連合生命に重複がないことは仮定
する。

(4.18) の右辺は二重級数の形であり，添え字 ℓ についての級数の範囲は j に依存
していることに注意。このような二重級数についても，総和の記号の順序を変える
ことは可能だが，総和の範囲も変わることになるので，少し難しい。n = 5 などの
具体例で総和をとる (j, ℓ) を図示して三角形の範囲となることを確かめておくと順
序変更の要点が分かると思う。このような具体的な図示で感性を養っておくと年金
数理などでも楽になるのだが，ここでは，ちょとしたトリックで順序変更をしてみ
よう。

1. j, ℓ に対して，２変数関数 φ≤(j, ℓ) を

φ(j, ℓ) =

{
1 if j ≤ ℓ

0 if j > ℓ
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と定める。

2. φ(j, ℓ) を用いると

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=j+1

vℓ · ℓpy

}
=

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=1

φ≤(j + 1, ℓ)vℓ · ℓpy

}

と書き換えることが出来る。

3. この式の右辺は（総和をとる範囲が固定されているので），単純な順序交換が
可能であり

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=1

φ≤(j + 1, ℓ)vℓ · ℓpy

}

=
n−1∑
j=0

n∑
ℓ=1

(j+1qx − jqx) · φ≤(j + 1, ℓ)vℓ · ℓpy

=
n∑

ℓ=1

(
n−1∑
j=0

(j+1qx − jqx) · φ≤(j + 1, ℓ)

)
vℓ · ℓpy

=
n∑

ℓ=1

(
ℓ−1∑
j=0

(j+1qx − jqx)

)
vℓ · ℓpy

と変形できる。

4. したがって，

ax|y:n⌉ =
n∑

ℓ=1

(
ℓ−1∑
j=0

(j+1qx − jqx)

)
vℓ · ℓpy

となるのだが，

5.
ℓ−1∑
j=0

(j+1qx − jqx) = ℓqx − 0qx = ℓqx なので，等式

ax|y:n⌉ =
n∑

ℓ=1

vℓ · ℓqx · ℓpy (4.19)

を得る。
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6. また，ℓqx を 1− ℓpx に書き直すと，

ax|y:n⌉ =
n∑

ℓ=1

vℓ · ℓpy −
n∑

ℓ=1

vℓ · ℓpx · ℓqy

= ay:n⌉ − axy:n⌉

となるので，等式

ax|y:n⌉ = ay:n⌉ − axy:n⌉ (4.20)

を得る。

なお，式変形で導いてはみたものの，このような計算に依る導出はあまり勧めら
れない。式変形のカラクリを感覚的に把握するためには，n = 5, n = 6 ぐらいの具
体的な値で，総和の記号を使わずに，すべての項を書いてしまう方が早道だと思う
（各項を，うまく三角形の形に並べて考えると良い）。

Remark. 等式 (4.19), (4.20) は，このような計算をしなくても，t = 1, 2, . . . , n 時
点での年金の支払い条件を考えれば，直接に書くことも可能。

上の式変形では，連合生命 x, y が生命表を持つことは仮定されていない。y が生
命表を持つ連合生命の場合には（特に単生命の場合には）

n∑
ℓ=j+1

vℓ · ℓpy =
n∑

ℓ=j+1

vℓ · ℓ−(j+1)py+j+1 · j+1py · · · · · ·m = ℓ− j − 1 と置くと ↓

=

(
n−j−1∑
m=0

vm+j+1
mpy+j+1

)
· j+1py

= vj+1 · äy+j+1:n−j−1⌉ · j+1py

なので，

ax|y:n⌉ =
n−1∑
j=0

(j+1qx − jqx) · vj+1 · äy+j+1:n−j−1⌉ · j+1py

という表示も可能。
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4.3 開集団
ここまで，脱退（死亡）したその先について考えることはなかったのだが，ここ
では

1. ある企業の社員の集団（閉集団）。この集団からの脱退は

(a) 死亡による脱退（その先は，追跡することは出来ない）

(b) 病気により退職

2. 病気により退職した（元）社員からなる集団（開集団）。これを副集団という。
この集団からの脱退は死亡のみ。

この設定を離散モデルで考える（実は連続モデルの方が簡単なのだが）。
難点は，

年度（期間）の途中で副集団に加入する人がいて，さらに面倒なことに，
その期での副集団からの脱退者には，期初の副集団には属していなかっ
たものもいる可能性がある

ということ。つまり，途中での加入を許す副集団の分析は込み入ったものになると
いうこと。
一方は，社員の集団は，（中途採用を行わないという前提でだが）閉集団と考える
ことが出来る。新入社員の採用があるにしても，ある時点での社員を閉集団として
（つまり，その後からの新入社員を含めずに）分析をすることができる。

やり口は２つ：

1. 記号は恐ろしくごちゃごちゃしてくるので，必要ならば，がまんして違いを理
解する。

2. ある社員に着目して，その社員が期間内に死亡し，かつ，（不思議な前提だがそ
れとは独立に）病気退職することが決まっているとしても，どちらが早いかま
では分からない。面倒なので，半々と見なす。また，期間途中で副集団に加入
すると，残りの期間で「副集団での脱退確率」により脱退することになるが，
残りの期間は不明。これは期間の半分とみなす。

ということ，要するに，

限りなく複雑な記号を用いて大雑把な推論をする

ということであり，初めての勉強のコースには不向き。これは，「ちょっと見ておく」
に留めるべきと思う。
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第5章 第５回

5.1 極限方程式

5.1.1 設定

年金数理では，

1. 企業Ａ（に属する現役社員の集団）

2. 企業Ａの年金基金

3. 年金受給者の集団（企業Ａの既退職者の集団）

という三者を考え，収支相等の原則に基づく年金財政方式について調べる。
現実には，事後的な結果は，財政方式にしたがって予測された通りにはならない
ので，この相違（利差益・死差益など）についての分析も必要になるが，ここでは，
財政方式そのものの理論に留める。各種財政方式の設計の背景には，この相違を回
復するための制度上の処理も含まれるのだが，それについても触れずに，年金財政
の純理論に限定して話を進める。

生保数理の場合と同様に，各種の設定があり得るのだが，過剰に複雑にならない
ために，テキストでは主に，次の設定で理論を構築している：

1. 時間は，t = 0, 1, 2, . . . と離散的なものとして扱う。

2. [t, t+ 1] 期の期初での基金の残高を Ft とする。

3. 期初に基金の残高を評価した直後に

(a) 企業から保険料Ct が納付され

(b) 年金受給者の集団に年金Bt を支払う

（すべて総額で考えていることに注意）
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4. この時点で，基金の残高は

Ft + Ct −Bt

5. 基金を 1 年間運用した結果，

6. [t+ 1, t+ 2] 期の期初における基金の残高 Ft+1 は

Ft+1 = (1 + i)(Ft + Ct −Bt)

となる。

こうして，Ft の漸化式

Ft+1 = (1 + i)(Ft + Ct −Bt) (5.1)

を得る。この漸化式が，年金数理における収支相等の原則を意味する。集団に対して
の収支相等であって，各個人についての収支相等までは要求していないことに注意。

5.1.2 制度発足時点

数列Bj, Cj, Fj の添え字となる時間 t の t = 0 は，年金制度の発足時点を意味す
る。この「制度発足時点」というものが，年金数理を難しくしている要因のひとつ
である。主な問題は，制度発足時点での既退職者や，退職年齢に近い社員に対して
年金を支給するか否か，また，支給する場合には全額を支給するのかという問題で
あり，これが，個人単位での収支相等が成立しない可能性に繋がる。

また，保険数学では，同時期に契約した契約者集団を考えることにより，定常的
状態での閉集団を考えるだけで済んだのだが（したがって，契約開始時点を t = 0と
すれば良かったのだが），年金数理では，制度発足時点という「歴史的時間の t = 0」
が関係するために，

1. 発足時点からの過渡現象という問題が落ち着くまでは，定常状態とは異なった
問題を解析しなければならない。

2. それには，過渡現象をどのようにして落ち着かせるか（収束させるか）という
制度設計も含まれ，
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3. さらに，予測とのずれが生じた場合にどのように軌道修正をするか（修正が可
能なのか）も，制度設計（の背景）に含まれる。

この「予測からのずれの修正」という問題まで来ると，もはや年金数理は数学の枠
組みには留まらない（のであまり触れないことにする）。一方，予想からのずれを想
定せずに過渡現象だけを問題にするならば（つまり収束の議論だけならば），数学
の枠組みに収まるので，そこまでは扱う。

Remark. 経過時間というよりは歴史的時間（制度発足時点からの経過時間など）
を意識しているときには，時間は t ではなく τ を用いる。例えば，

τ における ℓ′x 人の t 年後の人数は ℓ′x ·
ℓx+t

ℓx

といった使い分けをする（つもりだ）が，雰囲気の問題だけなので，気にしなくて
良い。

過渡現象の問題に立ち入る前に，過渡現象が終わった後の目標（つまり収束した
先の値）の分類を行う。

まず，「収束した先の値」という意味を明確にしておく必要がある。大前提は，

年金制度の財政方式は，Bj, Cj, Fj が一定の値に収束する（と期待でき
る）ように設計されている

ということである。Bj, Cj, Fj と同列に述べたが，実際には，最初に

Bj が一定の値になる

ということが確定している。これから考える財政方式では，制度発足 τ = 0 からあ
る程度の時間（最長でも，制度発足時点での新入社員が退職するまでの時間）が経
過した τ = τ0 以降では

Bτ0 = Bτ0+1 = Bτ0+2 = · · ·

となる。この値をB と置くことにする（B の値の意味については，後で述べる）。

5.1.3 極限方程式

制度発足から十分な時間 τ0 が経過すると Bj = B, j = τ0, τ0 + 1, . . . となるの
で，漸化式 (5.1) は

Fj+1 = (1 + i)(Fj + Cj −B) j = τ0, τ0 + 1, . . . (5.2)
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となる。したがって，財政方式により数列 {Cj}，もしくは，数列 {Fj} の一方を決
めると，もう一方は，この漸化式により決まる。

{Cj}, {Fj} が収束しないような財政方式も理論的には考え得るが，実際には，そ
の両者が収束する財政方式しか考えない。
Cj, Fj は，それぞれ値C, F に収束し，C, F , B は等式

F = (1 + i)(F + C −B)

を満たすことになる。この等式，もしくは，これと同値な等式

dF = B − C (5.3)

を極限方程式 と言う。

5.2 表の計算

5.2.1 前提と記号

基本的な記号（テキストで使用）

（新入社員の）入社年齢を xe, 定年年齢を xT として，社員は全員 xe 歳で入社し
xr 歳で退社するとしている。途中入社は想定しない。また，途中退職に対しての給
付は考えない（途中退職時点での給付は年金財政から切り離し，途中退職者への将
来の給付，例えば退職年齢に達してからの給付は，ここでは想定しない）。
（新入社員の）入社年齢 xe を加入年齢，定年年齢 xr を退職年齢と言うことに
する。

退職後の（普通の生命表としての）生命表を ℓx, x = xr, xr +1, . . . , ω とし, 在職
者の x 歳の人数としての生命表も同じ記号 ℓx, x = xe, xe + 1, . . . , xr − 1 で表す。

Remark. テキストでは在職者についての記号は ℓ(T ) としてるが，ここでは途中
退職への給付や途中入社を考慮していないので，添え字 (T ) は（面倒なので）省略
した。
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定常状態という前提

在職者，既退職者を問わず，ℓx の意味は生命表と言うよりは，

τ 時点における x 歳の人数

であり，ものごとが想定通りに進まない場合は（むしろ，実際には想定通りに進ま
ない方が普通），τ 時点における x 歳の人数は ℓ′x となる。それでも，τ 時点におい
て将来の予想を立てる際には，τ + 1 時点での x+ 1 歳の人数は

ℓ′x ·
ℓx+1

ℓx

であると想定することになる。つまり，次式右辺の ℓx は「想定された人数分布」で
あり現実には誤差が生じること覚悟しているのだが，ℓx から計算される生存確率

tpx =
ℓx+1

ℓx

は，依然として将来を予測するための基礎データとして，変更なしに使われる。

Remark. 記号が煩雑に煩雑になることを厭わないならば，

1. ℓx は，tpx = ℓx+t

ℓx
として生存確率 tpx を求めるための生命表

2. τ 時点における人数分布は，例えば ℓ(x, τ) のような２変数の記号で表す

3. したがって，ℓ(x, τ) の集団は，t 年後には ℓ(x+ t, τ + t) になる

とすれば良いのだが，面倒（なので採用しない）。しかし，死差益の分析等を考える
段階で混乱しそうなときは，このような面倒くさい記号も悪くないかも知れない。

Remark. 財政方式の分類をするときには，ものごとは想定通りに進むとしてい
る。また，新入社員の人数も毎年一定であり，在職者・既退職者の年齢分布は生命表
としての ℓx と一致する定常状態にあると仮定する（ので，面倒くさい記号は不要）。

時間を離散的に扱っているために，現実の世の中と異なる妙な状況も生じている：

年齢は，一種の「その企業での年齢」であり，τ = 0, 1, 2, . . . の瞬間に，
１歳年をとる。

また，入社の瞬間や退職の瞬間に在職しているのかを決めてしまう必要があるので
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1. 退職の瞬間には，既に既退職者となっているとする

2. 入社の瞬間には，既に在職中であるとする。

したがって，xr 歳の集団にもその年度の年金を支給し，また，xe 歳の新入社員も在
職者として保険料納付対象の人数に含められることになる。言い換えると，連続時
間の世界での在職年齢は [xe, xr) という区間ということになる。

5.2.2 給付現価

年齢と時間の表

在職者と既退職者の集団の時間的推移を追うために，年齢と時間（制度発足時点
からの経過年数 τ，もしくは，西暦）を縦横の軸にとっての人数の表を意識してお
く。現在価値を求めやすいように，横軸を t 進むに従って vt を乗じておく。

ある時間 τ における年齢 x 歳の集団は，1 年後の τ + 1 には x+ 1 歳になるので，
この集団は表を右斜め上に向かって進むことになる。次のページに，加入年齢（こ
こでは新入社員として入社する年齢）と退職年齢の差を 5 年，退職してから ω 歳ま
での年数を 4 とかなり小さくとってはいるが（だからこそ省略なしに書き込める），
模式的な表を載せておいた。さすがにテキストでは xr = xe + 5 とするわけにはい
かないので連続的な図（つまり境界を線分とする図）が載っているのだが，離散的
なモデルでは常に

境界はどちらの領域に属するのか

が大きな違いとなる。境界を意識するためには，模式的な図の方がわかりやすいと
思う。

斜め上に向かうベクトル

x 歳の集団は，1 年後には x + 1 になるので，表を右斜めに進む。この集団に対
しての給付現価（退職後に支給される年額 1 の期始払い生命年金）を定めるために，
以下の記号を用意する：
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表 5.1:

...

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

xe は加入年齢．　 xr は退職年齢．
ここでは，xr = xe + 5 としている．　また，xω = xr + 4 と考えて良い．
ℓ
(T )
x は　 ℓx と表記．
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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定義 1.

S(x)
def
=


∑
j=0

vj ℓx+j (xr ≤ x)∑
j=xr−x

vj ℓx+j (xe ≤ x ≤ xr − 1)

σ(x)
def
=

S(x)

ℓx
, (xe ≤ x)

† x 歳の在職者 ℓx 人については，xr − x 年後に xr 歳になって初めて支給が開始さ
れるので（そのときの人数は，定常状態という仮定により ℓx ·

ℓx+(xr−x)

ℓx
= ℓxr 人），

現在価値は

S(x) = vxr−x · ℓxr + vxr−x+1 · ℓxr+1 + vxr−x+2 · ℓxr+2 + · · ·

となっている。S(x) は集団に対しての総額であり，σ(x) は１人あたりの現在価値。

†† 在職者の S(x) において総和に含まれない部分

G(x)
def
=

xr−x−1∑
j=0

vj ℓx+j

については，後で人数現価として考察する。

等式（easy）：

S(x) = vxr−x · S(xr) (xe ≤ x ≤ xr − 1)

σ(x) =
Dxr

Dx

· σ(xr) (xe ≤ x ≤ xr − 1)

次の記号は，定年まで j 年の在職者（したがって x = xr − j 歳）についてのS(x)

を j で書き換えたものに過ぎない。なお，j = 0 のときには既に退職者なのだが，こ
の場合も，この記号で書いて良いとしている。
N = xr − xe と置く（表ではN = 5）。

定義 2.

S[j]xr

def
= S(xr − j) (0 ≤ j ≤ N)
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等式（easy）：

S[0]xr = S(xr)

S[N ]xr = S(xe)

S[j]xr = vj · S(xr)

同じく，j 年後に加入すると予定されている人数に対しての，現時点での支給現
在価値を定義する：

定義 3.

S[j]xe

def
= vj · S(xe) j = 0, 1, 2, · · ·

等式（easy）：

S[j]xe = vN+j · S(xr) j = 0, 1, 2, · · ·

以上を踏まえて，j = N + 1, N + 2, · · · の場合も含めて

S[j]xr

def
= vj · S(xr)

と定めることにする。したがって，

S[j]xe = S[N + j]xr j = 0, 1, 2, · · ·

等式（easy）：

S(x) =


∑
y=x

vy−x · ℓy (xr ≤ x)∑
y=xr

vy−x · ℓy (xe ≤ x ≤ xr − 1)

S[j]xr =
∑
y=xr

vy−xr+j · ℓy
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表 5.2: S(xr) = S[0]xr を網掛け表示

... S(xr) ⇓

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

† xe ≤ x ≤ xr − 1 の場合，S(x) において，x は金利に関わる項 vy−x に現れるだ
け。一方，σ(x) においては

σ(x) =
ℓxr

ℓx
·
∑
y=xr

vy−x

(
ℓy
ℓxr

)

なので，生存率 ℓxr
ℓx
と vy−xの項に現れるので，なにかと面倒。

平行移動

S[j]xr , j = 0, 1, 2, . . . は，表から分かるように，右側に平行移動しても（つまり，
S[j + 1]xr に変えても）S[j]xr が v · S[j]xr になるだけのことで，簡単。
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表 5.3: S[0]xr , S[2]xr , S[N ]xr を網掛け表示

... S[0]xr ⇓ S[2]xr ⇓ S[N ]xr ⇓

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

薄い網掛け部分は総和に含まれない項であり，後で人数現価G(xe + 3), G(xe) とし
て扱う。「斜め上に進む列」は，右側に 3 だけ「平行移動」すると（例えばS[2]xr を
S[N ]xr に変えると），v3 が乗ぜられることに注意。これは薄い網掛け部分について
も同じ。
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逆に，左側に平行移動する場合には，S[j]xr は (1+ i) ·S[r]xr になるのだが，はみ
出してしまわないように注意する必要がある。したがって，左側への平行移動する
場合には，j = 0 は除外しておく必要がある：

等式（easy）：

v · S[j]xr = S[j + 1]xr j = 0, 1, 2, . . .

(1 + i) · S[j]xr = S[j − 1]xr j = 1, 2, 3, . . .

「はみ出してしまう部分」を図として捉えるためには，表を左側に拡張しておく
と良い：

表 5.4: はみ出した部分の処理

· · · v−5 ℓxr+4 v−4 ℓxr+4 v−3 ℓxr+4 v−2 ℓxr+4 v−1 ℓxr+4 ℓxr+4 v ℓxr+4 v2 ℓxr+4 v3 ℓxr+4 v4 ℓxr+4 · · ·

· · · v−5 ℓxr+3 v−4 ℓxr+3 v−3 ℓxr+3 v−2 ℓxr+3 v−1 ℓxr+3 ℓxr+3 v ℓxr+3 v2 ℓxr+3 v3 ℓxr+3 v4 ℓxr+3 · · ·

· · · v−5 ℓxr+2 v−4 ℓxr+2 v−3 ℓxr+2 v−2 ℓxr+2 v−1 ℓxr+2 ℓxr+2 v ℓxr+2 v2 ℓxr+2 v3 ℓxr+2 v4 ℓxr+2 · · ·

· · · v−5 ℓxr+1 v−4 ℓxr+1 v−3 ℓxr+1 v−2 ℓxr+1 v−1 ℓxr+1 ℓxr+1 v ℓxr+1 v2 ℓxr+1 v3 ℓxr+1 v4 ℓxr+1 · · ·

· · · v−5 ℓxr v−4 ℓxr v−3 ℓxr v−2 ℓxr v−1 ℓxr ℓxr v ℓxr v2 ℓxr v3 ℓxr v4 ℓxr · · ·

† 上の表で，S(xr) を左に 3 平行移動すると，(1 + i)3S(xr) = v−3S(xr) となるが，
この「斜め上に進む列」は本来の表からはみ出してしまい，

1. S(xr + 3) = ℓxr+3 + v ℓxr+4 と

2. はみ出した部分（薄い網掛け部分）

(1 + i)3ℓxr + (1 + i)2ℓxr+1 + (1 + i)ℓxr+2

に分解される。x = xr + 3 と置くと

(1 + i)x−xr · S(xr) = S(x) + (1 + i)x−xrℓxr + (1 + i)x−(xr+1)ℓxr+1 + (1 + i)x−(xr+2)ℓxr+2

= S(x) +
x−1∑
y=xr

(1 + i)x−yℓy
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命題 1.

(1 + i) · S(xr) = S(xr + 1) + (1 + i)ℓxr

(1 + i)x−xr · S(xr) = S(x) +
x−1∑
y=xr

(1 + i)x−y · ℓy x = xr + 1, xr + 2, · · ·

証明 2番目の等式の証明．　

(1 + i)x−xrS(xr) = (1 + i)x−xr
∑
y=xr

vy−xr · ℓy

=
x−1∑
y=xr

(1 + i)x−y · ℓy +
∑
y=x

vy−x · ℓy

=
x−1∑
x=xr

(1 + i)x−y · ℓy + S(x)

最初の等式は，x = xr + 1の場合。

Remark. 等式

S(x) = (1 + i)x−xrS(xr)−
x−1∑
y=xr

(1 + i)x−y · ℓy

の左辺は将来法による責任準備金に，右辺は（退職時に一時払いで終身年金に加入
したと考えたときの）過去法による責任準備金に対応する。

次の命題は，表を考えれば一目で分かることだが，数式としての証明をしておく：

命題 2.

(1 + i) (S(x)− ℓx) = S(x+ 1) (xr ≤ x)

証明

(1 + i) (S(x)− ℓx) = (1 + i)

(
ℓx +

∑
j=1

vj · ℓx+j − ℓx

)
= (1 + i) ·

∑
j=0

v · vjℓx+1+j

= S(x+ 1)
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命題 3. B =
∑
x=xr

ℓx, Sp =
∑
x=xr

S(x) とおくとき，

(1 + i)(Sp −B) = Sp − S(xr)

証明 等式

(1 + i) (S(x)− ℓx) = S(x+ 1)

の両辺を x = xr, xr + 1, · · · で足しあわせると

左辺 = (1 + i) (Sp −B)

右辺 = Sp − S(xr)

であり，求める等式が得られる。

この命題は，図示すれば簡単：

表 5.5: Sp −B と Sp − S(xr)

ℓxr+4 v ℓxr+4 v2 ℓxr+4 v3 ℓxr+4 v4 ℓxr+4

ℓxr+3 v ℓxr+3 v2 ℓxr+3 v3 ℓxr+3

ℓxr+2 v ℓxr+2 v2 ℓxr+2

ℓxr+1 v ℓxr+1

ℓxr

ℓxr+4 v ℓxr+4 v2 ℓxr+4 v3 ℓxr+4 v4 ℓxr+4

ℓxr+3 v ℓxr+3 v2 ℓxr+3 v3 ℓxr+3

ℓxr+2 v ℓxr+2 v2 ℓxr+2

ℓxr+1 v ℓxr+1

ℓxr

左の図が Sp − B で，右の図が Sp − S(xr)。共に，三角形の形の全体が Sp で，左
の図での網掛け部分がB。したがって，網掛けされていない部分が Sp −B であり，
これを左に平行移動したものは，右の図（の網掛けされていない部分）と一致する。
もしくは，各項を見比べて

Sp −B = v(Sp − S(xr))

と表しても良い。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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斜めのベクトルの和

定義 4.

B =
∑
x=xr

ℓx

Sp =
∑
x=xr

S(x)

Sa =
xr−1∑
x=xe

S(x)

(
=

N∑
j=1

S[j]xr

)

Sf =
∞∑
j=1

S[j]xe

S = Sp + Sa + Sf
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表 5.6: Sa と Sf

...

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

網掛けした部分が Sa であり，S(xr + 1) から S(xe) までの斜め線により作られる平
行四辺形。S(xe) から下に延びる薄い網掛けは，xe から始まっていることを示すた
めの補助線。
網掛け部分の右側の，右に無限に延びる図形がSf であり，１年後に加入するS(xe+1)

から sS(xr + 2), S(xr + 3), . . . と無限に続く。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

テキスト等での他の表現

130



σ(x) (xr ≤ x) äx,
∑
j=0

Dx+j

Dx

,
Nx

Dx

S(xr)
TC

σ(xr)
TP

S(xe)
InC

σ(xe)
InP

σ(x) (xe ≤ x ≤ xr − 1) xr−x| äx,
Dxr

Dx

äxr ,
∑
j=0

Dxr+j

Dx

Nxr

Dx

S(x) (xe ≤ x) Sx 第６章 pp.102

σ(x) (xe ≤ x) Sx 実務編 第２章　 pp.151

Sp
∑
x=xr

ℓxäx

Sa

xr−1∑
x=xe

ℓx
Dxr

Dx

äxr

Remark. B, TC 等は，それぞれ「制度全体での毎年度の給付額」，「退職時年金現
価積立方式の制度全体での保険料」等の意味をもつので，定常状態をみたさない場
合や複雑な給付を行う場合は式と意味がずれてくるので，注意が必要．

5.2.3 表と式による計算

年金数理では，二重級数が頻出する。斜めに進む和を考えればある程度避けるこ
とが出来る問題なのだが，Σ の順序交換についても触れておこう。

Σ の順序の交換

添え字の範囲に依存関係がない２重級数では，総和を取る順序を入れ替えること
ができる：
等式（easy）：

n2∑
i=n1

n2∑
j=n1

aij =

n2∑
j=n1

n2∑
i=n1

aij
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しかし，２重級数のなかでも，内側の総和の添え字の範囲が，外側の総和の添え字
に依存している場合については，準備が必要になる．

命題 4.

n2∑
i=n1

i∑
j=n1

aij =

n2∑
j=n1

n2∑
i=j

aij

証明

φ≤(j, i) =

{
1 n1 ≤ j ≤ i ≤ n2

0 n1 ≤ i < j ≤ n2

として φij を定めると，

n2∑
i=n1

i∑
j=n1

aij =

n2∑
i=n1

n2∑
j=n1

φ≤(j, i) · aij

=

n2∑
j=n1

n2∑
i=n1

φ≤(j, i) · aij

=

n2∑
j=n1

n2∑
i=j

aij

斜めの和を横の和に書き換える

表をみれば，Sp, Sa, Sf , S の横の列が等比級数であることがたちどころに分かる
が，このことを式計算により確かめてみる（末項を表示するのが，煩わしい）。

命題 5.

Sp =
∑
y=xr

(
y−xr∑
j=0

vj

)
ℓy
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証明

Sp =
ω∑

x=xr

S(x)

=
ω∑

x=xr

ω∑
y=x

vy−xℓy · · · · · ·これは命題 4 の右辺

=
ω∑

y=xr

y∑
x=xr

vy−xℓy · · · · · ·これは命題 4 の左辺

=
ω∑

y=xr

y−xr∑
j=0

vjℓy =
ω∑

y=xr

(
y−xr∑
j=0

vj

)
ℓy

Remark. ここでは，確認のために総和の上端 ω（ω − 1でもよい）を明記してお
いたが，以下ではこれまで通り省略する

「三角形の領域」である Sp に比べて，横の列の長さが一定である Sa, Sf は簡単
に計算できる．

等式（easy）：

Sa =
N∑
j=1

S[j]xr =

(
N∑
j=1

vj

)
S[0]xr

=

(
N−1∑
j=0

vj

)
S[1]xr · · · · · ·S[0]xr ではなく S[1]xr であることに注意

Sf =
∞∑
j=1

S[j]xe =

(
∞∑
j=1

vj

)
S[0]xe

=

(
∞∑
j=0

vj

)
S[1]xe

=

(
∞∑

j=N

vj

)
S[1]xr

Sa + Sf =

(
∞∑
j=0

vj

)
S[1]xr
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これらの等式は，いずれも，
∑
y=xr

の形に書き直すことができる。たとえば，Sa +Sf

は次のように変形される。

Sa + Sf =

(
∞∑
j=0

vj

)∑
k=0

vk+1ℓxr+k

=

(
∞∑
j=0

vj

)∑
y=xr

vy−xr+1ℓy

=
∑
y=xr

∞∑
j=0

vj+y−xr+1ℓy

=
∑
y=xr

(
∞∑

j=y−xr+1

vj

)
ℓy

この結果と，

Sp =
∑
y=xr

(
y−xr∑
j=0

vj

)
ℓy

から次の結果が得られる。

等式（easy）：

S =
∑
y=xr

(
∞∑
j=0

vj

)
· ℓy

無限等比級数の和の公式からただちに，以下の結果が得られる。

等式（easy）：

S =
∑
y=xr

1

d
· ℓy =

1

d
·B

Sf =

(
∞∑
j=0

vj

)
S[1]xe =

1

d
· S[1]xe

Sa + Sf =

(
∞∑
j=0

vj

)
S[1]xr =

1

d
· S[1]xr
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表 5.7:

...

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

×1
d
による対応

基本となる考え方は，表のひとつの項，例えば v3 ℓxr+2 に 1/d を乗じると，等比
級数の和の公式により

v3 ℓxr+2 ·
1

d
= v3 ℓxr+2 + v4 ℓxr+2 + v5 ℓxr+2 + . . .

であり，

v3 ℓxr+2 から始まり右に無限に延びる半直線

での和に等しいということ（表 5.7）。
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B = (1)

S(xr) (= S[0]xr) = (2)

S[1]xr = (2)’

S(xe) (= S[0]xe) = (3)

S[1]xe = (3)’

とおくと，1
d
をかけることによる対応関係として以下が得られる。

× 1
d=⇒

(1) S = Sp + Sa + Sf

(2)’ Sa + Sf

(3)’ Sf

(1) − (2)’ Sp

(2)’ − (3)’ Sa

(1) − (3)’ Sp + Sa

(2) (2) +Sa + Sf

= (1 + i)
(
Sa + Sf

)
(3) (3) +Sf

= (1 + i)Sf

(1) − (2) Sp− (2)

(2) − (3) (2) +Sa− (3)

= (1 + i)Sa

(1) − (3) Sp + Sa− (3)
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簡単な等式：Sa = Sa
FS + Sa

PS

定義 5.

Sa
FS =

xr−1∑
x=xe

xr − x

N
· S(x)

Sa
PS =

xr−1∑
x=xe

x− xe

N
· S(x)

等式（easy）：

Sa
FS =

1

N

(
N∑
j=1

j · vj
)

· S(xr)

=
1

N
{1 · S[1]xr + 2 · S[2]xr + 3 · S[3]xr + · · ·+N · S[N ]xr}

Sp
PS =

1

N

(
N∑
j=1

(N − j) · vj
)

· S(xr)

Sa = Sa
FS + Sp

PS

次に，Sa の 1
d
倍を調べる。

等比級数として考えるのだが，1 次元の線分（例えばB）ではなく，2 次元的に
拡がった領域，この場合は平行四辺形の領域 Sa に属する vj ℓy について，

それを左端として右に無限に延びる直線

での和を考えるので，重複が問題になる：

以下の記述は添え字を追うのが面倒だが，表を見て自分で納得するのと簡単だと
思う。

1. y を固定し j = y − xr + 1 と置くと，Sa に属する項は左から

vj ℓy, v
j+1 ℓy, v

j+2 ℓy, . . .

（左端の vj ℓy は S[1]xr に属する）

2. それぞれに 1/d をかけて右に延びる半直線にして和をとると，
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(a) vj ℓy は重複なしに１回だけ和に現れる

(b) vj+1 ℓy は，vj ℓy から始まる半直線と vj+1 ℓy 自身から始まる半直線と，重
複して 2 回現れる

(c) 同様に，vj+2 ℓy は 3 回現れ

(d) 一般に，k = 0, 1, . . . , N − 1 について，vj+k ℓy は k + 1 回現れ

(e) k = N + 1, N + 2, . . . について，vj+k ℓy はN 回現れる

3. vj+k ℓy は S[1 + k]xr に属すので，y をすべての xr, xr+1, . . . で和をとると

Sa · 1
d

= 1 · S[1]xr + 2 · S[2]xr + · · ·+N · S[N ]xr +N {S[N + 1]xr + S[N + 2]xr + · · · }

= N ·
(
Sa
FS + Sf

)
以上，次の命題を得たのだが，証明を記述するとなると，やはり面倒。証明は，二
重級数の計算で済ませることにした。

命題 6. Sa の 1
d
倍

Sa × 1

d
= N ·

(
Sa
FS + Sf

)
証明
Sa
FS に対して等差等比級数の和の公式

d ·
N∑
j=1

j · vj−1 =
N−1∑
j=0

vj −N · vN
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を用いると，

d · Sa
FS = d · 1

N

(
N∑
j=1

j · vj
)

· S(xr)

=
1

N
· S(xr) · v · d ·

N∑
j=1

j · vj−1

=
1

N
· S(xr) · v ·

{
N−1∑
j=0

vj −N · vN
}

=
1

N
·

N∑
j=1

vj · S(xr) + vN+1 · S(xr)

=
1

N
·

N∑
j=1

S[j]xr + S[1]xe

=
1

N
· Sa + d · Sf

よって

Sa × 1

d
= N ·

(
Sa
FS + Sf

)

5.2.4 人数現価

人数原価の計算は，給付現価の場合と，ほぼ同様に進めることができる。

定義 6.

G(x)
def
=

xr−1−x∑
j=0

vj · ℓx+j xe ≤ x ≤ xr − 1

G[j]xe

def
= vj ·G(xe) j = 0, 1, 2, · · ·

γ(x)
def
=

G(x)

ℓx
xe ≤ x ≤ xr − 1
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等式（easy）：

G(x) =
xr−1∑
y=x

vy−x · ℓy (xe ≤ x ≤ xr − 1)

G[j]xe =
xr−1∑
y=xe

vy−xe+j · ℓy (0 ≤ j)

等式（easy）：

v ·G[j]xe = G[j + 1]xe j = 0, 1, 2, · · ·
(1 + i) ·G[j]xe = G[j − 1]xe j = 1, 2, 3, · · ·

命題 7.

(1 + i) ·G(xe) = G(xe + 1) + (1 + i)ℓxe

(1 + i)x−xe ·G(xe) = G(x) +
x−1∑
y=xe

(1 + i)x−y · ℓy x = xe + 1, xe + 2, · · · , xr − 1

証明 最初の式は，2番目の式で x = xe + 1とした場合なので，2番目の等式を証明
する。

(1 + i)x−xe ·G(xe) = (1 + i)x−xe ·
xr−1∑
y=xe

vy−xe · ℓy

=
x−1∑
y=xe

(1 + i)x−yℓy +
xr−1∑
y=x

vy−x · ℓy

=
x−1∑
y=xe

(1 + i)x−yℓy +G(x)

等式（easy）：

(1 + i)(G(x)− ℓx) = G(x+ 1) (xe ≤ x ≤ xr − 2)

(1 + i)(G(x)− ℓx) = 0 (x = xr − 1)

命題 8. L =
xr−1∑
x=xe

ℓx, G
a =

xr−1∑
x=xe

G(x) とおくと

(1 + i) (Ga − L) = Ga −G(xe)
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証明 等式

(1 + i)(G(x)− ℓx) = G(x+ 1)

の両辺について，x = xe, xe + 1, · · · , xr − 2 までの総和をとり，さらに，左辺に
(1 + i)(G(xr−1)− ℓxr−1　 (= 0) を加えることにより得られる。

定義 7.

L =
xr−1∑
x=xe

ℓx

Ga =
xr−1∑
x=xe

G(x)

Gf =
∞∑
j=1

G[j]xe

G = Ga +Gf

テキスト等での他の記号

γ(x) äx:xr−x⌉,
xr−1−x∑

j=0

Dx+j

Dx

,
xr−1∑
y=x

Dy

Dx

G(x) ℓx · äx:xr−x⌉,
xr−x−1∑

j=0

ℓx ·
Dx+j

Dx

,
xr−1∑
y=x

ℓx ·
Dy

Dx

Ga

xr−1∑
x=xe

ℓx

(
xr−1∑
y=x

Dy

Dx

)

ここで，

L = · · · · · · (4)
G(xe) (= G[0]xe) = · · · · · · (5)

G[1]xe = · · · · · · (5)’

とおくと，
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× 1
d=⇒

(4) G = Ga +Gf

(5)’ Gf

(4) − (5)’ Ga

(5) (5) +Gf

= (1 + i)Gf

(4) − (5) Ga− (4)

5.3 財政方式の分類
極限方程式を満たすF の水準により，財政方式を第 I類から第VI類に分類する。

第 II類では退職者が，第 V類では新入社員が，個人年金として保険料一時払いで
年金に加入した考えると，個人単位での収支相等が成立していることになる。また，
第 III類，第 IV類も，在職者が個人単位で年金に加入しているとすれば，個人単位で
の収支相等が成立する。しかし，第 I類や第VI類 となると，かなり不自然な解釈を
しない限り，個人単位での収支相等は成立しない。

5.3.1 （第 I類）　賦課方式

(Pay-as-you-go Method)

最も積み立て水準が低く F = 0 となる財政方式。

PC = B, PP = 1
PF = 0

ただし，PP は在職者 L人についてではなく，「既退職者B人について一人あたり」
と考えていることに注意。添え字P でこの財政方式であることを示す（他の財政方
式でも，適当な文字で指定）。
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5.3.2 （第 II類）　退職時年金現価積立方式 (Terminal Funding

Method)

退職時点で将来の年金給付に必要な額を積み立てる。しかし，在職者に対しての
積み立ては全く行われないので，積み立て水準は低い。

TC = S(xr),
TP = σ(xr)

TF = B · 1
d
− TC · 1

d
= Sp − TC

ただし，TP は在職者L人についてではなく，「退職者 ℓxr人について一人あたり」と
考えていることに注意．

TF についての等式は，

B · 1
d

= Sp + Sa + Sf ,

TC · 1
d

= S(xr) ·
1

d
= S(xr) + Sa + Sf

であることから，明らか．

5.3.3 （第 III類）　単位積立方式 (Unit Credit Method)

将来の年金現価を在職年数N 等分したものを，在職中のN 年間にわたって毎年
積み立てる方式。これ以降の財政方式では，退職時点では積み立てが完了している
ことに注意。
単位積み立て方式の１人あたり保険料は，加入時点では（受給までの年数が多い
ので）安く，退職が近づくに従って高くなり，平準ではない。

UPx =
1

N
σ(x), (xe ≤ x ≤ xr − 1)

UCx =
1

N
S(x), (xe ≤ x ≤ xr − 1)

UC =
xr−1∑
x=xe

UCx =
1

N
Sa

UF = B · 1
d
− UC · 1

d
= (Sp + Sa + Sf )− (Sa

FS + Sf )

= Sp + Sa
PS
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5.3.4 （第 IV類）　平準積立方式 (Level Premium Method)

在職時に保険料を平準で積み立てる方式。各個人がそれぞれ，保険料在職時平準の
個人年金保険に加入した場合と同じ積み立て水準になるので，最も自然な財政方式。

LP =
σ(xe)

γ(xe)

(
=

S(xe)

G(xe)
=

(3)

(5)
=

(3)′

(5)′

)
LC = LP · L
LF = B · 1

d
− LC · 1

d
= Sp + Sa −Ga · LP

LF についての等式は，

B · 1
d
− LC · 1

d
= B · 1

d
− L · 1

d
· LP

= (Sp + Sa + Sf )− (Ga +Gf ) · LP
ここで，

Gf · LP = Gf · S(xe)

G(xe)

= Gf ·
S[1]xe · 1

d

G[1]xe · 1
d

= Gf · S
f

Gf

= Sf

なので，
LF = Sp + Sa −Ga · LP

また，

Sa −Ga · LP =
xr−1∑
x=xe

ℓx
(
σ(x)− γ(x) · LP

)
(5.4)

と書き直すと，右辺の括弧の中は将来法による（x 歳のひとりについての）責任準
備金と解釈され，LP は個人単位での平準保険料として定められているので，

将来法による責任準備金　= 過去法による責任準備金
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の等式が成立する。したがって，総和をとった Sa −Ga · LP も，過去法による責任
準備金の総額（現時点での社員についての総額）として表されるはず：
まず，x = xe, xe +1, . . . , xr − 1 に対して，S(xe)−G(xe) · LP = 0（これは LP の
定義）に (1 + i)x−xe をかけた等式

0 = (1 + i)x−xe
(
S(xe)−G(xe) · LP

)
= (1 + i)x−xeS(xe)− (1 + i)x−xeG(xe) · LP

の総和をとる。

1. 第１項は「左に x− xe 平行移動」してだけなので S(x) に等しく，

2. 第２項は「はみ出してしまう」パターンであり，命題 7 により

(1 + i)x−xeG(xe) = G(x) +
x−1∑
y=xe

(1 + i)x−yℓy

となるで，x = xe, xe + 1, . . . , xr − 1 に対しての総和をとると

0 =
xr−1∑
x=xe

{
(1 + i)x−xeS(xe)− (1 + i)x−xeG(xe) · LP

}
=

xr−1∑
x=xe

S(x)−
xr−1∑
x=xe

G(x) · LP −
xr−1∑
x=xe

x−1∑
y=xe

(1 + i)x−yℓy · LP

= Sa −Ga · LP −
xr−1∑
x=xe

x−1∑
y=xe

(1 + i)x−y ℓy · LP

以上により，等式

Sa −Ga · LP =
xr−1∑
x=xe

x−1∑
y=xe

ℓy · LP · (1 + i)x−y

を得る。右辺は x = xe, . . . , xr − 1 歳の社員が

前年度までに支払った保険料 LP（個人で退職後の生命年金を平準払いす
る場合と等しい）の現在価値

の総額と解釈される（つまり，過去法による責任準備金総額）。これに，既退職者に
対しての責任準備金 Sp を加えたものが，FL となる。
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5.3.5 （第 V類）　加入時積立方式 (Initial Funding Method)

新入社員が xe 歳で加入した時点で，将来年金給付現価を一時払いで積み立ててし
まう方式。積み立て水準は平準方式より高い。

InP = σ(xe)
InC = ℓxe · InP = S(xe) (= (3))

InF = B · 1
d
− InC

= (Sp + Sa + Sf )−
(
InC + Sf

)
= Sp + Sa − InC

ただし，InP は在職者 L人についてではなく，「新規加入者 ℓxe 人について一人あた
り」と考えていることに注意。

5.3.6 （第 VI類）　完全積立方式 (Complete Funding Method)

年金制度開始時点で将来永遠に至るまでの（と言っても v < 1 の等比級数として
の効果で収束するのだが）年金支給現価を一時払いで積み立ててしまう方式。おそ
らく，理論的な意味しか持たない（有り難すぎる）財政方式。

CoC = 0
CoF = B · 1

d
= Sp + Sa + Sf

5.3.7 第 III類と第 IV類の比較

第 I類から第 VI類まで，積み立て水準の大小により分類しているのだが，不等式

PF < TF < UF

LF < InF < CoF

の証明が簡単なことと対照的に，

UF < LF

を証明することは，意外に難しい。
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命題 9. UF < LF

証明には保険数学（上巻）の第６章で導かれる不等式が必要で，それを直感的に
明らかとするにしてもかなり難しいので，省略する。

5.4 制度開始時点からの「過渡現象」

5.4.1 過去勤務債務

Fn を基金の残高，Vnを責任準備金総額として，

Un = Vn − Fn

を過去勤務債務という。ここでの責任準備金は，将来法による考え方で計算した責
任準備金であり，一方，Fn は過去法による責任準備金と同じく「その時点までの，
収入総額 － 支出総額」なので，両者は一致するはずである。しかし，年金数理で
は，制度発足時点からの「ゴタゴタの処理」が絡むために，必ずしも両者は一致せ
ず，差額として「過去勤務債務」が発生する。
企業から基金に納付する全額を保険料とするならば，発足時点での「ゴタゴタの
処理」の途上であっても，問題はないはずなのだが，実際には，

保険料を，標準保険料と特別保険料に分けて考える場合がある。

そして，責任準備金を計算する際には，

将来支出総額の現在価値 から 将来収入総額を引く（控除する）ときに
は，標準保険料のみを控除する

と考えるので，特別保険料の分だけ責任準備金は過大評価されることになり，基金
の残高よりも過大になる。
ここでは，第 IV類についてのみ考えることにし，

Bn = B, n = 1, 2, 3, · · ·
Cn −→ LC, (n → ∞)

Fn −→ LF, (n → ∞)

となることを要請する。
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5.4.2 第 IV類の各種財政方式

加入年齢方式 (Entry Age Normal Cost Method)

標準保険料 EC = EP · L は，n = 1, 2, 3, · · · で LC と等しいとし，制度発足時点で
の過去勤務債務は，別途に特別保険料を設けて償却する．

個人平準保険料方式 (Individual Level Premium Method)

特別保険料は設定せず，制度発足時点での既退職者の過去勤務債務Spは初年度保
険料に加算して一括償却，制度発足時点で在職者 xe ≤ x ≤ xr − 1 の保険料は，個
人単位での平準保険料

IPx =
σ(x)

γ(x)

(
=

S(x)

G(x)

)
を基に定める。制度発足時点での在職者と将来加入者については，この保険料で個
人単位での収支相当が成り立つ．既退職者への過去勤務債務は初年度保険料で一括
償却する。制度発足時点で xe +1歳以上の在職者が全員退職年齢 xrを迎えた時点で
ICn = EC が成立し，極限方程式を満たすようになる。

EP と IPx

命題 10. 各 xe ≤ x ≤ xr − 1 に対して，等式

G(x)
(
IPx − EP

)
= EP ·

x−1∑
y=xe

(1 + i)x−y · ℓy

が成立する。

証明

G(x) · IPx = S(x) = (1 + i)x−xe · S(xe)

G(xe) · EP = S(xe)

G(x) · EP =

{
(1 + i)x−xe ·G(xe)−

x−1∑
y=xe

(1 + i)x−y · ℓy

}
· EP

= (1 + i)x−xeS(xe)− EP ·
x−1∑
y=xe

(1 + i)x−y · ℓy

であることから明らか。
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命題 11.

EV = Sp + Sa − EP ·Ga

= Sp +
xr−1∑
x=xe

(IPx − EP ) ·G(x)

証明 最初の等式は将来法による責任準備金総額の定義式（特別保険料は控除しない
ことに注意）であり，次式は

Sa − EP ·Ga =
xr−1∑
x=xe

(
S(x)− EP ·G(x)

)
=

xr−1∑
x=xe

(
IPx − EP

)
·G(x)

であることから明らか。

総合保険料方式

初年度保険料 CC1 =
CP1 ·Lは制度発足時点での既退職者と在職者の成す閉集団に

おいて収支相当

Sp + Sa = CP1 ·Ga

が成立するように設定する。なお，CF1 = 0 なので，

CC1 =
Sp + Sa − CF1

Ga
· L

次年度以降は，新たに加入した在職者を含めた閉集団を新規に設定して収支相当と
なるように保険料を設定し直す。

CCn =
Sp + Sa − CFn

Ga

· L
CFn+1 = (CFn +

CCn −B)(1 + i)

Cnを消去すると，

CFn+1 =

(
1− L

Ga

)
(1 + i) · CFn +

(
(Sp + Sa)

L

Ga

−B

)
· (1 + i)
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一般に，漸化式

xn+1 = c1xn + c2

で定められる数列 {xn}は，|c1| < 1 ならば，初期値 x1に依存せずに
c2

1− c1

に収束する。

c1 =
(Ga − L)(1 + i)

Ga

=
Ga − (5)

Ga

なので，0 < c1 < 1 であり，CFnは

c2
1− c1

=
((Sp + Sa)L−B ·Ga) (1 + i)

(5)

=

(
(Sp + Sa)L · 1

d
−B · 1

d
·Ga

)
(1 + i)

(5) · 1
d

=

(
(Sp + Sa)(Ga +Gf )− (Sp + Sa + Sf ) ·Ga

)
(1 + i)

(1 + i)Gf

=
(Sp + Sa)Gf − Sf ·Ga

Gf

= Sp + Sa − (3)

(5)
·Ga

= Sp + Sa − EP ·Ga

= EF

に収束する。

到達年齢方式 (Attained Age Normal Cost Method)

制度発足時点での既退職者の過去勤務債務 Sp，制度発足時点での在職者の過去勤
務債務 Sa

PSの合計を初年度の過去勤務債務
AU1とし，これを償却するための特別保

険料 AC ′
nと標準保険料

AP1 =
Sa
FS

Ga
, AC1 =

AP1 · L

APn =
Sp + Sa − (AFn +

AUn)

Ga
, ACn = APn · L

を設定する。
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5.5 開放型総合保険料方式と開放基金方式

5.5.1 開放型総合保険料方式

保険料に，標準保険料と特別保険料の区別を置かず，将来加入者まで考慮して収
支相当が成立するように保険料を設定する。
制度発足時点での給付対象者の設定により，各種の保険料が決まる。

Sp + Sa + Sf

Ga +Gf
=

B

L
Sa + Sf

Ga +Gf
=

v · TC
L

Sa
FS + Sf

Ga +Gf
=

UC

L
Sf

Ga +Gf
=

v · InC
L

5.5.2 開放基金方式

制度発足時点での Sp+Sa
PS を過去勤務と考え，特別保険料で償却．標準保険料は

OANP =
Sa
FS + Sf

Ga +Gf
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