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第1章 等価

金利が１つしかないという架空の世界で，等価という関係を定義する。
金額の単位は，現実性を除去するために 1 (Gold) とする（元素としてのAu では
なく，ゲームの世界の通貨のようなもの）。

1.1 等価と現在価値

1.1.1 等価ということの性質

線形空間Ω

２つの実数 t と S の順序対 (t, S) を[
t

S

]
と書いても良いことにする。

† 順序対 (a, b) は，a と b のペアのこと。例えば，座標平面の xy 座標 (4, 3) は 4 と

3 の順序対であり，これを
[
4

3

]
と書いていることになる。

Remark. 保険数学としての
[
t

1

]
の解釈は，

時間軸上の時点 t に置かれた金額 1 (Gold)

というイメージ。

任意個の t1, t2, . . . , tm と c1, . . . , cm に対して形式的な和

c1

[
t1
1

]
+ c2

[
t2
1

]
+ · · ·+ cm

[
tm
1

]
5



を考え，それらの作る実線形空間をΩ で表す。

† 実線形空間と言っても，線形代数の知識は不要。要するに，和と定数倍を考えて
良いということ。

さらに，c

[
t

1

]
を
[
t

c

]
と書いても良いことにする。

†
[
t

S

]
における t の役割は

S at t

という「時間軸上の位置の指定」に過ぎない。つまり，[
t1
S1

]
+

[
t2
S2

]
における記号 “+” は，[

t1
S1

]
と
[
t1
S1

]
という “and” に過ぎないが，t1 = t2 のときには，実際の和の演算として計算でき

るいうこと。スカラー倍 c

[
t

S

]
は，常に S 成分にのみスカラー倍として働く。

[
t

S1 + S2

]
=

[
t

S1

]
+

[
t

S2

]

c

[
t

S

]
=

[
t

cS

]
であり，

[
t

S

]
の “S 成分” に対して線形性をもつ。

† 見かけと異なり，
[
t

S

]
はベクトルを縦に表示したものではないことに注意。ベク

トルとしての和ならば[
t

S1

]
+

[
t

S2

]
=

[
2t

S1 + S2

]
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となるはずだが，ここでは[
t

S1

]
+

[
t

S2

]
=

[
t

S1 + S2

]
と定めている。

例 1. n = 1, 2, . . . に対して，än⌉, an⌉ ∈ Ω を

än⌉ =

[
0

1

]
+

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n− 1

1

]

an⌉ =

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n− 1

1

]
+

[
n

1

]
と定義する。

このとき，

an⌉ = än⌉ −
[
0

1

]
+

[
n

1

]
än+1⌉ = än⌉ +

[
n

1

]
än+1⌉ =

[
0

1

]
+ an⌉

例えば än⌉, an⌉ などのように，「時間軸上に配置されたお金」をオブジェクトと呼
ぶことにする（数学としては，Ω の要素をオブジェクトと言っているだけのこと）。

例 2. n = 1, 2, . . .，f = 0, 1, 2, . . . に対して，f |än⌉ ∈ Ω を

f |än⌉ =
[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]
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と定義する。このとき，３つの等式

äf⌉ =

[
0

1

]
+ · · ·+

[
f − 1

1

]

äf+n⌉ =

[
0

1

]
+ · · ·+

[
f − 1

1

]
+

[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]

f |än⌉ =
[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]
を比べることにより，等式

f |än⌉ = äf+n⌉ − äf⌉

を得る。

同値関係

Ω での２項関係∼ で以下の条件を満たすものを考える：

1. 関係∼ はΩ での同値関係である：

(a) F ∼ F

(b) F1 ∼ F2　ならば　 F2 ∼ F1

(c) F1 ∼ F2, F2 ∼ F3　ならば　 F1 ∼ F3

2. 関係∼ は線形性と両立する：

F1 ∼ F̂1, F2 ∼ F̂2 ならば，任意の実数 c1, c2 に対して

c1F1 + c2F2 ∼ c1F̂1 + c2F̂2

† これから，Ω の要素を表すときには，F のように立体のフォントを用い，数値を
表すときには（数学での普通のフォントである）イタリックのフォント，例えば F，
を用いる。

このように定義した上で，
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F1 ∼ F2 であるとき，F1 と F2 は等価であるという

としたい所なのだが，生命保険数学（以下，保険数学と呼ぶ）を展開する基礎とな
る等価という概念を定めるためには，同値関係∼ に要求した線形性という条件だけ
では，決定的に不十分である。
これから，基礎的な定数を導入し，それに基づき，改めて等価という関係を定める。

1.1.2 定数

基礎定数

等式

v = (1 + i)−1

(
=

1

1 + i

)
v = 1− d

1 + i = eδ

を満たす実数 i, d, v, δ，ただし 0 ≤ i, 0 < v ≤ 1, 0 ≤ d < 1, 0 ≤ δ, が与えられてい
るとする。i, v, d, δ のうちの１つの値から，残りの３つの値は決まる。

† e は，大学入試問題で言うところの「自然対数の底」を表す。

Remark. i は利率，δ は利力，d は前払い利息としての利率を意味する。v, d, i の
間に成り立つ関係，例えば i = d

1−d
は，適当に代入計算をすることにより簡単に確

認できる。限られた時間で確実に答えを得るためには，このような代数的な計算が
確実である。一方，保険数学の感性を充実させるためには，計算ではなく，式に含
まれる文字の意味に戻って式の成立を確認する練習が必須となる。

(k) 型の定数

k = 1, 2, 3, . . . に依存して，i(k), d(k) を等式

1 +
i(k)

k
= (1 + i)

1
k (1.1)

1− d(k)

k
= (1− d)

1
k (1.2)

9



を満たす数値として定める。

† 近似式は，後でまとめて扱う。

k → ∞ の極限

等式 (1.1), (1.2) を△t = 1
k
とおいて書き直した等式

1 + i(k)△t = (1 + i)△t

1− d(k)△t = (1− d)△t = (1 + i)−△t （⇐ 1− d = (1 + i)−1）

を変形して，それぞれ，

i(k) =
(1 + i)0+△t − (1 + i)0

△t
(1.3)

d(k) =
(1 + i)0−△t − (1 + i)0

−△t
(1.4)

と書き直しておき，k → ∞ の極限（したがって，△t → 0 の極限）を考える。

(1.3),(1.4) の右辺は共に，△t → 0 の極限をとれば関数 S(t) = (1+ i)t の t = 0 に
おける微分の形となっている。したがって，S ′(0) = log(1+ i) = δ に収束するので，

lim
k→∞

i(k) = δ

lim
k→∞

d(k) = δ

であり，i(k), d(k) は共に δ に収束することが分かる。

また，

1. 関数 S(t) のグラフは下に凸であり，

2. δ は t = 0 における S(t) の接線の傾き

3. (1.3) は (0, S(0)) と (△t, S(△t)) を結ぶ割線の傾き

4. (1.4) は (0, S(0)) と (−△t, S(−△t)) を結ぶ割線の傾き

であることを考えると，

d < d(2) < d(3) < d(4) < · · · < δ < · · · < i(4) < i(3) < i(2) < i

という不等式が成り立つことが分かる。
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1.1.3 v から定まる等価

定義

同値関係∼ が，さらに次の条件を満たすとする：

１．現在価値の存在と一意性 任意のオブジェクト F ∈ Ωに対して，

F ∼ F

[
0

1

]
を満たす数値F が唯１つだけ存在する。この数値F を，Fの現在価値という。

２．時間についての一様性 関係∼ は，「時間の原点の取り方」に依存しない：[
t1
S1

]
∼
[
t2
S2

]
　ならば　

[
t1 − t0
S1

]
∼
[
t2 − t0
S2

]

これらの条件の下で，F として特に
[
t

1

]
を選ぶと，

F = F

[
0

1

]
を満たす数値F が定まる。この数値は t の関数として定まるので，その関数 f(t) が
どのような形になるかを調べる（結論を言うと，f(t) = vt という形になる）。f(t)

が決まると，

F =

[
t1
S1

]
+

[
t2
S2

]
+ · · ·+

[
tn
Sn

]
の現在価値 F は

F = S1f(t1) + S2f(t2) + · · ·+ Snf(tn)

として決まる。

条件を満たす同値関係∼ に対して，v を[
1

1

]
∼ v

[
0

1

]
を満たす数値として定義する。
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1. 時間についての一様性により，t0 = −j として[
j + 1

1

]
∼ v

[
j

1

]
2. したがって，[

1

1

]
∼ v

[
0

1

]
,

[
2

1

]
∼ v

[
1

1

]
,

[
3

1

]
∼ v

[
2

1

]
, . . . ,

[
n

1

]
∼ v

[
n− 1

1

]
となるので，[

n

1

]
∼ vn

[
0

1

]
3. また，時間についての一様性により，t0 = 1 として[

1− 1

1

]
∼ v

[
0− 1

1

]
なので，[

0

1

]
∼ v

[
−1

1

]
,

[
−1

1

]
∼ v−1

[
0

1

]
であり，[

−n

1

]
∼ v−n

[
0

1

]
4. したがって，t が整数 j の場合には f(j) = vj であることがわかる。

Remark. つまり，「時間に対して一様な等価」というためには，複利法で計算しな
ければならない。

Remark. 日常の感覚では，v よりも 1 + i の方が親しみやすく[
0

1

]
∼ g(t)

[
t

1

]
を満たす関数 g(t) が g(j) = (1 + i)j の形になることを示すのが自然。ただし，保険
数学では，
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現在の 1 の j 年後の元利合計 (1 + i)j

よりも

j 年後の 1 の現在価値 vj

という視点が重要。

ここまでで，t が整数値を取るときには f(t) = vt となることを示した。つぎに，
t が有理数値のときにも f(t) = vt となることを確認する。
α を[

1/k

1

]
∼ α

[
0

1

]
を満たす数値とすると，上と同様の議論により（t0 として−1/k を選ぶ），[

n/k

1

]
∼ αn

[
0

1

]
となることがわかる。特に，n = k とすると，[

1

1

]
∼ αk

[
0

1

]
となるので，α = v

1
k である：[

1/k

1

]
∼ v

1
k

[
0

1

]
以上により，任意の有理数 t = j/k に対して[

t

1

]
∼ vt

[
0

1

]
, f(t) = vt

となることが導かれる。

さて，このことだけから，（数学として厳密に言うならば）任意の実数 tに対しても[
t

1

]
∼ vt

[
0

1

]
, f(t) = vt (1.5)

という結論が導かれるわけではない。しかし，高校数学で指数関数を定めたときの
「柔らかな」論証と同様に，

13



任意の実数 tは有理数により近似されるのだから，等式 (1.5)が成り立つ

とすることにしよう。形式的には，逆に定義としてしまえば良いだけのこと：

定義 1. v が与えられているとして（もしくは，i, d, δ のいずれかが与えられている
として），Ω の要素

F =

[
t1
S1

]
+

[
t2
S2

]
+ · · ·+

[
tm
Sm

]
に対して定まる実数値

F = S1 v
t1 + S2 v

t2 + · · ·+ Sm vtm

を F の現在価値という。F1 = F2 であるとき

F1 ∼ F2

と定義する。

この２項関係は，等価という関係に要求した条件，つまり，同値関係であり線形
性を持つという条件を満たす。この２項関係∼ を，v から定まる等価ということに
する。

なお，t0 を任意にとると，

(Fv−t0)

[
t0
1

]
∼ (Fv−t0)vt0

[
0

1

]
= F

[
0

1

]
となる。この値 Fv−t0 を，F の t0 における現在価値ということにする。

Remark. δ を時間に依存して決まる従属変数 δ(t) であるとして，

f(t) = e−
∫ t
0 δ(s) ds (1.6)

と定め（時間に依存する瞬間利率についての複利），
[
t

1

]
の現在価値 F を F = f(t)

と定義すれば，「変化する金利に対しての等価」を考えることも可能である。ただし，
時間についての一様性は保証されない。それでも通常の保険数学をある程度辿るこ
とが可能なのだが，煩雑である。
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Remark. したがって，δ(s) は時間に依存せず定数 δであると考える。その場合で
も，(1.6) 式の形の表示（ただし，δ(t) は定値であり δ(t) = δ）を意識しておくと，
後で登場する死力（瞬間死亡率）µx+s による tpx の表示

tpx = e−
∫ t
0 µx+s ds

との類似として

vt = e−
∫ t
0 δ ds

と捉えることもできる。

時間についての一様性が成り立つことを，念のため確認しておこう。要点は，

vt−t0 = vt v−t0

が成り立つということであり，後は単純な式変形に過ぎない：[
t1
S1

]
∼
[
t2
S2

]
⇒ vt1S1 = vt2S2 （ 両辺に v−t0をかけると ↓）

⇒ vt1v−t0S1 = vt2v−t0S2

⇒ vt1−t0S1 = vt2−t0S2

⇒
[
t1 − t0
S1

]
∼
[
t2 − t0
S2

]

これから，「等価」“∼” は「v から定まる等価」であるとする。

† 等価という観点では，上で用いた実数値

S1 v
t1 + S2 v

t2 + · · ·+ Sm vtm

は重要ではない。これは t = 0 という「t 軸の原点」を重視した値となのだが，「t 軸
の原点」は任意の値 t = t0 に取り直しても「等価である」という関係を壊さない。
つまり，「等価であるかどうかは，原点の取り方には依存しない」。

Remark. 一方，「時間軸上に配置された金額というオブジェクト」という見方と，
「常に t = 0 の視点で観測した数値（現在価値）で表現する」という立場は，相互に，[

t

1

]
というオブジェクトと，vt という数値との対応
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により行き来することが出来る。つまり，テキストに現れる数式（例えば Svt ）は，

多くの場合，背景としてオブジェクト（例えば，
[
t

S

]
）をイメージしている。

Remark. 極端な例を挙げるならば，テキスト第５章に現れる責任準備金の記号

tV (äx:n⌉)では，

• äx:n⌉ は数値（例えば 17.89）であるにも関わらず，

• tV (äx:n⌉)の括弧の中の äx:n⌉ は，生命年金というオブジェクトを意味している。

もちろん，tV (17.89) と書き換えることはできない。
このような記号の使い方は，（数学の立場からは好ましくないのだが）慣れてしまえば混
乱の余地はなく快適である。だが，ここでは数学のお作法にこだわり，記号を使い
分ける。

Remark. 数学のお作法を守りつつ普通の記号システムに近づけたいならば，

実数 t と S の順序対
[
t

S

]
を Svt と書いても良い

とするだけのこと。その上で，1vt を vt と省略して良いことにすれば，記号の書体
v と v 以外の違いはなくなる。

等価の関係式

以下の関係式は，簡単に導けるのだが，列挙しておく：[
t

1

]
∼
[
t+ 1

1 + i

]
(1.7)[

t

1

]
∼
[
t+ 1

1

]
+

[
t+ 1

i

]
(1.8)[

t

v

]
∼
[
t+ 1

1

]
(1.9)[

t

1

]
∼
[
t

d

]
+

[
t+ 1

1

]
(1.10)[

t

d

]
∼
[
t+ 1

i

]
(1.11)

なお，

16



1. (1.7) は等価の定義と v(1 + i) = 1 であることから明らか

2. (1.8) は (1.7) と線形性の結果

3. (1.9) は等価の定義から明らか

4. (1.10) は線形性と v = 1− d の結果

であり，(1.11) は，(1.8) と (1.10) を比較すれば明らか。

等価の関係式 (k)

上で述べた等価の関係式は，i(k), d(k) についても，等式

(1 + i)
1
k = 1 +

i(k)

k

v
1
k = 1− d(k)

k
=

(
1 +

i(k)

k

)−1

を経由して導くことができる：[
t

1

]
∼
[
t+ 1

k

1 + i(k)

k

]
(1.12)

[
t

1

]
∼
[
t+ 1

k

1

]
+

[
t+ 1

k

i(k)

k

]
(1.13)[

t

1− d(k)

k

]
=

[
t

v
1
k

]
∼
[
t+ 1

k

1

]
(1.14)[

t

1

]
∼
[

t
d(k)

k

]
+

[
t+ 1

k

1

]
(1.15)[

t
d(k)

k

]
∼
[
t+ 1

k

i(k)

k

]
(1.16)

(k) の形に書き直すためには，

1. t+ 1 の形を t+ 1
k
に書き換え
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2. i, d, v をそれぞれ i(k)

k
, d(k)

k
, v

1
k =

(
1− d(k)

k

)
に書き換える

という操作をすれば良い。

Remark. 時間 t の単位を 1/k に変えても，1 年間の金利 i（1 期間の金利）を 1/k

期間の金利 i/k に置き換えれば，同じ同値関係が得られる。ただし，契約期間とし
ての意味をもつ n は，単位の変更に伴って nk に変わる。また，金額の単位は変え
ていないので，契約期間での年金等の支払い総額を同じにするためには，１回あた
りの支払額を 1/k 倍する必要がある。一方，死亡保険金のような１回限りのものは，
時間の単位を変えても調整の必要はない。

これから得られる i, k の絡む多くの等式は，i, k を i(k), d(k) に書き直すだけで，
(k) の場合の正しい等式になる。ただし，それは，i(k)

k
, d(k)

k
の分母 k がうまく打ち消

し合う場合であり，なかには打ち消し合わないケースもある。例えば，等式 (1.16)

から

d(k)

k
= v

1
k · i

(k)

k
=

(
1− d(k)

k

)
i(k)

k

が導かれ，したがって，

i(k) =
d(k)

1− d(k)

k

(1.17)

が得られるのだが，この等式は

i =
d

1− d

に「（乱暴な）自動書き換え」を行って得られる等式

i(k) =
d(k)

1− d(k)
(⇐これは誤り)

と異なるので注意が必要。

また，

d(k)

k
= v

1
k · i

(k)

k
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を (
1 +

i(k)

k

)
d(k)

k
=

i(k)

k

と書き直せば

d(k) =
i(k)

1 + i(k)

k

(1.18)

が得られるが，これを

d(k) =
i(k)

1 + i(k)
(⇐これは誤り)

としてしまうのも，良くやる間違いである。

以上，わかることは

i(k), d(k) という数値には意味はなく，意味があるのは i(k)

k
, d

(k)

k

ということである。分母の k が消えて，あたかも i(k), d(k) が i, d に置き換わるよう
に見えるのは，偶然の結果である（ほとんどの場合で成り立つ偶然なのだが）。

1.1.4 基本的なテクニック

数学としての要点は，等式

aj = bj + aj+1, j = 0, 1, 2, . . . , n− 1 (1.19)

を満たす数列の処理である。

２つのアプローチ

数学としては同じことなのだが，大きく分けて２つのアプローチがあり，
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1. １つは，

a0 = b0 + a1 であり， a1 = b1 + a2 なので

a0 = b0 + b1 + a2 であり， a2 = b2 + a3 なので

a0 = b0 + b1 + b2 + a3 であり， a3 = b3 + a4 なので
...

a0 =
n−1∑
j=0

bj + an

と推論することであり，

2. もう一つは，等式 (1.19) の両辺の総和を j = 0 から j = n− 1 まで取って

n−1∑
j=0

aj =
n−1∑
j=0

bj +
n−1∑
j=0

aj+1

=
n−1∑
j=0

bj +
n∑

j=1

aj

としておいて，左辺と右辺第２項を比較することである。左辺の j = 0 の項と
右辺第２項の j = n の項以外は打ち消すので，等式

a0 =
n−1∑
j=0

bj + an (1.20)

が得られる。

† 後者のテクニックは，数列の総和を求めるために使われるテクニック

総和
∑n−1

j=0 cj は，等式

aj+1 − aj = cj, j = 0, 1, 2, . . . , n− 1 (1.21)

を満たす数列 aj を見つければ，簡単に求めることが出来る

の変型である。中間の項が打ち消し合う様子は等式 (1.21) の方が見やすい（のだが，
保険数学では等式 (1.19) の形の方が自然）。
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Remark. 数学的な扱いやすさという点では，総和を考えるやり方が優るのだが，
保険数学としてのイメージが掴みやすいという点で，前者の「ドミノ倒し的連鎖」
の魅力も捨てがたい。

等式 (1.19) の等号を，同値関係の記号∼ に置き換えても式変形は成立する。保険
数学では，ほとんどの場合，等号ではなく，等価という同値関係なので，同値関係
の関係式として一般的に証明しておくのが，数学の流儀として適切であろう。しか
し，保険数学では，このテクニックのアイデアそのものに馴染むことが重要なので，
定理として宣言しておいて引用するのではなく，必要になる度に証明を繰り返すこ
とにする。

多くの場合，(1.19) の形の関係式が最初から与えられている訳ではなく，この形
に持ってくるための「前処理」が必要になる。この「前処理」として，かなり複雑
なものが登場することになるが，まずは，「前処理なし」でいきなり (1.19) の形で与
えられている関係式 (1.10) から始めることにしよう。

単純な形

関係式 (1.10)[
t

1

]
∼
[
t

d

]
+

[
t+ 1

1

]

は最も重要な関係式であり，右辺の
[
t+ 1

1

]
に再び関係式 (1.10)を（t を t+ 1 に置

き換えて）用いると[
t

1

]
∼

[
t

d

]
+

[
t+ 1

1

]
∼

[
t

d

]
+

[
t+ 1

d

]
+

[
t+ 2

1

]
であり，更に，この操作を（ドミノ倒し的に）任意回数続けることができるので，

[
t

1

]
∼

n個︷ ︸︸ ︷[
t

d

]
+

[
t+ 1

d

]
+ · · ·+

[
t+ n− 1

d

]
+

[
t+ n

1

]
(1.22)

という関係式が得られる。
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また，関係式 (1.22) は，次のように考えて導出することもできる：
関係式 t+ j における (1.10)[

t+ j

1

]
∼
[
t+ j

d

]
+

[
t+ j + 1

1

]
の両辺の総和を j = 0, 1, 2, . . . , n − 1 として取ると，左辺と右辺第２項は，左辺の
j = 0 と右辺第２項の j = n− 1 以外は打ち消し合い，関係式[

t

1

]
∼
[
t

d

]
+

[
t+ 1

d

]
+ · · ·+

[
t+ n− 1

d

]
+

[
t+ n

1

]
を得る。

Remark. 保険数学の感性としては，

1. 銀行に 1 を預け，

2. 直ちに，前払い利息 d を引き出すと，

3. １年後の残高は 1 なので，

4. 前払い利息 d を引き出すと，

5. ２年後の残高は 1 なので，

6. 以下同様に繰り返す

というドミノ倒し的に繰り返す感性が魅力的。しかし，物事が複雑になるにつれ，

両辺の総和を取って打ち消し合わせる

という数学的技巧の方が，使い出が良くなる。

(k) が付く場合も，関係式 (1.15)[
t

1

]
∼
[

t
d(k)

k

]
+

[
t+ 1

k

1

]
を nk 回用いることにより，t が 1/k ずつ増すとしてのドミノ倒し型の導出で関係式

[
t

1

]
∼

nk個︷ ︸︸ ︷[
t

d(k)

k

]
+

[
t+ 1

k

d(k)

k

]
+ · · ·

[
t+ n− 1

k

d(k)

k

]
+

[
t+ n

1

]
(1.23)
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を得る。

† 同じく，総和を比較して導くことも可能。ただし，記号はごちゃごちゃして，か
なり見づらくなる。

1.2 確定年金

1.2.1 確定年金（離散モデル）

期始払い確定年金と期末払い確定年金

既に

än⌉ =

[
0

1

]
+

[
1

1

]
+ · · ·+

[
n− 1

1

]
f |än⌉ =

[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]
と定義してあるのだが，この記号は t = 0 を「時間軸の原点」と意識しての記号で
ある。しかし，時間についての一様性を前提としてる以上，t = 0 を優先して定義
をするのは，少し不自然かも知れない。廻り道になるが，もっと一般的な定義から
始めてみよう。

期始払い確定年金の定義をする：

f än⌉ =

[
f

1

]
+

[
f + 1

1

]
+

[
f + 2

1

]
+ · · ·+

[
f + n− 1

1

]
(1.24)

と定め，f än⌉ を，関係式

f än⌉

[
f

1

]
∼ f än⌉ =

[
f

1

]
+

[
f + 1

1

]
+

[
f + 2

1

]
+ · · ·+

[
f + n− 1

1

]
(1.25)

を満たす数値として定める。f än⌉ を t = f から始まる期間 n の期始払い確定年金と
言う。f än⌉ は t = f におけるこのオブジェクトの現在価値。
このとき，時間についての一様性により

f än⌉

[
0

1

]
∼
[
0

1

]
+

[
1

1

]
+ · · ·+

[
n− 1

1

]
であり，f än⌉ =

0än⌉ となるので，f än⌉ は f の値に依らず定まる。
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そこで，0 を省略して 0än⌉ を

än⌉

と書いても良いことにする。また，誤解のおそれがない場合は 0än⌉ についても 0 を
省略して än⌉ と書いて良いことにする（こうして，既に定義した記号と一致）：

än⌉ =

[
0

1

]
+

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n− 1

1

]
(1.26)

än⌉ = än⌉

[
0

1

]
(1.27)

1. än⌉ を期間 n 年の期始払い年金

2. än⌉ を期間 n 年の期始払い年金の現在価値

という（したがって，än⌉ の現在価値は än⌉）。

än⌉ と関連して，

f |än⌉ =
[
f

1

]
+

[
f + 1

1

]
+ · · ·+

[
f + n− 1

1

]
を据置期間 f 年で期間 n 年の期始払い確定年金と言う
† 数学としては，

f än⌉ = f |än⌉

である。ただし，f |än⌉ が t = 0 における現在価値 f |än⌉ と対応する記号である一方，
f än⌉ は t = f における現在価値 f än⌉ との対応を意識している。

f än⌉ = än⌉ であることを用いると，

f |än⌉
[
0

1

]
∼ f |än⌉ = f än⌉ ∼ f än⌉

[
f

1

]
であり，等式

f |än⌉ = vf · än⌉ (1.28)

を得る。

Remark. 等式 (1.28) は，もう少し「保険数学的に」導くこともできる：
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1. 据置年金は，据え置き期間というものがあるので，多少複雑。そこで，据置期
間 f が終わった時点に立ってみると，

2. 後は，この時点から始まる n 年期始払い確定年金に過ぎない。

3. 時間についての一様性により，確定年金の現在価値は，開始時点に依存せずに
決まる。

4. したがって，t = f 時点における現在価値は än⌉ であり，その時点に置かれた
金額 än⌉ (Gold) と等価

5. t = f での än⌉ (Gold) は t = 0 時点での vf än⌉ (Gold) と等価なので，

6. f |än⌉ = vf · än⌉

この，

物事が多少なりとも単純になる時点に立って評価して（つまり現金化し
てしまい），その金額を t = 0 での現在価値に評価し直す

という技法は，込み入った保険を分析する際にとても便利。

期末払いとした場合についても，

an⌉ =

[
1

1

]
+

[
2

1

]
+

[
3

1

]
+ · · ·+

[
n

1

]
(1.29)

an⌉ = an⌉

[
0

1

]
(1.30)

と定め，

1. an⌉ を期間 n 年の期末払い年金

2. an⌉ を期間 n 年の期末払い年金の現在価値

という（したがって，än⌉ の現在価値は än⌉）。

また，据置期間 f 年の期末払い n 年確定年金を

f |an⌉ =

[
f + 1

1

]
+

[
f + 2

1

]
+ · · ·+

[
f + n

1

]
f |an⌉

[
0

1

]
= f |an⌉

と定める。
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終価

確定年金

än⌉ =

[
0

1

]
+

[
1

1

]
+ · · ·+

[
n− 1

1

]
an⌉ =

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n

1

]
の現在価値として，関係式

än⌉

[
0

1

]
∼

[
0

1

]
+

[
1

1

]
+ · · ·+

[
n− 1

1

]
an⌉

[
0

1

]
∼

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n

1

]
を満たす数値 än⌉, an⌉ を定めたが，それらとは別に（補助的な）現在価値として，関
係式 [

0

1

]
+

[
1

1

]
+

[
2

1

]
+· · ·+

[
n− 1

1

]
∼ s̈n⌉

[
n

1

]

[
1

1

]
+

[
2

1

]
+· · ·+

[
n− 1

1

]
+

[
n

1

]
∼ sn⌉

[
n

1

]
を満たす数値 s̈n⌉, sn⌉ を定める。これらを，確定年金の終価という。

vn
[
0

1

]
∼
[
n

1

]
なので，

s̈n⌉ = (1 + i)n än⌉, sn⌉ = (1 + i)n an⌉

であることが，簡単に確かめられる。
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期間

数学の立場としては，定義は定義であり「なぜそのような定義をするか」という
根拠を明示する義務はない。しかし，終価の定義の辺りまで来ると，さすがに，「期
間」という概念なしに進めることは難しくなってくる。そもそも，期間という概念
なしに「期始払い」，「期末払い」という用語を使うのは不自然である。期間という
用語を導入することにしよう。

1. j = 0, 1, 2, . . . に対して，閉区間

[j, j + 1] = {t | j ≤ t ≤ j + 1}

を期間という。

2. 閉区間 [0, n] は，n 個の期間に分割される：

[0, n] = [0, 1] ∪ [1, 2] ∪ · · · ∪ [n− 1, n]

3. ただし，t = 1, 2, . . . , n − 1 に対して，t は期間 [t − 1, t] と期間 [t, t + 1] の両
方に属する（これがトラブルの元となる）。

4. t = 1, 2, . . . , n− 1 に対して，
[
t

1

]
の t が

(a) 期間 [t−1, t]に属していると考えたいときには，そのことを強調した記号∣∣∣∣t1
⌉

を用い，

(b) 期間 [t, t+1]に属していると考えたいときには，そのことを強調した記号⌈
t

1

∣∣∣∣
を用いることにする。

5. t = 0 と t = n についても，
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(a) 期間 [0, 1] に属していると考えたいときは⌈
0

1

∣∣∣∣
を用い，

(b) 期間 [n− 1, n] に属していると考えたいときは∣∣∣∣n1
⌉

を用いるが，

(c) 全体の区間 [0, n] に属していると考えたいときには，[
0

1

]
,

[
n

1

]
を用いることにする。

6. 数学の立場からは，∣∣∣∣t1
⌉
=

⌈
t

1

∣∣∣∣ = [t1
]

であり，変わりはない。

† t = 0 から始まるのではなく t = f から始まる場合も同様に考えて，記号の使い分
けをする。また，[j, j + 1

k
] の形に分割されている場合も同様。

Remark. 多くの場合，期間 [0, n] は契約期間であり，t = 0 が契約開始時点，t = n

が契約終了時点ということになる。

この記号を使うならば，⌈
0

1

∣∣∣∣ +

⌈
1

1

∣∣∣∣ +

⌈
2

1

∣∣∣∣ + · · · +

⌈
n− 1

1

∣∣∣∣ ∼ s̈n⌉

[
n

1

]

∣∣∣∣11
⌉

+

∣∣∣∣21
⌉

+ · · · +

∣∣∣∣n− 1

1

⌉
+

∣∣∣∣n1
⌉

∼ sn⌉

[
n

1

]
となる。

Remark. 通常，期間 [j − 1, j] を第 j 期と呼び，
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•
⌈
j − 1

1

∣∣∣∣ は第 j 期始（期初）

•
∣∣∣∣j1
⌉
は第 j 期末

と言うことになるのだが，なにかと混乱を招きやすい。第 j 期という言葉は避けて
[j − 1, j]期と区間を明記した方が，余計な混乱を避けられる。
経過時間 t のように 0 から始まるシステムは，1, 2, 3, . . . という日常的な数え方と
は相性が悪い（西暦も 0 から始めてくれれば紀元前との繋がりで苦労することはな
かったのだが）。

契約期間が異なる終価

契約期間が異なる終価を比較する例として，等式

s̈n⌉ = sn+1⌉ − 1

を導いてみよう。これは，

契約開始時点をずらして契約終了が同時点になるように調整する

というだけで片付く問題なのだが，時間についての一様性まで戻って，丁寧に導く。
s̈n⌉, sn+1⌉ は t = 0 から始まる契約の終価と限定する必要はないので，それぞれの
契約期間を [f, f + n], [g, g + n+ 1] とする一般的な定義に戻ると，⌈

f

1

∣∣∣∣+ ⌈f + 1

1

∣∣∣∣+ · · ·+
⌈
f + n− 1

1

∣∣∣∣ ∼ s̈n⌉

[
f + n

1

]
∣∣∣∣g + 1

1

⌉
+

∣∣∣∣g + 2

1

⌉
+ · · ·+

∣∣∣∣g + n

1

⌉
+

∣∣∣∣g + n+ 1

1

⌉
∼ sn+1⌉

[
g + n+ 1

1

]
となる。f と g は任意に選べるので（時間についての一様性），比較しやすいよう
に，g = f − 1 となるように選ぶと（つまり，契約終了時点を揃えると）⌈

f

1

∣∣∣∣ + ⌈f + 1

1

∣∣∣∣ + · · · +
⌈
f + n− 1

1

∣∣∣∣ ∼ s̈n⌉

[
f + n

1

]

∣∣∣∣f1
⌉
+

∣∣∣∣f + 1

1

⌉
+ · · · +

∣∣∣∣f + n− 1

1

⌉
+

∣∣∣∣f + n

1

⌉
∼ sn+1⌉

[
f + n

1

]
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となるので，

s̈n⌉

[
f + n

1

]
+

∣∣∣∣f + n

1

⌉
∼ sn+1⌉

[
f + n

1

]
であり，等式

s̈n⌉ + 1 = sn+1⌉

が導かれる。

Remark. 終価は，やはり補助的な概念であり，特に生命年金になると，ほとんど
意味がなくなる。

等式

期始払い確定年金については，

än⌉ ∼
[
0

1

]
+

[
1

1

]
+

[
2

1

]
+ · · ·+

[
n− 1

1

]
∼

[
0

1

]
+ v

[
0

1

]
+ v2

[
0

1

]
+ · · ·+ vn−1

[
0

1

]
=

(
1 + v + v2 + · · ·+ vn−1

) [0
1

]
なので，

än⌉ = 1 + v + v2 + · · ·+ vn−1 (1.31)

である。

この右辺の値が

1− vn

d

であることは，等比級数の和の公式（と 1 − v = d であること）を使って簡単に確
かめられる。ただし，既に，関係式 (1.22)[

t

1

]
∼

[
t

d

]
+

[
t+ 1

d

]
+ · · ·+

[
t+ n− 1

d

]
+

[
t+ n

1

]
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を証明してあり，t = 0 と置いて書き直すと[
0

1

]
∼ d än⌉ +

[
n

1

]
となる。したがって，

1 = d än⌉ + vn

なので，等比級数の和の公式を使わずに求めることも可能。言い換えると，関係式
(1.22) の導出は，「等比級数の和の公式の保険数学的な別証明」となっているわけだ。

an⌉, s̈n⌉, sn⌉ についての等式も導かれ，まとめると，

1 = d än⌉ + vn

1 = i an⌉ + vn

(1 + i)n = d s̈n⌉ + 1

(1 + i)n = i sn⌉ + 1

† 終価についての等式は，än⌉, an⌉ についての等式の両辺に (1+ i)n をかけたものに
過ぎない。

Remark. 終価についての等式は，生命年金に対しては一般化できないので，重要
度は落ちる。än⌉ と an⌉ では，確定年金に関する限りでは常に同等の重要性を持つ
印象なのだが，生命年金になると期末払いの生命年金は，少し扱いづらい面があり，
期始払いの生命年金ばかりが現れることになる。

減債基金

数値 S に対してR, R̂ を，それぞれ関係式

S

[
0

1

]
∼ R

⌈
0

1

∣∣∣∣+R

⌈
1

1

∣∣∣∣+R

⌈
n− 1

1

∣∣∣∣ (1.32)

R̂

⌈
0

1

∣∣∣∣+ R̂

⌈
1

1

∣∣∣∣+ R̂

⌈
n− 1

1

∣∣∣∣ ∼ S

[
n

1

]
(1.33)
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を満たす数値として定める。また，関係式[
0

1

]
∼ d

⌈
0

1

∣∣∣∣+ d

⌈
1

1

∣∣∣∣+ · · ·+ d

⌈
n− 1

1

∣∣∣∣+ [n1
]

の両辺に S をかけた関係式

S

[
0

1

]
∼ Sd

⌈
0

1

∣∣∣∣+ Sd

⌈
1

1

∣∣∣∣+ · · ·+ Sd

⌈
n− 1

1

∣∣∣∣+ S

⌈
n

1

∣∣∣∣
の右辺の最後の項に (1.33) を用いて，関係式

S

[
0

1

]
∼ (Sd+ R̂)

⌈
0

1

∣∣∣∣+ (Sd+ R̂)

⌈
1

1

∣∣∣∣+ · · ·+ (Sd+ R̂)

⌈
n− 1

1

∣∣∣∣
を得る。これと (1.32) により，

Sd+ R̂ = R

一方，(1.32), (1.33) により，

S = Rän⌉

R̂s̈n⌉ = S

なので，

Sd+
S

s̈n⌉
=

S

än⌉

であり，等式

d =
1

än⌉
− 1

s̈n⌉
(1.34)

を得る。

Remark. この等式は，

• R は元金 S に対しての期間 n の（期始払い）元利均等返済の金額

• R̂ は満期金額 S についての期間 n の（期始払い）積立額

と解釈され，
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• 元金 S に対しての前払い利息を支払って元金を繰り越しながら，積み立てを
して返済する（減債基金），としても（金額は Sd+ R̂）

• 元利均等返済をしても（金額はR）

S d+ R̂ = R なので同じこと，という等式となっている。

期末払いのケースも，同じように考えて等式

i =
1

an⌉
− 1

sn⌉
(1.35)

を導くことができる。ただし，実際には，an⌉ =
1−vn

i
等の式を直接代入して計算し

てしまった方が簡単である（等式 (1.34) も同じこと）。

これらの等式の（試験問題としての）要点は

nが与えられていても，与えられていなくても，än⌉, s̈n⌉（もしくは，an⌉,
sn⌉）の値と d （もしくは i）の値という３つの値について，簡単に計算
できる等式が成立している

ということであり，特に，n が明示されている

ä20⌉ = 13.085, s̈20⌉ = 34.19 のとき d を求めよ

といった問題では，条件過多となっていることである。ä20⌉ = 13.085 という条件だ
けでも d の値は決まるが，これは罠のようなものであり，ニュートン法を使える環
境が必要になる。一方，ä20⌉ = 13.085 と s̈20⌉ = 34.19 の両方を使えば，四則演算だ
けで十分。

1.2.2 (k) の場合

(k) の場合も同様に，ただし，時間 t は 1
k
刻みで

t =
0

k
,
1

k
,
2

k
, · · ·

と動くとして

ä
(k)
n⌉ =

nk−1∑
j=0

1

k

⌈ j
k

1

∣∣∣∣
a
(k)
n⌉ =

nk∑
j=1

1

k

∣∣∣∣ jk1
⌉
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と定義し，ä
(k)
n⌉ , a

(k)
n⌉ は

ä
(k)
n⌉ ∼ ä

(k)
n⌉

[
0

1

]
a
(k)
n⌉ ∼ a

(k)
n⌉

[
0

1

]
を満たす数値として定める（(k) の場合の期間は，[t, t+ 1

k
] を意味する）。

この場合も同様に，関係式⌈
t

1

∣∣∣∣ ∼ [ t
d(k)

k

]
+

[
t+ 1

k

1

]
, t =

0

k
,
1

k
,
2

k
, . . . ,

nk − 1

k
(1.36)

の両辺の総和をとることにより，関係式

nk−1∑
j=0

[ j
k

1

]
∼

nk−1∑
j=0

[ j
k

d(k)

k

]
+

nk−1∑
j=0

[ j+1
k

1

]

=
nk−1∑
j=0

[ j
k

d(k)

k

]
+

nk∑
j=1

[ j
k

1

]
が得られ，両辺を比べて関係式[

0
k

1

]
∼

nk−1∑
j=0

[ j
k

d(k)

k

]
+

[
nk
k

1

]
つまり，関係式[

0

1

]
∼

nk−1∑
j=0

d(k)

k

[ j
k

1

]
+

[
n

1

]
(1.37)

を得る。これを書き直すと，[
0

1

]
∼ d(k) ä

(k)
n⌉ +

[
n

1

]
(1.38)

1 = d(k) ä
(k)
n⌉ + vn (1.39)
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ただし，j を動かして t = j
k
とする総和の表示よりも，t を 1

k
刻みに動かして総

和をとっているということを直接に表す表示を用いた方が考えやすい面があるので，
例えば

nk−1∑
j=0

[ j
k

d(k)

k

]
　を　

∑
t= 0

k
,··· ,nk−1

k

[
t

d(k)

k

]
　と表す

nk∑
j=1

[ j
k

d(k)

k

]
　を　

∑
t= 1

k
,··· ,nk

k

[
t

d(k)

k

]
　と表す

といった形の表記を認めることにしよう。

この表記を用いると，総和をとってからの式変形は∑
t= 0

k
,··· ,nk−1

k

[
t

1

]
∼

∑
t= 0

k
,··· ,nk−1

k

[
t

d(k)

k

]
+

∑
t= 0

k
,··· ,nk−1

k

[
t+ 1

k

1

]

=
∑

t= 0
k
,··· ,nk−1

k

[
t

d(k)

k

]
+

∑
t= 1

k
,··· ,nk

k

[
t

1

]

が得られ，両辺を比べて関係式[
0
k

1

]
∼

∑
t= 0

k
,··· ,nk−1

k

[
t

d(k)

k

]
+

[
nk
k

1

]

つまり，関係式[
0

1

]
∼

∑
t= 0

k
,··· ,nk−1

k

d(k)

k

[
t

1

]
+

[
n

1

]
(1.40)

を得る，という形になる。

k → ∞ の極限

まず，

ä
(k)
n⌉ =

∑
t= 0

k
,··· ,nk−1

k

[
t

1

]
1

k
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の，t → ∞ とした極限を考えて，∑
t= 0

k
,··· ,nk−1

k

[
t

1

]
1

k
→

∫ n

0

[
t

1

]
dt, k → ∞

としたいところなのだが，これは，「Ω のなかで極限をとっている」ということが問
題になる。[

t

1

]
∼ vt

[
0

1

]
としておいて極限をとり，そのあとで元に戻すと考えれば解決されるのだが，厳密
には Ω に（同値関係∼ による）商位相という位相を導入しておく必要がある。こ
れはやや面倒なので，Ω のなかでの積分はイメージに留めて，現在価値

ä
(k)
n⌉ =

∑
t= 0

k
,··· ,nk−1

k

vt
1

k

についての極限を考えることにしよう。これは，区分求積としての積分の定義により，∫ n

t

vtdt

に収束するので，

ān⌉ =

∫ n

0

vtdt

と定義する：

lim
k→∞

ä
(k)
n⌉ = ān⌉

(
=

∫ n

0

vtdt

)
(1.41)

(1.41) の右辺を計算すれば∫ n

0

vtdt =

[
vt

log v

]n
0

=

[
vt

−δ

]n
0

=
vn − 1

−δ
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なので，等式

1 = δān⌉ + vn

が導かれる.

この等式は，また，(k) の場合の等式

1 = d(k)ä
(k)
n⌉ + vn

つまり，等式

1 =
∑

t= 0
k
,··· ,nk−1

k

d(k) vt
1

k
+ vn

の右辺第１項について，区分求積としての極限をとったと考えても良い：∑
t= 0

k
,··· ,nk−1

k

d(k) vt
1

k
→
∫ n

0

δvt dt (1.42)

以下は少し長いが，数学的な補足に過ぎない（ので飛ばして良い）：

† ただし，このように考えると，厳密には d(k) → δ という極限と，区分求積から積
分への極限を同時にとっていることが問題になる。
これは，∑

t= 0
k
,··· ,nk−1

k

d(k) vt
1

k
=

∑
t= 0

k
,··· ,nk−1

k

δ vt
1

k
+

∑
t= 0

k
,··· ,nk−1

k

(d(k) − δ) vt
1

k
(1.43)

と分けておくことにより，解決される。右辺の第１項は δ が定数であるために文句
なしに区分求積として積分に収束し，第２項は

1. どのような小さな ϵ > 0 が与えられたとしても

2. k が十分に大きければ

|d(k) − δ| < ϵ

なので，そのような k に対して∣∣∣∣∣∣
∑

t= 0
k
,··· ,nk−1

k

(d(k) − δ) vt
1

k

∣∣∣∣∣∣ ≤
∑

t= 0
k
,··· ,nk−1

k

ϵvt
1

k

であり，
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3. 右辺第２項の絶対値は ϵ|
∫ n

0
vtdt|以下の値に収束する。

4. ϵ > 0 は任意なので，右辺第２項は 0 に収束する。

つまり，「同時に極限をとる」代わりに「最初に d(k) → δ と極限をとる」とすること
ができるわけである。
このようにして，「同時に極限をとる」ことの正当性が保証されるのだが，論証は
典型的な ϵ-δ 論法であり煩わしい。数学の一般論では，常に「同時に極限をとる」こ
との正当性が保証されているわけではなく，非積分関数の収束が微妙な収束の仕方
だと危ないのだが，保険数学ではそのような「きわどい事態」には遭遇しない。面
倒なので，これ以降，

非積分関数の極限と，区分求積としての極限を同時にとっても良い

としよう。

1.3 債務残高の漸化式

1.3.1 単純型

期始払いのケース

n ≥ 1 とする。S, T , 及び n 個の数値R0, R1, . . . , Rn−1 に対して，関係式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+ ⌈ 1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

(1.44)

が成立しているとする。このとき，t = 0, 1, 2, . . . , n に対して，n+ 1個の関係式を
考える：

• t = 0 に対しては関係式 (1.44)

• t = 1 に対しては[
0

S

]
−
⌈
0

R0

∣∣∣∣
∼
⌈
1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]
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• t = 2 に対しては[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣
∼
⌈
2

R2

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

• 一般に t = 1, 2, . . . , n− 1 に対して，[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
t− 1

Rt−1

∣∣∣∣
∼
⌈
t

Rt

∣∣∣∣+ ⌈t+ 1

Rt+1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
] (1.45)

• t = n に対しては[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
n− 1

Rn−1

∣∣∣∣
∼
[
n

T

] (1.46)

これらの関係式の左辺を tU
p，右辺を tU

f で表すことにする。つまり，t = 0, 1, 2, . . . , n

に対して

0U
p =

[
0

S

]
tU

p =

[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
t− 1

Rt−1

∣∣∣∣, t = 1, 2, . . . , n

tU
f =

⌈
t

Rt

∣∣∣∣+ ⌈t+ 1

Rt+1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

t = 0, 1, 2, . . . , n− 1

nU
f =

[
n

T

]

と定める。このとき，(1.44), (1.45), (1.46) により，

tU
p ∼ tU

f , t = 0, 1, 2, . . . , n (1.47)

となっている。
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tU
p, tU

f を，tU
p, tU

f の t においての現在価値として定める：

tU
p

[
t

1

]
∼ tU

p (1.48)

tU
f

[
t

1

]
∼ tU

f (1.49)

関係式 (1.47) により，tU
p = tU

f である。

† tU
p, tU

f とアンダーライン付きの記号とした理由は，tU
p と tU

p, tU
f と tU

f の対
応が，通常の「Ω の要素と，その t = 0 においての 現在価値」という対応から逸脱
しているため。

期末払いのケース

n ≥ 1 とする。S, T , 及び n 個の数値R1, R1, . . . , Rn に対して，関係式[
0

S

]
∼
∣∣∣∣ 1R1

⌉
+

∣∣∣∣ 2R2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

]
(1.50)

が成立しているとする。このとき，t = 0, 1, 2, . . . , n に対して，n+ 1 個の関係式を
考える：

• t = 0 に対しては関係式 (1.50)

• t = 1 に対しては[
0

S

]
−
∣∣∣∣ 1R1

⌉
∼
∣∣∣∣ 2R2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

]
• 一般に t = 1, 2, . . . , n− 1 に対して，[

0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ tRt

⌉
∼
∣∣∣∣t+ 1

Rt+1

⌉
+

∣∣∣∣t+ 2

Rt+2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

] (1.51)
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• t = n に対しては[
0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ nRn

⌉
∼
[
n

T

] (1.52)

これらの関係式の左辺を tU
p で，右辺を tU

f で表すことにする。つまり，t =

0, 1, 2, . . . , n に対して

0U
p =

[
0

S

]
tU

p =

[
0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ tRt

⌉
, t = 1, 2, . . . , n

tU
f =

∣∣∣∣t+ 1

Rt+1

⌉
+

∣∣∣∣t+ 2

Rt+2

⌉
+ · · ·+

∣∣∣∣ nRn

⌉
+

[
n

T

]
t = 0, 1, 2, . . . , n− 1

nU
f =

[
n

T

]
と定める。このとき，t = 0, 1, 2, . . . , n について

tU
p ∼ tU

f

となっている。

tU
p, tU

f を，tU
p, tU

f の t においての現在価値として定める：

tU
p

[
t

1

]
∼ tU

p (1.53)

tU
f

[
t

1

]
∼ tU

f (1.54)

したがって，期末払いの場合も，tU
p = tU

f .

† 期始払いと期末払いとで，同じ記号 tU
p, tU

f に異なる定義をしていることに注意。

両者の比較と解釈上の問題

数学という立場からは，関係式 (1.44) （期始払いのケース），関係式 (1.50)（期
末払いのケース）は仮定に過ぎない。また，tU

p, tU
f の定義も，数学という立場か
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らは，定義は定義に過ぎないのであり根拠を論ずる必要はない。しかし，期始払い
のケースと期末払いのケースの両者で，異なる前提の下で異なる定義をしているに
も関わらず，同じ記号 tU

p, tU
f を用いているのだから，保険数学という立場からの

根拠を明確にしておく必要がある。そもそも，「期始払い」，「期末払い」という用語
からして，数学ではなく保険数学に属する用語なのだから。

最も単純な例は，例えば t = 0 において n 年間の分割払いで車を買ったとして，

• S は，t = 0 時点における初期債務

• Rt は，t 時点で行う返済

• T は，t = n 時点における債務残高

であり，n 年間の各期

[0, 1], [1, 2], . . . , [n− 1, n]

での返済を

• 期始払いでは，各期の期初 t = 0, 1, . . . , n− 1 で，

• 期末払いでは，各期の期末 t = 1, 2, . . . , n で

支払う場合である。

tU
p, tU

f はどちらも t 時点での債務残高なのだが，

過去法： tU
p は，t 時点までに支払った返済を元に計算した t 時点での債務残高

将来法： tU
f は，t 時点以降の返済予定と n 時点での債務残高予定を元に計算した

t 時点での債務残高（つまり，将来これだけの返済をしなければならないのだ
から，現在これだけの債務が残っているのだと考えて表記した債務残高）

である。
ここで，時間を，t = 0, 1, 2, . . . , n と離散的に考えているために必然的に生じる，
極めて厄介な問題がある。それは，

t における債務返済というイベントと，t における債務残高の評価という
イベントが同時に行われる
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ということであり，t で債務残高の評価をする際に，その瞬間に同時に行われる返
済Rt を，

• 評価に含めるか（つまり，返済は評価の一瞬前に行われたと考えるか），もし
くは，

• 評価に含めない（つまり，評価を完了した一瞬後に返済が行われると考える）

のどちらなのかということを，決めておかなければならない。
一般に，

• 期始払いの返済については，返済は評価の直後

• 期末払いの返済については，返済は評価の直前

と考える。これは，

• 期始払いの返済Rt は，t 時点から始まる期 [t, t + 1] での返済なので，t 時点
での評価の直後に行われると考えるのが自然であり，

• 期末払いの返済Rt は t 時点で完結してる期 [t− 1, t] での返済なので，それが
終わってから評価する（決算をする）と考えるのが自然

という理由であろう。

このような単純なローンの設定では，特に問題はないと思う。しかし，ローンに
限らず，保険会社からの視点で，

なんらかの保険に t = 0 時点で加入した均一な集団に対しての収支

についても，これらの関係式を用いることが出来る。例えば期始払いのケースならば，

• S は，t = 0 時点での加入者への債務。例えば，加入時点で納付される（その
集団からの）保険料であり，一時払い保険料（もしくは，その一部）として捉
えられるもの

• Rt は，t 時点で納付される年払いの保険料（期始払い）から，その時点での
生存者に支払われる給付（期始払生命年金）を引いたもの

• T は，n 時点での加入者への債務。例えば，満期保険金

という例が考えられる。また，期末払いならば，
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• S は，同じく，t = 0 時点での加入者への債務

• Rt は，t 時点で納付される年払いの保険料（期末払い）から，その時点での
生存者に支払われる給付（前期 [t− 1, t] に属する期末払生命年金）を引き，さ
らに，前期 [t− 1, t] での死亡給付を引いたもの

• T は，n 時点での加入者への債務

という例が考えられる。いずれのケースでも，tU
p, tU

f は，t時点における責任準
備金の総額という意味をもつことになる（ある契約者の集団に対しての総額であり，
１人あたりの責任準備金ではない。ただし，確定年金等では責任準備金そのものと
考えて良い）。

この解釈が絶対のものであるならば良いのだが，そうとは言い切れない。期末払
いのケースは解釈の分かれる点があり，期末払いの保険料や生存給付については，

• ここでの解釈のように，前期に属するイベントだということを重視して評価に
含める

• 生保数理のテキスト（５章の最初の数ページ）にある「保険料収入，生存給付
は評価の直後に行われると考える」という規定を字義通りに解釈して，評価に
含めない

というふた通りの選択が可能であろう。また，S についても，それが加入時点で納
付される保険料収入と考えられる場合には，テキストの規定にしたがって，評価に
含めないという考え方もあると思う（更に言えば，期末払い確定年金と期末払い生
命年金とで扱いを変えることも可能）。

このような曖昧な部分については，おそらく，具体的な問題毎に（おそらく文章
で）明示されることになるので，あまり厳格に考えて考えを固定してしまわない方
が良い。もしくは，とりあえず，

保険料と生命年金は期始払い

と限定してしまうのも良いと思う。

以上，保険数学という面からの解釈について述べたのだが，いずれにせよ，ここ
では「Rt は何なのか」という分析までは立ち入らないので，「設定と定義」としてお
くことにして，先に進む。
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ただし，Rt が所与という前提はあるものの，「債務残高」という狭い範囲に留まら
ず，保険数学の広い問題に適用できる議論だということは，意識しておいて欲しい。

Remark. 最後に，保険数学としての解釈はともかく，⌈
t

1

∣∣∣∣　と　∣∣∣∣t1
⌉

の使い分けだが，t 時点で債務残高の評価をする場合，

•
∣∣∣∣t1
⌉
は tU

p に含め，tU
f には含めない

•
⌈
t

1

∣∣∣∣ は tU
p に含めず，tU

f に含める

と決めてしまう。これは解釈よりも数式としての振る舞いを優先した約束であり，例
えば

[t− 1, t] 期の期末払い生命年金を，t 時点での生存給付ということで tU
p

に含めたくない場合

には，期末払いであるにもかかわらず
⌈
t

1

∣∣∣∣ を使うことになる。
tU

p と tU
p の漸化式

これから，t+1U
p を tU

p で表す漸化式を導くが，現在価値を評価する時点が t+1,

t と異なっていることに注意（評価する対象と評価する時点が両方とも異なる）。

まず，現在価値という数値ではなく，時間軸上に展開されたオブジェクトである

tU
p については，項が１つ追加されるだけであり，漸化式は簡単に求められる：

期始払い t 時点での tU
p は

tU
p =

[
0

S

]
−
⌈
0

R0

∣∣∣∣− ⌈ 1

R1

∣∣∣∣− · · · −
⌈
t− 1

Rt−1

∣∣∣∣
であり，求める漸化式は

t+1U
p = tU

p −
⌈
t

Rt

∣∣∣∣, t = 0, 1, 2, . . . , n− 1 (1.55)
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期末払い t 時点での tU
p は

tU
p =

[
0

S

]
−
∣∣∣∣ 1R1

⌉
−
∣∣∣∣ 2R2

⌉
− · · · −

∣∣∣∣ tRt

⌉
であり，求める漸化式は

t+1U
p = tU

p −
∣∣∣∣t+ 1

Rt+1

⌉
(1.56)

つぎに，tU
p の漸化式を，tU

p の漸化式に書き直す。

期始払い：

t+1U
p

[
t+ 1

1

]
= tU

p

[
t

1

]
−
⌈
t

Rt

∣∣∣∣ = (tU
p −Rt)

[
t

1

]
(1.57)

∼ (1 + i) (tU
p −Rt)

[
t+ 1

1

]
なので，

t+1U
p = (1 + i) (tU

p −Rt) , t = 0, 1, 2, . . . , n− 1 (1.58)

期末払い：

t+1U
p

[
t+ 1

1

]
= tU

p

[
t

1

]
−
∣∣∣∣t+ 1

Rt+1

⌉
∼ (1 + i) tU

p

[
t+ 1

1

]
−Rt+1

[
t+ 1

1

]
=

(
(1 + i) tU

p −Rt+1

) [t+ 1

1

]
なので，

t+1U
p = (1 + i) tU

p −Rt+1, t = 0, 1, . . . , n− 1 (1.59)

Remark. (1.57) 式では，⌈
t

Rt

∣∣∣∣ (= Rt

⌈
t

1

∣∣∣∣) = Rt

[
t

1

]
と記号が変化している。

⌈
t

1

∣∣∣∣ = [t1
]
なので数学的には「言い訳」をする必要はない

のだが，動機を言うならば
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1. Rt については，どの期に属するかを意識したいが，

2. tU
p は t における評価であり，どの期に属するかは考えない

ということであり，式変形をして tU
p と結びつくにしたがって，期から切り離され

た記号が自然になる，という気持ちの問題である。

Remark. ここでの議論は，

観測者とは独立にオブジェクトを考え，その後で（t 時点の）観測者が
観測するデータについて考える

という立場からの流れである。一方，実務経験が多ければ多いほど，時間と共に変
化する経理上の数値（観測されたデータ）を見つめて流れを追う方が，自然でわか
り易いはずだ（利差益や死差益の分析といった問題になると，元々が会計上の問題
なので，この感性は必須）。この場合，（期始払いを例にとると）

1. [t, t+ 1] 期の期初での評価額は tU
p

2. その直後にRt が入金され，評価額は tU
p +Rt

3. １年間経過すると（１年間運用した結果）評価額は (1 + i)(tU
p +Rt)

と追跡することになる。慣れてしまえば，当然このように考えることになるのだが，
保険数学では，

評価時点が固定されていて，保険商品（というオブジェクト）とその現
在価値を区別せずに扱う

ことが多いため，評価時点が固定された現在価値から，帳簿上の価格（これもその
時点での現在価値だが，評価時点が様々）にいきなり切り替えるのは，誤解の原因
となりやすい。ここでは，敢えて「オブジェクト指向」で押し通した。

金利負担と元本返済

期末払いのケースの漸化式 (1.59) において Rt+1 が i · tU
p に等しい場合には，

t+1U
p = tU

p となる。したがって，Rt+1 が債務の返済と解釈されてるケースでは，
i · tUp は債務残高を増加させずに維持するための支払い，つまり債務残高の金利負
担と解釈される（１年前の債務残高 tU

p の金利が i · tUp なので当たり前，と考えて
も良い）。したがって，

rt+1 = Rt+1 − i · tUp

47



と置くと，これは t+1 時点での元本返済額に相当すると解釈される。Rt+1 = rt+1+

i · tUp を (1.59) に代入しすると

t+1U
p = tU

p − rt+1

であり，したがって，

t+1U
p = S − (r1 + r2 + · · ·+ rt+1) (1.60)

となる。t+ 1 = n では

T = S − (r1 + r2 + · · ·+ rn)

となっていることが確かめられる。

例 3. 元金 S を n 年間の元利均等期末払いで返済する場合，

• n 年後の債務残高は 0 なので，T = 0 であり，

• 返済額は一定なので，R = Rj, j = 1, 2, . . . , n と置くことが出来る。

したがって，期末払いの場合の関係式 (1.50) は[
0

S

]
∼

∣∣∣∣1R
⌉
+

∣∣∣∣2R
⌉
+ · · ·+

∣∣∣∣nR
⌉
+

[
n

0

]
= Ran⌉

[
0

1

]
であり，S = Ran⌉. また，

tU
p ∼

[
0

S

]
−
[
1

R

]
−
[
2

R

]
− · · · −

[
t

R

]
=

[
0

S

]
−Rat⌉

[
0

1

]
= (S −Rat⌉)(1 + i)t

[
t

1

]
tU

f ∼
[
t+ 1

R

]
+

[
t+ 2

R

]
+ · · ·+

[
n

R

]
+

[
n

0

]
= Ran−t⌉

[
t

1

]
であり，

tU
p = (1 + i)t(S −Rat⌉), tU

f = R · an−t⌉

また，[t, t+ 1]期末の返済額R （t+ 1 時点での返済額）は，tU
p = tU

f であること
を用いて計算すると，
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1. 元金返済部分が

rt+1 = R− i · tU f

= R− i ·R · an−t⌉

= R− i ·R1− vn−t

i
= Rvn−t

2. 利息返済部分が，

R− rt+1 = R(1− vn−t)

と分解される。これは t+ 1 時点の返済額の分解であり，t 時点では

元金返済部分 rt = Rvn−t+1

利息部分 R− rt = R(1− vn−t+1)

債務残高 Ran−t⌉　（tU
f の形で求めた値）

となる。

Remark. ここでは，一般論で得られている等式から求めたが，ドミノ倒し的な考
え方で求めるならば，この場合，t = n から逆に戻っていくと良い。しかし，この
アプローチは自分で手を動かして考えるならともかく，記述には向かない。債務残
高を（帳簿を付けながら追うイメージで）追跡したいならば，

t時点から t+1時点で，債務残高は tU
f = Ran−t⌉ から t+1U

f = Ran−t−1⌉

に減少するのだから，tU
f − t+1U

f（計算するとRvn−t）が t+ 1 時点で
の返済の元金返済部分，残りが利息部分

と考えるのが簡単だと思う。

期始払いのケースの漸化式 (1.58) では，Rt = d · tUp のとき

(1 + i)(tU
p − d · tUp) = (1 + i)v · tUp = tU

p

なので，d · tUp を前払い利息としての金利負担，

rt = Rt − d · tUp

49



を元本返済額に相当すると解釈する。この場合も，

Rt = i · t−1U
p + rt

を (1.58) に代入すると

tU
p = (1 + i) t−1U

p −Rt

= (1 + i) t−1U
p − i · t−1U

p − rt

= t−1U
p − rt

となり，漸化式

tU
p = t−1U

p − rt, t = 1, 2, . . . , n (1.61)

を得る。したがって，

tU
p = S − (1 + i)(r1 + r2 + · · ·+ rt) (1.62)

となる。特に，t = n とすれば，右辺 tU
p は nU

p = 0 なので

T = S − (r1 + r2 + · · ·+ rn)

となることが確かめられる。

Remark. いずれにせよ，t と t+ 1 に注意しなければならないので，そして返済の
直前なのか直後なのかに注意しなければならないので，とても面倒。しかも，漸化
式を，（ここでは t から t+ 1 として記述したのだが）t− 1 から t と考えることもあ
るので，なおさら混乱する。要するに・・・・・・間違える。

(k) の場合と連続モデル

(k) が付く場合は，期始払いを例にとって，最初の関係式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+ ⌈ 1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣+ [nT
]

を総和の記号で[
0

S

]
∼

∑
t=0,1,...,n−1

⌈
t

Rt

∣∣∣∣ +

[
n

T

]
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と書き換えておいた式の類似として[
0

S

]
∼

∑
t= 0

k
, 1
k
,...,n−1

k

⌈
t

Rt

∣∣∣∣ · 1k +

[
n

T

]
(1.63)

を考える。1/k が付くこと，つまり返済額はRk/k であることに注意。この辺りの
記号は，すべて年率換算の記号。

tU
p, tU

f , tU
p, tU

f も同じく定義され，

1. 漸化式は

t+ 1
k
Up = tU

p −
⌈
t

Rt

∣∣∣∣ · 1k
t+ 1

k
Up =

(
tU

p − Rt

k

)(
1 +

i(k)

k

)

2. 期間 [t, t+ 1] 期始での債務残高に対する前払い利息は

d(k)

k
· tUp

なので，

3. 元金返済部分 rt/k は

rt
k

=
Rt

k
− d(k)

k
· tUp

4. したがって，

t+ 1
k
Up =

(
tU

p − Rt

k

)(
1 +

i(k)

k

)
=

(
tU

p − d(k)

k
· tUp − rk

k

)(
1 +

i(k)

k

)
= tU

p − rk
k

(
1 +

i(k)

k

)
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であり，

Rt = d(k) · tUp + rt (1.64)

t+ 1
k
Up = tU

p −
(
1 +

i(k)

k

)
rt
1

k
(1.65)

という関係式を得る。期末払いのケースも同様。

k → ∞ の極限を考えるためには，△t = 1
k
とおいて漸化式を

t+△tU
p = (tU

p −Rt△t) (1 + i(k)△t)

と書き直してから右辺を展開して tU
p を移項して

t+△tU
p − tU

p

△t
= tU

p · i(k) −Rt −Rt · i(k)△t

としておくと，漸化式は k → 0 の極限で，

d tU
p

dt
= δ · tUp −Rt

という微分方程式の形になることが分かる。

1.3.2 複合型

離散モデル

それでは，関係式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+⌈ 1

R1

∣∣∣∣+ ⌈ 2

R2

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣
+

∣∣∣∣ 1R′
1

⌉
+

∣∣∣∣ 2R′
2

⌉
+ · · ·+

∣∣∣∣n− 1

R′
n−1

⌉
+

∣∣∣∣ nR′
n

⌉
+

[
n

T

] (1.66)

が成立している場合について考えよう。要点は，⌈
t

Rt

∣∣∣∣ は t 時点での tU
p の評価に含めないが，

∣∣∣∣ tR′
t

⌉
は含める
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ということである。なお，R′
t はRt の微分ではない（単にRt とは別の記号R′

t）。

この場合，t = 0, 1, 2, . . . , n に対して，tU を

0U
p =

[
0

S

]
tU

p =

[
0

S

]
−
(⌈

0

R0

∣∣∣∣+ · · ·+
⌈
t− 1

Rt−1

∣∣∣∣)−
(∣∣∣∣ 1R′

1

⌉
+ · · ·+

∣∣∣∣ tR′
t

⌉)
t = 1, 2, . . . , n

nU
f =

[
n

T

]
tU

f =

(⌈
t

Rt

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣)+

(⌈
t+ 1

R′
t+1

∣∣∣∣+ · · ·+
⌈
n

R′
n

∣∣∣∣)+

[
n

T

]
t = 0, 1, · · · , n− 1

と定義することになる。この定義により，漸化式は

t+1U
p = tU

p −
⌈
t

Rt

∣∣∣∣− ∣∣∣∣t+ 1

R′
t+1

⌉
, t = 0, 1, . . . , n− 1

という形をとる。したがって，

t+1U
p

[
t+ 1

1

]
= tU

p

[
t

1

]
−Rt

⌈
t

1

∣∣∣∣−R′
t+1

∣∣∣∣t+ 1

1

⌉
= (tU

p −Rt)

[
t

1

]
−R′

t+1

[
t+ 1

1

]
∼ (tU

p −Rt) (1 + i)

[
t+ 1

1

]
−R′

t+1

[
t+ 1

1

]
なので，漸化式

t+1U
p = (1 + i) (tU

p −Rt)−R′
t+1, t = 0, 1, 2, . . . , n− 1 (1.67)

を得る。

(1.66) から始めたのだが，この関係式を移項して

0 ∼
[
0

S

]
−
⌈
0

R0

∣∣∣∣ −
⌈
1

R1

∣∣∣∣− ⌈ 2

R2

∣∣∣∣− · · · −
⌈
n− 1

Rn−1

∣∣∣∣
−
∣∣∣∣ 1R′

1

⌉
−
∣∣∣∣ 2R′

2

⌉
− · · · −

∣∣∣∣n− 1

R′
n−1

⌉
−
∣∣∣∣ nR′

n

⌉
−
[
n

T

]
(1.68)

としておくと，
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1. 右辺は 0 と等価なオブジェクト（これを零オブジェクトと呼ぶことにしよう）

2. この零オブジェクトを t の前後に分けて

(a) 前半を tU
p

(b) 後半の符号を逆転させたものを tU
f

と定める。

3. 離散モデルの宿命として，分点にある項を前後のどちらに入れるかの規約が

必要になるが，
⌈
t

Rt

∣∣∣∣ は後半に，∣∣∣∣ tR′
t

⌉
は前半に含めることにしている。また，[

0

S

]
は前半に，

[
n

T

]
は後半に含める。

というだけのこと。
「符号を逆転させたもの」と決めているため，後で過去法による責任準備金と将
来法による責任準備金では，収入から支出を引くか，支出から収入を引くかが逆転
することになる。

(k) の場合と連続モデル

(k) の類似を辿ることも可能であり，漸化式は

t+ 1
k
Up = (1 +

i(k)

k
)

(
tU

p −Rt ·
1

k

)
−R′

t+ 1
k
· 1
k
, t =

0

k
,
1

k
, . . . ,

nk − 1

k
(1.69)

となる。

k → ∞ を微分方程式の形にするためには，△t = 1
k
とおいて

t+△tU
p − tU

p = i(k)tU
p△t−

(
1 +

i(k)

k

)
Rt△t−R′

t+△t△t

t+△tU
p − tU

p

△t
= i(k)tU

p −
(
1 +

i(k)

k

)
Rt −R′

t+△t

と書き換えておいてから，△t → 0 の極限をとる。

i(k) → δ, 1 +
i(k)

k
→ 1, R′

t+△t → R′
t
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なので，

d tU
p

dt
= δ tU

p −Rt −R′
t (1.70)

Remark. ここで定義した tU と，責任準備金を表す tV の間には大きな違いがあ
る。それは，

1. 責任準備金は１人あたりの金額であるのに対して，

2. ここでの tU はある集団での総額としての金額を表している

という違いである（したがって，確定年金等の契約者の生死を考慮しないで良い場
合には，責任準備金と考えて良い）。これについては，S, T , Rt, R

′
t, tU

p をそれぞ
れ ℓx S, ℓx+n T , ℓx+t Rt, ℓx+t R

′
t, ℓx+t · tV p と書き換えれば良いだけのことなのだが，

微分方程式（Tiele の微分方程式）の形まで書き直すためには，

ℓx+t が減少するために１人あたりの金額が増える効果

を取り落とさないようにしなければならず，(1.70) 式とは異なった形になる。これ
については，後で触れる。
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第2章 ρ型の保険数学

2.1 ρ型定理
出発点は，関係式[

t

1

]
∼
[
t

d

]
+

[
t+ 1

1

]
(2.1)

であり，その両辺に係数を乗じた総和を比較する。このテクニックは強力であり，
色々な形に拡張できる。

2.1.1 ρ型定理（離散モデル）

関数 ρ(t) が与えられているとして，σ(t) を

σ(t)
def
= ρ(t)− ρ(t+ 1) (2.2)

と定める。したがって，ρ(t) = σ(t) + ρ(t+ 1) と書き換えることが出来る。

関係式 (2.1) の両辺に ρ(t) をかけてから等式 (2.2) を用いると

ρ(t)

[
t

1

]
∼ ρ(t)

[
t

d

]
+ ρ(t)

[
t+ 1

1

]
= ρ(t)

[
t

d

]
+ σ(t)

[
t+ 1

1

]
+ ρ(t+ 1)

[
t+ 1

1

]
となる（右辺第３項が，左辺の t を t+ 1 としたものであることがポイント）。
この関係式

ρ(t)

[
t

1

]
∼ ρ(t)

[
t

d

]
+ σ(t)

[
t+ 1

1

]
+ ρ(t+ 1)

[
t+ 1

1

]
(2.3)

の両辺を，

t = 0, 1, 2, . . . , n− 1
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について総和をとると
n−1∑
t=0

ρ(t)

[
t

1

]
∼

n−1∑
t=0

ρ(t)

[
t

d

]
+

n−1∑
t=0

σ(t)

[
t+ 1

1

]
+

n−1∑
t=0

ρ(t+ 1)

[
t+ 1

1

]

=
n−1∑
t=0

ρ(t)

[
t

d

]
+

n−1∑
t=0

σ(t)

[
t+ 1

1

]
+

n∑
t=1

ρ(t)

[
t

1

]
となり，両辺を比較することにより（左辺と，右辺第３項の差に注目する），関係式

ρ(0)

[
0

1

]
∼

n−1∑
t=0

ρ(t)

[
t

d

]
+

n−1∑
t=0

σ(t)

[
t+ 1

1

]
+ ρ(n)

[
n

1

]
(2.4)

を得る：

定理 1. 関数 ρ(t) に対して σ(t) を

σ(t) = ρ(t)− ρ(t+ 1)

と定める。このとき，関係式

ρ(0)

[
0

1

]
∼

n−1∑
t=0

ρ(t)

[
t

d

]
+

n−1∑
t=0

σ(t)

[
t+ 1

1

]
+ ρ(n)

[
n

1

]
が成り立つ。

応用１（変動確定年金）

(Iä)n⌉, (Ia)n⌉ を，それぞれ

(Iä)n⌉

[
0

1

]
∼

n−1∑
t=0

(t+ 1)

[
t

1

]
(Ia)n⌉

[
0

1

]
∼

n∑
t=1

t

[
t

1

]
を満たす数値として定義する。つまり，

(Iä)n⌉ =
n−1∑
t=0

(t+ 1)vt

(Ia)n⌉ =
n∑

t=1

t vt
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と定義する。定理 1 のひとつの応用として，関係式

(Iä)n⌉ =
1

d
än⌉ −

nvn

d

(Ia)n⌉ =
1

i
än⌉ −

nvn

i

(
=

1

d
an⌉ −

nvn

i

)
が成り立つことを示す。
ρ(t) = 1 + t と置くと，[

0

1

]
∼

n−1∑
t=0

(1 + t)

[
t

d

]
−

n−1∑
t=0

[
t+ 1

1

]
+ (1 + n)

[
n

1

]
= (Iä)n⌉

[
0

d

]
− an⌉

[
0

1

]
+ (1 + n)

[
n

1

]
1 = d(Iä)n⌉ − an⌉ + (1 + n)vn

ここで，an⌉ = än⌉ − 1 + vn であることを用いて，等式

än⌉ = d (Iä)n⌉ + n vn (2.5)

を得る。

また，ρ(t) = t と置くと，

0 ·
[
0

1

]
∼

n−1∑
t=0

t

[
t

d

]
−

n−1∑
t=0

[
t+ 1

1

]
+ n

[
n

1

]

=
n∑

t=1

t

[
t

d

]
− n

[
n

d

]
−

n−1∑
t=0

[
t+ 1

1

]
+ n

[
n

1

]
= d (Ia)n⌉

[
0

1

]
+ n(1− d)

[
n

1

]
− an⌉

[
0

1

]
0 = d(Ia)n⌉ + nvn+1 − an⌉

an⌉ = d(Ia)n⌉ + nvn+1 (2.6)

もしくは，(Ia)n⌉ を求める形で

(Ia)n⌉ =
1

d
an⌉ −

nvn

i
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Remark. 保険数学のテキストでは，「t時点における 1 (Gold)」という時間軸上に配

置されたオブジェクトを表す記号
[
t

1

]
は用意されていないので，すべて t = 0 （も

しくはその他の固定された時点）での現在価値で表現しなければならない。もちろ
ん，定理 1 もテキストに書かれていないので，試験の答案で引用することも出来な
い。式の導出は，すべて[

t

1

]
をその t = 0 における現在価値 vt に置き換える

という変更で書き換えて，証明し直すことが必要。

例 4. 等式

(Ia)n⌉ = (Iä)n+1⌉ − än+1⌉

を証明する。

証明

(Ia)n⌉

[
0

1

]
= 1 ·

[
1

1

]
+2 ·

[
2

1

]
+ · · · +(n− 1) ·

[
n− 1

1

]
+n ·

[
n

1

]

(Iä)n+1⌉

[
0

1

]
= 1 ·

[
0

1

]
+2 ·

[
1

1

]
+3 ·

[
2

1

]
+ · · · +n ·

[
n− 1

1

]
+(n+ 1) ·

[
n

1

]

än+1⌉

[
0

1

]
= 1 ·

[
0

1

]
+1 ·

[
1

1

]
+1 ·

[
2

1

]
+ · · · +1 ·

[
n− 1

1

]
+1 ·

[
n

1

]
を比較すれば明らか。

同じことを，t = 0 での現在価値のみで表現すると

(Ia)n⌉ = +1 · v +2 · v2 + · · · +(n− 1) · vn−1 +n · vn

(Iä)n+1⌉ = 1 · 1 +2 · v +3 · v2 + · · · +n · vn−1 +(n+ 1) · vn

än+1⌉ = 1 · 1 +1 · v +1 · v2 + · · · +1 · vn−1 +1 · vn
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となる。

Remark. 式を書くという意味では，vj に言い換えた方が簡単。また，試験では，

そうすることが必須。ただし，
[
j

1

]
と vj との読み替えが自明になるまでは，「なんら

かの時点での現在価値」と「時間軸上に配置されたオブジェクト」を区別する記号
を用いる方が概念的に明確であり，わかりやすいと思う。

応用２（最も重要な応用）

以上の設定の下で，テキストの２章と３章を飛ばして，いきなり４章に登場する
等式の一部を証明することが可能。ただし，数学の定義の背景として，

1. t = 0 時点で，ある保険に ℓx 人の契約者が加入する。

2. t 時点で，契約者は ℓx+t 人生存

ということを仮定している。これは，あくまでも解釈であり数学的な扱いとしては，

t 7→ ℓx+t という関数が与えられている

というだけで十分。保険数学として意味のある記号は，式で定義を与えれば良い。

† 式の見かけと異なり，ℓx+t という記号に含まれる文字 x は何の機能も持たない。
あくまでも，t 7→ ℓx+t という t の関数であり，ℓx+ は関数を表す記号に過ぎない。

まず，記号を

1. ρ(t) を ℓx+t,

2. σ(t) を dx+t

と書き換えておく。このとき，

dx+t = ℓx+t − ℓx+t+1

であり，定理 1 の関係式は

ℓx

[
0

1

]
∼

n−1∑
t=0

ℓx+t

[
t

d

]
+

n−1∑
t=0

dx+t

[
t+ 1

1

]
+ ℓx+n

[
n

1

]
(2.7)
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となる（ℓx は ℓx+0 を表す）。さらに，記号 äx:n⌉, A1
x:n⌉

, A
x:

1
n⌉
, Ax:n⌉ を

äx:n⌉ =
1

ℓx

n−1∑
t=0

ℓx+t

[
t

1

]
(2.8)

A1
x:n⌉

=
1

ℓx

n−1∑
t=0

dx+t

[
t+ 1

1

]
(2.9)

A
x:

1
n⌉

=
1

ℓx
· ℓx+n

[
n

1

]
(2.10)

Ax:n⌉ = A1
x:n⌉

+A
x:

1
n⌉

(2.11)

と定めると，定理の関係式を[
0

1

]
∼ d äx:n⌉ +A1

x:n⌉
+A

x:
1
n⌉

= d äx:n⌉ +Ax:n⌉ (2.12)

と書き直すことができる。したがって，äx:n⌉, A1
x:n⌉

, A
x:

1
n⌉
, Ax:n⌉ を，それぞれ äx:n⌉,

A1
x:n⌉

, A
x:

1
n⌉
, Ax:n⌉ の現在価値として定めることにより，つまり，

äx:n⌉

[
0

1

]
∼ äx:n⌉

A
x:

1
n⌉

[
0

1

]
∼ A

x:
1
n⌉
, A1

x:n⌉

[
0

1

]
∼ A1

x:n⌉
, Ax:n⌉

[
0

1

]
∼ Ax:n⌉

と定めることにより，等式

1 = däx:n⌉ + Ax:n⌉ (2.13)

を得る。

Remark. この等式は，生命年金についての等式なのだが，これを導くために生命
表 ℓx+t の性質はなにも用いていないことに注意。連合生命などの複雑なものを考
えている場合でも，関数 ρ(t) を適切に定めれば，このタイプの等式を導くことがで
きる。
Remark. ρ(t) を ℓx+t と書き換えたのだが，x の関数としての ℓx は定義していな
いことに注意。ℓx+t での ℓx+ は関数を表す記号であり（つまり，考えている関数は
t 7→ ℓx+(t) であり），関数 x 7→ ℓx を定めてから x に x+ t を代入しているわけでは
ない。特に，後で登場する連合生命 äx+t,y+t:n⌉ では x,y は契約開始時点での年齢と
して固定されているのであり，変数と考えることのできるのは t のみである。
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Remark. ℓx+ が単なる関数に過ぎないということは，逆に言うと，例えば

f |äx:n⌉ = vf · fpx · äx+f :n⌉

のような，x, x+ f という異なる時点での年齢が本質的役割を持つ等式は，決して
導けないことを意味する。このような等式を導くためには，t 7→ ℓx+t を（x という
記号が意味を持たない）t の関数として済ますのではなく，ℓx を，

x の関数でありなんらかの「良い性質」を持つもの

として考えなければならない。しかし，この時点で，「(ある種の)連合生命」，「保険
加入時点でのスクリーニング」，「開集団」等の難しい問題が発生する。

応用２では，記号 ρ(t) を ℓx+t と書き換え，記号 σ(t) を dx+t と書き換えて等式
(4.6) を得た。同じことなのだが，ρ(t) を tpxと書いてみる。σ(t) は，tpx − t+1px の
ままの形で表し，新しい記号は導入しない。関係式 (2.7) の代わりに関係式

0px

[
0

1

]
∼

n−1∑
t=0

tpx

[
t

d

]
+

n−1∑
t=0

(tpx − t+1px)

[
t+ 1

1

]
+ npx

[
n

1

]
(2.14)

を得る。特に，関数 t 7→ ℓx+t が与えられているとして，関数 t 7→ tpx が

tpx =
ℓx+t

ℓx

と定められているならば，関係式 (2.14) は関係式 (2.7)（の両辺を ℓx で割ったもの）
と一致し，また，äx:n⌉ などの定義は

äx:n⌉ =
n−1∑
t=0

tpx

[
t

1

]
(2.15)

A1
x:n⌉

=
n−1∑
t=0

(tpx − t+1px)

[
t+ 1

1

]
(2.16)

A
x:

1
n⌉

= npx

[
n

1

]
(2.17)

Ax:n⌉ = A1
x:n⌉

+A
x:

1
n⌉

(2.18)

という形になる。
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2.1.2 ξ-ρ 型定理

離散型

さらに一般の形にするならば，まず，ξ(t) を任意の関数として，関係式 (2.3) の両
辺に ξ(t+ 1) をかけて

ξ(t+1)ρ(t)

[
t

1

]
∼ ξ(t+1)ρ(t)

[
t

d

]
+ξ(t+1)σ(t)

[
t+ 1

1

]
+ξ(t+1)ρ(t+1)

[
t+ 1

1

]
(2.19)

としておく。しかし，このままでは総和を取ってうまく打ち消し合う形ではないの
で，前処理が必要。左辺を

ξ(t+ 1)ρ(t)

[
t

1

]
= ξ(t)ρ(t)

[
t

1

]
+ (ξ(t+ 1)− ξ(t))ρ(t)

[
t

1

]
と書き換えて，

ξ(t)ρ(t)

[
t

1

]
+ (ξ(t+ 1)− ξ(t))ρ(t)

[
t

1

]
∼ ξ(t+ 1)ρ(t)

[
t

d

]
+ ξ(t+ 1)σ(t)

[
t+ 1

1

]
+ ξ(t+ 1)ρ(t+ 1)

[
t+ 1

1

]
の総和を取り，左辺第１項と右辺第３項を比較することにより，関係式

ξ(0)ρ(0)

[
0

1

]
+

n−1∑
t=0

(ξ(t+ 1)− ξ(t)) ρ(t)

[
t

1

]

∼
n−1∑
t=0

ξ(t+ 1)ρ(t)

[
t

d

]
+

n−1∑
t=0

ξ(t+ 1)σ(t)

[
t+ 1

1

]
+ ξ(n)ρ(n)

[
n

1

]
(2.20)

を得る。

特に，

1. ρ(t) として定値関数 ρ(t) = 1 を選ぶと，σ(t) = 0 であり，関係式 (2.20) は

ξ(0)

[
0

1

]
+

n−1∑
t=0

(ξ(t+ 1)− ξ(t))

[
t

1

]
∼

n−1∑
t=0

ξ(t+ 1)

[
t

d

]
+ ξ(n)

[
n

1

]
となる。これは定理 (1) の記号 ρ を ξ に書き換えたものに過ぎない。(Iä)n⌉,

(Ia)n⌉ についての等式は，ρ(t) = 1 で, ξ(t) が ξ(t) = 1 + t, ξ(t) = t の場合の
等式として考えた方が，保険数学としては自然。
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2. 一方，ξ(t) として定値関数 ξ(t) = 1 を選ぶと，関係式 (2.20) は関係式 (2.4) と
なる。

3. ξ(t) が ξ(0) = 0 を満たすときは関係式 (2.20) は

n−1∑
t=0

(ξ(t+ 1)− ξ(t)) ρ(t)

[
t

1

]

∼
n−1∑
t=0

ξ(t+ 1)ρ(t)

[
t

d

]
+

n−1∑
t=0

ξ(t+ 1)σ(t)

[
t+ 1

1

]
+ ξ(n)ρ(n)

[
n

1

]
(2.21)

という形になり，特に，

4. ξ(t) = t のときは

n−1∑
t=0

ρ(t)

[
t

1

]

∼
n−1∑
t=0

(t+ 1)ρ(t)

[
t

d

]
+

n−1∑
t=0

(t+ 1)ρ(t)

[
t+ 1

1

]
+ nρ(n)

[
n

1

] (2.22)

となる。

応用２と同じく，ρ(t) を ℓx+t, σ(t) を dx+t と書き換えることにより，関係式

äx:n⌉ = d (Iä)x:n⌉ + (IA)1
x:n⌉

+ nA
x:

1
n⌉

を得る。また，この等式は，

(IA)x:n⌉ = (IA)1
x:n⌉

+ nA
x:

1
n⌉

と置くことにより，

äx:n⌉ = d (Iä)x:n⌉ + (IA)x:n⌉ (2.23)

となる。
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(k)タイプの離散型

t を

t = 0,
1

k
,
2

k
, . . . ,

j

k
, . . .

と 1
k
刻みに考える場合についても，同じ議論が成立する。

関数 ρ(t) が与えられているとして，σ(t) を

σ(t) = ρ(t)− ρ(t+
1

k
)

と定める。

まず，関係式[
t

1

]
∼
[

t
d(k)

k

]
+

[
t+ 1

k

1

]
(2.24)

の両辺に ρ(t) をかけて，

ρ(t)

[
t

1

]
∼ ρ(t)

[
t

d(k)

k

]
+ ρ(t)

[
t+ 1

k

1

]
= ρ(t)

[
t

d(k)

k

]
+ σ(t)

[
t+ 1

k

1

]
+ ρ(t+

1

k
)

[
t+ 1

k

1

]
この等式

ρ(t)

[
t

1

]
∼ ρ(t)

[
t

d(k)

k

]
+ σ(t)

[
t+ 1

k

1

]
+ ρ(t+

1

k
)

[
t+ 1

k

1

]
(2.25)

の両辺を，

j = 0, 1, 2, . . . , nk − 1

について総和をとると

nk−1∑
j=0

ρ(
j

k
)

[ j
k

1

]
∼

nk−1∑
j=0

ρ(
j

k
)

[ j
k

d(k)

k

]
+

nk−1∑
j=0

σ(
j

k
)

[ j
k
+ 1

k

1

]
+

nk−1∑
j=0

ρ(
j

k
+

1

k
)

[ j
k
+ 1

k

1

]

=
nk−1∑
j=0

ρ(
j

k
)

[ j
k

d(k)

k

]
+

nk−1∑
j=0

σ(
j

k
)

[ j
k
+ 1

k

1

]
+

nk∑
j=1

ρ(
j

k
)

[ j
k

1

]
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となり，関係式

ρ(0)

[
0

1

]
∼

nk−1∑
j=0

ρ(
j

k
)

[ j
k

d(k)

k

]
+

nk−1∑
j=0

σ(
j

k
)

[ j
k
+ 1

k

1

]
+ ρ(n)

[
n

1

]
(2.26)

を得る。また，

nk−1∑
j=0

を　
∑

t= 0
k
,··· ,nk−1

k

と表す

といった表記をして良いことにすると，

ρ(0)

[
0

1

]
∼

∑
t= 0

k
,··· ,nk−1

k

ρ(t)

[
t

d(k)

k

]
+

∑
t= 0

k
,··· ,nk−1

k

σ(t)

[
t+ 1

k

1

]
+ ρ(n)

[
n

1

]
(2.27)

ξ(t) をかけてから総和をとる計算も同じことである。ただし，式の横幅を減らす
ために，

∑
t= 0

k
,··· ,nk−1

k

については完全に省略した形で，単に
∑
と書くことにする。

等式

ξ(t+
1

k
)ρ(t)

[
t

1

]
∼ ξ(t+

1

k
)ρ(t)

[
t

d(k)

k

]
+ξ(t+

1

k
)σ(t)

[
t+ 1

k

1

]
+ξ(t+

1

k
)ρ(t+

1

k
)

[
t+ 1

k

1

]
(2.28)

の総和を t = 0
k
, · · · , nk−1

k
としてとると∑

ξ(t+
1

k
)ρ(t)

[
t

1

]
∼

∑
ξ(t+

1

k
)ρ(t)

[
t

d(k)

k

]
+
∑

ξ(t+
1

k
)σ(t)

[
t+ 1

k

1

]
+
∑

ξ(t+
1

k
)ρ(t+

1

k
)

[
t+ 1

k

1

]
∼

∑
ξ(t+

1

k
)ρ(t)

[
t

d(k)

k

]
+
∑

ξ(t+
1

k
)σ(t)

[
t+ 1

k

1

]
+

∑
t= 1

k
,··· ,nk

k

ξ(t)ρ(t)

[
t

1

]
となる。この左辺を∑

ξ(t+
1

k
)ρ(t)

[
t

1

]
∼

∑
ξ(t)ρ(t)

[
t

1

]
+
∑(

ξ(t+
1

k
)− ξ(t)

)
ρ(t)

[
t

1

]
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と変形してから，両辺を比較することにより，関係式

ξ(0)ρ(0)

[
0

1

]
+
∑(

ξ(t+
1

k
)− ξ(t)

)
ρ(t)

[
t

1

]
∼

∑
ξ(t+

1

k
)ρ(t)

[
t

d(k)

k

]
+
∑

ξ(t+
1

k
)σ(t)

[
t+ 1

k

1

]
+ ξ(n)ρ(n)

[
n

1

]
(2.29)

を得る。

連続型

それでは，k → ∞ の場合を，区分求積の形を経由して積分に置き換えよう。
(2.29) の各項を区分求積の形に書き換える。
微分の形を見やすくするために，

△t =
1

k
(2.30)

とおく。

左辺の第１項は，総和の形ではなく単独の項なので，そのままで良い。
左辺の第２項は∑(

ξ(t+
1

k
)− ξ(t)

)
ρ(t)

[
t

1

]
=

∑
t= 0

k
,··· ,nk−1

k

ξ(t+△t)− ξ(t)

△t
ρ(t)

[
t

1

]
△t (2.31)

と書き換えておけば区分求積の形であり，k → ∞ とすれば∑
t= 0

k
,··· ,nk−1

k

ξ(t+△t)− ξ(t)

△t
ρ(t)

[
t

1

]
△t

→
∫ n

0

ξ′(t)ρ(t)

[
t

1

]
dt (k → ∞)

となるのだが，２つの点が問題になる。以前にも触れた問題なのだが，繰り返して
おく：

1. Ω のなかで極限をとっている。
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2. ξ(t+△t)−ξ(t)
△t

→ ξ′(t) という極限と，区分求積から積分への極限を同時にとって
いる。

最初の点は，[
t

1

]
= vt

[
0

1

]

としておいて
[
0

1

]
を総和の記号（の影響範囲）の外に括りだしてしまってから極限

をとり，そのあとで積分記号（の影響範囲）の中に（形式的に）戻すと考えれば解
決される。この点に関しては，以前に触れた微分の形への極限のケースよりも簡単
である。

一方，区分求積としての極限と非積分関数の極限を同時にとっているという問題
の処理は，多少複雑になる。一応，詳細を述べるが，結論は

気にすることはない。

まず， ∑
t= 0

k
,··· ,nk−1

k

ξ(t+△t)− ξ(t)

△t
ρ(t)

[
t

1

]
△t

=
∑

t= 0
k
,··· ,nk−1

k

ξ′(t)ρ(t)

[
t

1

]
△t

+
∑

t= 0
k
,··· ,nk−1

k

(
ρ(t+△t)− ρ(t)

△t
− ξ′(t)

)
ρ(t)

[
t

1

]
△t

と分けておき，∣∣∣∣ρ(t+△t)− ρ(t)

△t
− ξ′(t)

∣∣∣∣ ≤ M△t (0 ≤ t ≤ n)
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を満たす定数M の存在を仮定してしまう。こうしておけば，∣∣∣∣∣∣
∑

t= 0
k
,··· ,nk−1

k

(
ρ(t+△t)− ρ(t)

△t
− ξ′(t)

)
ρ(t)

[
t

1

]
△t

∣∣∣∣∣∣
≤

∑
t= 0

k
,··· ,nk−1

k

∣∣∣∣ρ(t+△t)− ρ(t)

△t
− ξ′(t)

∣∣∣∣ ρ(t)[t1
]
△t

≤ (M△t)
∑

t= 0
k
,··· ,nk−1

k

ρ(t)

[
t

1

]
△t

→ 0 (k → ∞)

であり，ρ(t+△t)−ρ(t)
△t

を ξ′(t) に置き換えてから区分求積としての極限をとって良いこ
とが示される。
さらに，ρ(t), ξ′(t) が連続関数であることを仮定しておけば，区分求積としての極
限を厳密に論証することができるのだが，実際には，ξ(t) としては単純なものしか
考えず，また，ρ(t) として不連続なものを考えることもあまりないので，気にする
ことはない。

2.1.3 債務残高の等式（ℓ(t) 型）

関数 ℓ(t) が与えられているとする（t の関数であることを明確にするために，こ
こでは ℓx+t ではなく ℓ(t) と書いておく）。

複合型の債務残高の関係式[
0

S

]
∼

⌈
0

R0

∣∣∣∣+ ⌈ 1

R1

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣
+

∣∣∣∣ 1R′
1

⌉
+

∣∣∣∣ 2R′
2

⌉
+ · · ·+

∣∣∣∣ nR′
n

⌉
+

[
n

T

]
から導かれる漸化式 (1.67)

t+1U
p = (1 + i) (tU

p −Rt)−R′
t+1, t = 0, 1, 2, . . . , n− 1

を，記号 tV

tU
p = ℓ(t) · tV
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と定義して書き直すと，

ℓ(t+ 1) · t+1V
p = (1 + i)ℓ(t) (tV

p −Rt)− ℓ(t+ 1)R′
t+1, t = 0, 1, 2, . . . , n− 1

となる。

Remark. ℓ(t) を ℓx+t と書いてみると，

ℓx+t+1 · t+1V
p = (1 + i)ℓx+t (tV

p −Rt) − ℓx+t+1R
′
t+1, t = 0, 1, 2, . . . , n− 1

となる。

(k) のケースも，同じく書き換えることができ，漸化式 (1.69)は

ℓ(t+
1

k
) · t+ 1

k
V p

= (1 +
i(k)

k
)ℓ(t)

(
tV

p −Rt ·
1

k

)
− ℓ(t+

1

k
)R′

t+ 1
k
· 1
k

(2.32)

という形になる。

それでは，△t = 1
k
とおいて，△t が限りなく小さくなっていくとして（つまり，

k が限りなく大きくなっていくとして）

t+△tV − tV

△t

を，「無限小解析」的な手法で評価してみよう。

無限小解析

ただし，ここから関係式 (2.33) を得るまでの計算は，飛ばしてしまっても良い。
このような無限小解析のセンスは（数学 III でも大学初年度の微積分でも，影が薄い
にも係わらず）ニュートン以来の微分法の真髄であり強力な武器となる。しかし，関
係式 (2.33) を求めるというだけならば，(2.33)の後の Remark で述べるように，関
係式 (1.70) を経由することにより簡単な計算で求められる。

†「無限小解析」という言葉は，ここでは，コーシー以前の古き良き時代（ε-δ 論法
は存在しません）の「わんぱくでも逞しい」計算手法のことを意味するのであり，深
い意味はない。

方針は，まず等式 (2.32)の両辺を， △t → 0 のとき
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1. 0 に近づく項と

2. それ以外の項

にうまく分解することである：
左辺は

ℓ(t+△t) · t+△tV
p = {ℓ(t+△t)− ℓ(t)} · t+△tV

p + ℓ(t) · t+△tV
p

右辺は

(1 + i(k)△t) ℓ(t) (tV
p −Rt · △t)− ℓ(t+△t)R′

t+△t · △t

= ℓ(t) · tV
p − ℓ(t)Rt · △t

+ i(k)△t · ℓ(t) (tV p −Rt · △t)

− ℓ(t+△t)R′
t+△t · △t

となるので，ℓ(t) · tV
p を左辺に移項してから両辺を△t で割ることにより

ℓ(t+△t)− ℓ(t)

△t
· t+△tV

p +
t+△tV

p − tV
p

△t
· ℓ(t)

= −ℓ(t)Rt + i(k)ℓ(t) (tV
p −Rt · △t)− ℓ(t+△t)R′

t+△t

となる。したがって，△t → 0 の極限をとると

dℓ(t)

dt
· tV

p +
dtV

p

dt
· ℓ(t) = −ℓ(t)Rt + δℓ(t) tV

p − ℓ(t)R′
t

となるので，両辺を ℓ(t) で割って

1

ℓ(t)

dℓ(t)

dt
· tV

p +
d tV

p

dt
= −Rt + δ tV

p −R′
t

であり，

µ(t) = − 1

ℓ(t)

dℓ(t)

dt

とおくことにより，微分方程式

d tV
p

dt
= (δ + µ(t)) tV

p −Rt −R′
t (2.33)

を得る。
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Remark. µ(t) を µx+t と書き直すと，普通の見かけの等式になる。

Remark. tU
p (= tV

p · ℓ(t)) についての微分方程式 (1.70)

d tU
p

dt
= δ tU

p −Rt −R′
t

と比べてみると，µ(t) tV
p が

ℓ(t) が減少したために１人あたりの金額が増加する効果

に相当していることがわかる。

Remark. (1.70) での記号Rt, R
′
t は，(2.33) でのRt, R

′
t の総額 ℓ(t) · Rt, ℓ(t) · R′

t

なので，(1.70) は

d

dt
(ℓ(t) · tV ) = ℓ(t) {δ tU

p −Rt −R′
t}

となる。この左辺は

dℓ(t)

dt
· tV + ℓ(t) · dtV

dt
tV

なので，両辺を ℓ(t) で割って，(2.33) を得る。

Remark. 上での「無限小解析」の計算は，煩雑な印象を受ける。実際に煩雑であ
り，もっと厳密な計算をするならば，i(k) についても

i(k)ℓ(t) (tV
p −Rt · △t)△t

= δ ℓ(t) (tV
p −Rt · △t)△t

+(i(k) − δ)ℓ(t) (tV
p −Rt · △t)△t

とすべきであり，さらに煩雑になる。このような厳密性を確認しながら計算するの
では，「無限小解析」の強みは発揮されない。最初は確認作業も必要なのだが，慣れ
てしまえば

計算の途中で，△t のかかっている項については，その「△t の係数」を
収束した結果に置き換えてしまって良い

ということであり，いかにも「無限小解析」風味の計算をするならば，いきなり

(1 + i(k)△t) ℓ(t) (tV
p −Rt · △t)− ℓ(t+△t)R′

t+△t · △t

≒ 1 · ℓ(t) tV
p − 1 · ℓ(t)Rt · △t+ δ△t · ℓ(t)tV p − ℓ(t)R′

t · △t

と計算してしまうことになる。つまり，
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1. (1 + i(k)) についての分配法則で展開した項について

(a) 1 · ℓ(t) (tV p −Rt · △t) については，

1 · ℓ(t) tV
p − 1 · ℓ(t)Rt△t

と展開

(b) i(k) △t · ℓ(t) (tV p −Rt · △t) については，△t の係数

i(k) · ℓ(t) (tV p −Rt · △t)

を

δ · ℓ(t) tV
p

に置き換えてしまって良い

ということであり，

2. −ℓ(t+△t)R′
t+△t · △t については，△t の係数−ℓ(t+△t)R′

t+△t を−ℓ(t)R′
t に

置き換えてしまって良い

ということである。書くと長くなるのだが，慣れれば頭の中での快適な作業になる。

Remark. この場合の記号 “≒ ” は近似と言うよりは

左辺と右辺の差の，△t に対する比の値が 0 に収束する

ということなのだが，これを

△t に比べても小さい項は無視した近似

と捉えて計算をしていくのが「無限小解析」のセンスである。煩雑なはずの展開が，
「ゴミのような項」を無視してしまうことにより簡単になっていく所が，なんとも気
持ちよい。

Remark. 脱線になるが，大学の「微積分学」で無限小解析のセンスに触れない理
由は，「教える側」の経験者としては十分納得できる。上で述べたように，無限小解
析の計算の強みは，厳密性を要求せずにどんどん式を簡単にしていくことなのだが，
最初からこんなやり方を認めてしまったら，（試験の採点が不可能になるだけでなく）
現代数学で必須の「コーシー以降の厳密な論証に基づく解析学」を学ぶ妨げになっ
てしまう。やはり，
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要求されれば，幾らでも厳密な論証にまで展開できる

能力が求められるのであり，それならば，最初は厳密な論証から始めるしかないの
だ。一方，数学をなかば経験科学として使う分野では，どんどん無限小解析風味の
計算をすれば良いのだが，残念ながら，そのための教科書は存在しない。いい加減
な論証の本を書くことは，難しいだけでなく，結構恥ずかしいのだ（講義でなら証
拠が残らないので本音が話せるが）。
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第3章 生存確率と生命表

ρ(t)，ℓx+t といった記号を使って「保険数学の等式」のいくつかを導いたが，ρ(t)

はともかく，ℓx+t という保険数学の記号も，

t を独立変数とする任意の関数（x は固定されている）

という扱いしかしてこなかった。もう少し保険数学らしい解釈をしてみよう。最初
に，ランプの付いた箱を考える。

3.1 単純な箱形

3.1.1 ℓx+t の意味

１個体（決定論的モデル）

f(t) は，次の条件を満たす関数であるとする：

1. f(t) の定義域は t ≥ 0

2. f(t) の値は 1, もしくは 0 のみ

3. f(0) = 1

4. f(t1) = 0 ならば，すべての t ≥ t1 に対して f(t) = 0

5. f(t) = 0 となる t > 0 が存在する

以上の条件により，f(t) は唯１つの不連続点を持ち，その不連続点で 1 から 0 に
値が変わる。
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不連続点が [t, t + 1] 期に生じているとしよう。不連続点が端点 t, t + 1 でない場
合は，

f(t) = 1, f(t+ 1) = 0

なので，f(t)− f(t+ 1) = 1 となる。

† 不連続点が端点の場合の処理を決める必要があるが，f(t) を基に保険数学を展開
するわけではないので，省略する。

f(t) の最も簡単な解釈は，ひとりの生き物に対して

1. 生存しているときは 1

2. 死亡しているときは 0

と値を定めていると解釈することである。

これは「単生命」としての解釈である。この場合，その生き物そのものを観察し
続けなくとも，

テストランプがひとつ付いた箱があり，

1. その生き物が生存しているときは点灯

2. 死亡すると消灯

という（架空の）状況を設定すれば，その箱から f(t) を作ることができる。つまり，
この箱は，その生き物の「運命（fortuna）の箱」なのである。

この設定は，単生命に限らず，いわゆる連合生命の場合にも当てはめることがで
きる。
例えば，x 歳のアライグマと y 歳のフェネックが居たとして，それぞれの「運命
の箱」，Box1, Box2 が与えられていて，連合生命としての外側の箱に収納されてい
るとしよう。このとき，Box1 とBox2 のランプの状態から外側の箱のランプの状態
が，例えば，

• Box1 とBox2 の両方が点灯しているときのみ点灯

• Box1 とBox2 のいずれかが点灯しているならば点灯

78



といった設定で決まるとしよう。この箱（Box1 とBox2 が収納された箱）は，それ
ぞれの設定に応じての連合生命を表す箱とみなすことができる。

それでは，

Box1 が点灯している間にBox2 が消えると（外側の箱のランプが）消灯

という設定はどうだろうか。まず，この設定だけでは，Box1 が先に消灯してしまっ
たときにはランプは点灯したままなので，「f(t) = 0 となる t > 0 が存在する」とい
う条件を満たさない。この「必ずいつかは死ぬ」という条件は，級数や積分に無限
の範囲が絡まないことの保証として必要なのだが，これは無限級数や，積分範囲が
無限の定積分（厳密には広義積分）の収束を個別に調べれば，必須ではない。また，
これから色々な数式を導く際に，この条件はほとんど使われない。そこで，生き物
の在り方としては不自然なのだが，

f(t) = 0 となる t > 0 が存在する

という条件を要求するのは，止めてしまおう。

Remark. 「Box1 が点灯している間に Box2 が消えると消灯」のような，死亡の
順番についての条件が付いている設定では，

ランプの点灯が維持されているか

を離散的時間で観察しているだけでは，手に負えないケースもある。順番が問題に
なっているときには，離散モデルであっても，連続的に流れる時間のなかでランプ
が消える瞬間が問題になっているのであり，

何らかの期間（例えば [t, t+ 1] という期間）を設定した上で，その期間
内に「ランプが消える瞬間」というイベント（例えばその瞬間にスパー
クの閃光が観察されるというイベント，有り体に言えば死亡というイベ
ント）が観察されるか

を問題にしていると捉えるのが自然である。しかし，逆に言うと，連合生命のほと
んどは「手に負えるケース」なのであり，可能な限り，「（外側の箱の）ランプが点灯
しているか」ということに帰着させて，話を進めたい。この辺りの事情は，かなり
微妙なので，「連合生命」の章でもう一度検討する。

Remark. ３つの箱が収納されている箱（連合生命）となると，もっと複雑な設定
が考えられる。さらに箱の数が多くなると，ほとんど手が付けられないほど多くの，
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また，複雑な設定が考えられるようになるが，基本的には，収納されている箱のラ
ンプの状態から収納している箱のランプの点灯を制御する回路の問題に過ぎない。
ここでは，このような「回路設計」（連合生命の仕様）には立ち入らない。

箱の中身（内側の箱など）がどのようになっているのかとは独立に，箱のランプ
だけを観ることで，単生命か連合生命かという議論とは無関係に保険数学を（ある
程度まで）展開することが出来る。要点は，

箱には f で決まるランプが付いているが，年齢等は表示されていない

ということである。このような箱を，単純型の箱と言うことにする。

これは ρ型のひとつであり，f に対して例えば，

äf = f(0)

[
0

1

]
+ f(1)

[
1

1

]
+ f(2)

[
2

1

]
+ · · ·

と定めれば，f 型期始払い（終身）生命年金を定義することが出来る。これは，形の
上では無限級数となる（が，f(t) = 0となる tが存在する場合には，有限和になる）。

Remark. この定義には，確率の概念は不要であることに注意（f は，すでに決
まっている運命 (fortuna) ，もしくは，生存しているというフラッグ (flag) を意味す
る）。逆に言うと，保険数学としての意味は持ち得ない。式の見かけは保険数学と
同じなのだが，f(t) を用いるということは，「何時死ぬのか」ということが事前に分
かっていることを意味するので，保険としては現実的ではない。

N 個の箱（決定論的モデル）

次に，t = 0 の時点で，N 個の箱のそれぞれが，関数 f(t) （箱ごとに異なる関数
であって良い）を持つとしよう。
この設定の下で，t 時点でランプの点灯している箱の個数を N(t) とする（した
がって，N(t) は整数値）。
関数N(t) は ρ 型の条件を満たし，応用２で述べたように「保険数学」を展開す
ることが出来る。ただし，最初の箱の個数N がどれ程大きいとしても，数学的には
これは決定論的モデルであり，やはり，現実的ではない（また，N(t) は不連続な関
数であり扱いづらい）。
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確率的な箱

それでは，ランプの点灯が f(t) という関数により決定論的に決まっている箱では
なく，

ランプの点灯が確率として決まっている箱

を考えよう。時間 t の関数として確率が与えられているとする。この確率を，年齢
x は表示されていないことを強調して，tp□ という記号で表すことにしよう。

Remark. それならば tp と表せば良さそうなものだが，tp□ の四角を x, xy, xy 等
に置き換えれば，テキストの通常の記号に戻る。

関数 t 7→ tp□ は以下の条件を満たすとする：

1. 0 ≤ tp□ ≤ 1 (t ≥ 0)

2. 0p□ = 1

3. t 7→ tp□ は単調減少（単調非増加）な連続関数

† tp□ = 0 となる t の存在は仮定しなくても良い。ただし，仮定しない場合には，収
束の吟味が必要になることがある。

†† tp□ は連続関数であるとしたが，この条件がないと，不連続点が整数値であった
ときの処理が面倒。t = 0, 1, 2, . . . という離散的モデルでも，tp□ については t が連
続的に流れると考えている（その点では f(t) も同じ）。

確率としての「個数」

この確率的な箱が数学としては本筋なのだが，保険数学を確率で押し通そうとす
ると，なにかと間違いやすい。特に，責任準備金では「生存者１人あたり」という
考え方をするので，生きているのか死んでいるのか確率的にしか決まらない「シュ
レディンガーの犬」のような存在を考えることになる。

次のように考えてみよう：

時刻 t においてランプが点灯しているか否かが確率 tp□ で決まる箱が，
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1. t = 0 において ℓ□ 個（例えば ℓ□ = 100, 000 個）与えられているとして，

2. 実際に時間が t 経過した時点で点灯している箱の個数を ℓ□+t 個

としてみよう。
これは試行の結果であって，確率 tp□ から決まるといっても試行の度に異なる結
果となる。
この場合 ℓ□+t は試行の度に異なる値をとる整数値（個数なので当然，整数値）な
のだが，ℓ□ が比較的大きいときには，

ℓ□+t

ℓ□
は tp□ に近い値をとることが多い

と期待される。それは，ちょうど，さいころを 100, 000回振った結果，5 の目が出
た比率が 1/6 に近い数値になると期待されるのと同じこと。

これを踏まえて，

1. 任意の正の実数 L を選ぶ。

(a) このLは，「大きな数」と受け止めることが出来る程度に大きい数を選ぶ。

(b) 箱の個数という背景を持つので，整数であることが望ましいのだが，整
数には限定しない。

2. ℓ□+t
def
= L · tp□ と定義する（左辺を右辺で定義）。

3. ℓ□+t は確率 tp□ から決まる実数値なのだが，それを t 時点でランプが点灯し
ている箱の個数とみなしてしまう。

4. 最初に選んだ数値 L は，ℓ□ と書いても良いことにする：

L = ℓ□ = ℓ□+0

乱暴な考え方なのだが，ℓ□+t は小数点以下の数値を持つ実数値ということに目をつ
ぶれば，ℓ□+t を

t 時点でランプの点灯している箱の個数

であるかのように考えることが出来るようになる。

実際の所，確率よりも「t 時点で点灯している箱の個数」のような「実現された
状態」（試行の結果）を考える方が楽だし，また，間違いを避けられる。ℓ□+t を

82



• 数学としては ℓ□+t = L · tp□ という確率（の定数倍）として扱い

• イメージとしては，ℓ□+t は個数と考える

という「すり替え」をうまく使うのが，保険数学の要点であろう（数学としては，
100, 000 個などという有限に過ぎない個数の要素をもつ可測空間を考えているよう
なもので，むちゃなのだが）。

厳密な議論をする場合には，「イメージはイメージに過ぎない」ということで，確
率として処理する覚悟だけしておいて，ℓ□+t は個数だと思ってしまうことにしよう。
確率 tp□ はいつでも，適当に大きな数 L をかけて個数と思ってしまえば良いし，
また，ℓ□+t から確率は，いつでも

tp□ =
ℓ□+t

L
, L = ℓ□ = ℓ□+0

として復活できる。

Remark. 数学としては，記号 L, ℓ□ に意味の違いはない。ただ，保険数学での気
持ちとしては，

• L は，確率と個数（のようなもの）を結ぶ，その場限りの定数

• ℓ□ は，生命表というものを意識した枠組みのなかでの記号

として使い分けたい。

こうして ρ(t) として ℓ□+t を選べば，ここまでで見たように，保険数学の等式の
うちで 年齢が本質的な役割を果たさないもの の多くを，導くことが出来る。

3.2 年齢付きの箱
年齢カウンター

次に，年齢としての意味を持つカウンターが表示された箱を考える。
単生命に限る必要はないので，一般に年齢はベクトルとして

x = (x1, x2, . . . , xm)

の形で表されるとする。ただし，単生命の場合，つまりm = 1 のときには (x1) と
は書かずに，x と表すことにする。
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x は単に年齢を示すカウンターであり，箱の中に複数の箱が入っている設定（連
合生命）だとしても，それらの箱のランプから外側のランプの状態を決める「回路
設計」までは立ち入っていない。

ベクトルに対する和の記号としては好ましくない表記なのだが，

x+ t = (x1 + t, x2 + t, . . . , xm + t)

という表記をして良いことにする。

それでは，

1. 確率 tp□ で点灯状態の決まるランプだけでなく，

2. t = 0 の初期状態で年齢 x が表示された年齢カウンター

を持つ箱を考えることにしよう。年齢カウンターの値は，時間が t経過すると共に
x+ t に変わる。

生命表

せっかく x+ t という年齢カウンターを持つのだから，ℓ□+t, tp□ といった記号を

ℓx+t, tpx

と表すことにしよう・・・・・・としたいところなのだが，ここからの議論は極めて紛ら
わしい。奇妙な記号ではあるが，概念の混同を避けるために，ℓx+t については

ℓx+(t)

という記号を用いる。ℓx+(t) は，任意に選んだ数値 L = ℓx を用いて

ℓx+(t)
def
= ℓx · tpx (3.1)

と定義されている。

記号には x が絡むようになったのだが，これがいわゆる生命表としての意味を持
つのは，次の２段階を経てのことである。

1. ℓx+(t), tpx は，t の関数であるだけでなく，x にも依存すると考える（x はも
はや固定されていないので，色々な値を取る）。
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2. x′ = x+ s とするとき，関係式

t+spx = tpx′ · spx (3.2)

が成立する（記号 x′ は微分ではなく，別の x）。

関係式 (3.2) は，極めて強力な関係式であり，x から決まる関数 t 7→ tpx が，x′ か
ら決まる関数 t 7→ tpx′ を

tpx′ =
t+spx

spx

と完全に決めてしまう。

例えば，x = (23, 19) とすると，(32, 28) = (23 + 9, 19 + 9) なので

tp(32,28) =
t+10p(23,19)

10p(23,19)

であり，x′ = (32, 28) に対しての関数 t 7→ tp(32,28) は，関数 t 7→ tp(23,19) から決定さ
れる。

† ただし，例えば x = (23, 19) についての tpx が与えられていても，x = (24, 30) に
ついての tpx′ が決定されるわけではない（x′ は x+ s の形では表されないため）。

それでは，条件 (3.2)が満たされているとして，x′ = x+sに対しての ℓx′+(t)につ
いて考えてみよう（ℓx は既に与えられているとする。したがって，ℓx+(t) = tpx ·ℓx）：

1. 自由に選べる定数 ℓx′ として，

ℓx′
def
= ℓx+(s) (= spx · ℓx) (3.3)

を選ぶ。

2. このとき，

ℓx′+(t) = tpx′ · ℓx′ · · · · · ·これは定義
= tpx′ · ℓx+(s)
= tpx′ · spx · ℓx

であり，
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3. 一方，

ℓx+(t+ s) = t+spx · ℓx (3.4)

なので，

4. 条件 t+spx = tpx′ · spx は，ℓx′+(t) と ℓx+(t+ s) についての条件

ℓx′+(t) = ℓx+(s+ t) (3.5)

と同値であることがわかる。この条件が成り立つならば，

x′ から決まる関数 t 7→ ℓx′+(t) は，x から決まる関数 t 7→ ℓx+(t) の
変数 t に，s+ t を代入することにより得られる

ということになり，また，ℓx+(t) を ℓx+t と書いて（x′ = x+ s と書き直して）

ℓx+(s+t) = ℓ(x+s)+t (3.6)

としても，困ることはない。

特に，xが１次元のベクトルで（つまり，単生命で），x′, xをx′, xと書くことにし
て，x = 0とした場合を考えてみよう。このとき，すべてのx′ ≥ 0はx′ = x+s = 0+s

と表され，x′ = s となる。(3.6) 式は

ℓ0+(s+ t) = ℓs+(t)

となり，改めて s を x と書き直せば，

ℓ0+(x+ t) = ℓx+(t)

となる。これにより，

任意の年齢 x に対しての関数 t 7→ ℓx+(t) は，関数 t 7→ ℓ0+(t) の変数 tに
x+ t を代入したものとみなすことができる

という，「生命表の普通の解釈」に到達する。以上を踏まえて，また，関数 t 7→ ℓ0+(t)

を x 7→ ℓx と書くことにして，条件 (3.2) を満たす場合に得られる関数 x 7→ ℓx を生
命表と言う。

Remark. 記号が t,s, x とやたらに多く「うざい」のだが，
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1. （主に契約時点での年齢という）パラメータとしての年齢 x

2. x+ t における経過時間 t

3. x = 0 + x という誕生からの経過時間としての年齢 x

と意味は様々であり，やむを得ない。

一般の場合にも，条件 (3.2) を満たす場合の関数 t 7→ ℓx+(t) を生命表ということ
にしよう（ただし，単生命のように x の関数に書き直せるとは限らない）。

これから，条件 (3.2) を満たすことを，「生命表を持つ」と言うことにする。生命
表を持つ場合には，ℓx+(t) を ℓx+t と書いても混乱を引き起こすことはない。

条件 (3.2) を，tpx についての条件と，それと同値な ℓx+(t) についての条件の形で
まとめておく：

生命表を持つための条件

t+spx = tpx+s · spx
ℓx+(s+ t) = ℓ(x+s)+(t)

Remark. 条件 ℓx+(s+ t) = ℓ(x+s)+(t) は，ℓx+(t) を ℓx+t と書くことにすると，

ℓx+(s+t) = ℓ(x+s)+t

という自明な等式になってしまう。逆に言うと，ℓx+t という表記は，生命表を持た
ない場合には危ない表記なのであり，さらに危険なのは，「連合生命」で登場する
ℓx+t,y+t, µx+t,y+t といった表記。

Remark. 単生命の場合，生命表を持つ場合には出発点となる基準の年齢を x = 0

とすることが多い。ただし，企業年金などでは，最初の基準となる x は標準的な入
社年齢が選ばれる。
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3.2.1 生命表を持たない場合

スクリーニング

テキストでは単生命の生命表から始めるので，簡単な見かけであり，ここで述べ
た議論は煩雑に感じると思う。しかし，生命表というものはかなり難しい概念なの
であり，また，生命表を持たないケースも多くある。面倒な議論は，結局は避けて
通れない。

生命表を持つという条件への隔たりを説明するために，

完全な状態

という「ここだけの用語」を導入する：
例えば，（単生命での）確率 tpx は，時間が t 経過した後に生存している（ランプ
が点灯している）確率を表すのだが，当然の条件として，

初期の状態 t = 0 ではランプが点灯している

ことを前提としている。
これは，年齢カウンターがベクトル値の場合（一般の連合生命の場合）でも同じ
なのだが，初期状態でランプが点灯しているだけでは，完全な状態とは言い切れな
い。例えば

x 歳のアライグマと y 歳のフェネックのどちらか一方でも生存していれ
ば（内側の２つの箱のランプが１つでも点灯していれば）外側の箱のラ
ンプは点灯

という仕様の場合，確率 tpx は（テキスト下巻の tpxy は），t = 0 で

1. 連合生命として生存しているだけでなく（外側のランプが点灯しているだけで
なく）

2. 両者共に生存している

という状態を初期状態とする確率である。連合生命では，より強い後者の条件を満
たすことが，完全であることの定義となる。完全であるか否かの判定は，

（外側の）箱を開けて調べる
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という操作を伴うことに注意。この操作で完全でないと判定される場合には，tpx の
ような保険数学の記号の初期状態となることはできない。

Remark. 連合生命として生存していても，連合生命を構成する全員が生存してい
ないならば，その連合生命に対しての保険に申し込むことは考えられない。したがっ
て，そのような保険の初期状態（加入時点での状態）は，完全な状態であるとしか
考えられない。これは，

保険加入時点で，完全であるか否かのスクリーニングが行われる

ということを意味する。

Remark. 完全であるということの一般的定義はしない。連合生命の場合のように
内側のランプを調べるという程度のスクリーニングならば一般的定義も可能だが，
単生命の場合でも，保険に加入するときには健康状態のチェックというスクリーニ
ングが行われる。一般には，数学的なモデルを作ることは不可能であり，定義も不
可能。完全という用語は，数学の世界に属するのではなく，確率に絡む記号の裏に
ある解釈にすぎない。

（歴史的）時間の経過

tpx が生命表を持たない原因のひとつとして，スクリーニングという問題がある
のだが，もうひとつ，

関数 t 7→ ℓx+(t) を作る時点と，関数 t 7→ ℓx+s+(t) を作る時点の間で，（歴
史的）時間が s 経過しているのか否か

という問題がある。例えば spx の s が 70 年ならば，70 年の時間の差は当然，医学
の進歩等による死亡確率の変化につながる。したがって，ℓx+(t) と ℓx+s+(t) は

• 同時代の異なる年齢についてのものなのか

• 異なる時代のものなのか

という点を確定する必要がある。

数理的なモデルを作るためには医学の進歩等の要因は無視して，定常的な環境を
想定することから始めるので，幸いなことに，保険数学全体としては，この問題は
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余り重要ではない。ただし，２章の生命表作成の説明「生命表の表す開集団」では
意識しなければならないし，また，事後的な損益の分析でも，この問題に注意を払
うことが必要。とにかく，経過時間（7年経過というときの時間）としての時間と
歴史的な時間（2019 年と言ったときの時間）の両方が出てくるだけで，十分面倒く
さいのだが，テキストの中でこれが表面に現れる部分は，限られている。

数理的な話に限れば，生命表を持たない場合の厄介な要因は，スクリーニングで
ある。数理的に考察できる要因であるから，逆に，数理的なモデルでの厄介な問題に
なる訳だ（数理的に扱えないくらい厄介な問題は，数理的なモデルでは無視する）。

3.2.2 連続モデル

死力

tpx を考えているときには，離散モデルや (k) モデルであっても連続的に流れる時
間のなかでの確率を考えていることになる。tpx は t について連続であると仮定し
ているのだが，さらに t について微分可能であると仮定して，死力という概念を導
入し，等式を導く。
年齢カウンター x を持つ箱に対して

µx+(t)
def
= − 1

tpx
· d

dt
tpx (3.7)

と定義する。

† これは，x を固定しての関数 t 7→ tpx の導関数であり，同じく µx+(t) も固定され
た x から決まる関数 t 7→ tpx であることに注意。

†† ただし，生命表を持つ場合には，

tpx+s =
t+spx

spx
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なので，

µx+s(t) =
1

tpx+s

· d

dt
x+spt

=
spx

t+spx
· d

dt

(
t+spx

spx

)
=

1

t+spx
· d

dt
t+spx

= µx+(t+ s)

となる。したがって，µx+s(t) = µx+(s+ t) を µx+s+t と書いて，t 7→ µx+(t) の変数
t に t+ s を代入したものと考えることが出来る。

積分による表示１

死力と tpx との関係を調べる。数学として難しいわけではないのだが，大学での
「微分積分」の感覚とは少し異なる扱いをするので，いくぶん丁寧に進める。
準備として，まず，t = 0, 1, 2, . . . , n の場合：

1. tpx − t+1px は，期間 [t, t+ 1] で死亡する確率（ランプが消える確率）

2. また，

t2−1∑
t=t1

(tpx − t+1px) = t1px − t2px

は，期間 [t1, t2] で死亡する確率

次に (k) の場合，つまり，t = 0
k
, 1
k
, 2
k
, . . . , nk

k
の場合：

1. tpx − t+ 1
k
px は，期間 [t, t+ 1

k
] で死亡する確率（ランプが消える確率）

2. また，任意の k に対して∑
t=t1,t1+

1
k
,...,t2− 1

k

(
tpx − t+ 1

k
px

)
= t1px − t2px (3.8)

は，期間 [t1, t2] で死亡する確率
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Remark. tpx − t+1px を，t|qx と表しても良い。ただし，後で述べる順序付き死亡
確率が絡む場合は，両者に違いが生じる可能性もある。

Remark. 記号 t|qx は据置期間の記号と同じだが，意味は観察期間であり，

1. t = 0 において完全であった連合生命（もしくは，単生命）が

2. 観察期間 [t, t+ 1] の間に死亡する（脱退する，箱のランプが消える）確率

を表す（・・・・・・と言い切れれば良いのだが，順序付き死亡確率が絡むと，少し微妙。
しかし，この段階では気にしない方が良い）。観察期間そのものは [t, t+1] だが，初
期状態からの経過区間 [0, t] も絡んでいることに注意。

ここで，k → ∞ としたときの tpx − t+ 1
k
px について考える。関数 t 7→ tpx は微分

可能であるとする。このとき，△t = 1
k
と置くと，k → ∞ のとき△t → 0 であり，

lim
k→∞

tpx − t+△tpx
△t

= − d

dt
tpx (3.9)

となる（ここまでは普通の微積分）。ここからの要点は，(3.9) 式を近似式

tpx − t+△tpx
△t

≒ − d

dt
tpx

と考えて，

tpx − t+△tpx ≒ − d

dt
tpx · △t = tpx · µx+(t)△t

と捉えることである。

この近似式

tpx − t+△tpx ≒ tpx · µx+(t)△t (3.10)

は，

期間 [t, t+△t] で死亡する確率（左辺）は，約 tpx · µx+(t)△t

ということを主張しているのであり，例えば k = 365 ならば，tpx · µx+(t) は一日当
たりの死亡確率の年率換算となる。

Remark. 意味を間違いやすいので注意。単生命の場合であっても，「x+ t 歳の人の
一日当たりの死亡確率の年率換算」ではないことに注意。tpx · µx+(t) の表す確率は
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t 年間生存し，かつ，次の１日で死亡する確率（積事象の確率）

の年率換算である。

Remark. 積事象の確率と言ったので，「µx+(t) は x+ t 歳の一日当たり死亡確率の
年率換算」と言いたくなるが，生命表を持つという条件が満たされていない場合に
は，そうとも言えない。記号 µx+(t) を通常の記号 µx+t に戻すと，間違いやすさが
際立つが，µx+t は，固定された x についての関数 t 7→ µx+t であって

t 年間生存した人（もしくは箱，結果として x+ t 歳になっている）につ
いての，一日当たり死亡確率の年率換算

である。特に，連合生命の場合には，µx+t の表す死亡確率は完全な状態から t 年経
過した後の死亡確率であり，「どちらか一方でも生存していれば生存」という連合生
命では，どちらかが既に死亡している可能性もある。

それでは，この近似式 (3.10) を (3.8) 式に代入してみよう：∑
t=t1,t1+

1
k
,...,t2− 1

k

tpx · µx+(t) · △t ≒ t1px − t2px

左辺は，区分求積としての∫ t2

t1

tpx · µx+(t) dt

を表す形なので，k → ∞ として等式∫ t2

t1

tpx · µx+(t) dt = t1px − t2px (3.11)

を得る。つまり，期間 [t1, t2] での死亡確率は∫ t2

t1

tpx · µx+(t) dt

であり，特に [0, t] での死亡確率は∫ t

0
spx · µx+(s) ds

となる。

「近似式と考えて」と言って等式を導いたのだが，Cauchy 以降の数学の要求す
る厳密性を満たすためには，ここでの「近似式」ということの意味を，確定させる
必要がある。これは可能なのだが，それよりは
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結果を知っているからできる後付けの論証

で証明してしまう方が簡単。

等式 (3.11) の証明：

F (t) =

∫ t

0
spx · µx+(s) ds

と置くと

F ′(t) = tpx · µx+(t)

であり，一方， µx+(t) の定義により

{tpx}′ = −tpx · µx+(t)

となる。よって，F ′(t) = −{tpx}′ であり，∫ t2

t1

tpx · µx+(t) dt = −
∫ t2

t1

{tpx}′ dt = t1px − t2px

死力による表示２

µx+(t) の定義式 (3.7) から，二通りのやり方で等式

tpx = e−
∫ t
0 µx+(s)dx (3.12)

を導く：

1. 微分方程式を解く：(3.7) の両辺を t で不定積分して，左辺を u = tpx と置き
変数変換をすると，∫

µx+(t)dt = −
∫

1

u
· du
dt

dt

= −
∫

1

u
du

= − log u+ C, C は積分定数
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左辺を定積分
∫ t

0
µx+(s)ds の形に書き直しておいて，等式∫ t

0

µx+(s) = − log u+ C

が成り立つように積分定数 C を決める。C の値は，t = 0 のとき左辺は 0 で
あり，u = 0px = 1 であることから log u = 0 となるので，C = 0。

C = 0 とした両辺に−1 を乗じてから指数関数に代入して（e の肩にのせて）

e−
∫ t
0 µx+(s)ds = u = tpx

を得る。

2. 結果を知っていてそれを証明： まず，

u(t) = e−
∫ t
0 µx+(s)ds

と置く（これは u(t) の定義）。u(t) を微分すると，

u′(t) = e−
∫ t
0 µx+(s)ds · d

dt

(
−
∫ t

0

µx+(s)ds

)
= −u(t) · µx+(t)

であり，

{log u(t)}′ = u′(t)

u(t)
= −µx+(t).

また，µx+(t) の定義 (3.7) により

{log tpx}′ = −µx+(t).

なので，

log u(t)− log tpx

は定数。t = 0 では u(0) = e0 = 1, 0px = 1 であり一致するので，その定数は
0. よって，

u(t) = tpx
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3.2.3 平均余命

平均余命を連続モデルと離散モデルで定義する。平均余命についての数理は，特
に不等式が絡むと，意外に難しい。

連続モデル

平均余命に関しては，離散モデルよりも連続モデルの方が考えやすい（間違えな
いですむ）。生命表を持たない場合でも平均余命は定義できるが，ここでは単生命で
生命表を持つ場合に限定する。離散モデルでの平均余命の定義は

◦
ex=

∫ ∞

0

t · tpx · µx+t dt (3.13)

である。
◦
ex を，離散モデルの場合と区別して，(x) の完全平均余命という。

† ℓω = 0 となる年齢 ω が存在するとしているならば，積分は
∫ ω−x

0
となる。ここで

は，tpx = e−ct の形のモデルも含めて考えたいので，ω の存在を想定せずに，積分
区間を無限大にしてある（正確には広義積分として limb→+∞

∫ b

0
t · tpx · µx+t dt）。し

たがって収束の問題が生じるのだが，実際には，ω が存在しない場合としては死力
が定数の tpx = e−ct の形しか使わないので，収束については心配しないで良い。

tpx の代わりに ℓx+t を使って，

◦
ex=

1

ℓx

∫ ∞

0

t · ℓx+t · µx+t dt

と表すこともできる。

平均余命に関して最も重要なのは，次の式変形が出来ることである。
t を微分，tpx · µx+t を積分する形で部分積分をする。その際，tpx · µx+t の原始関
数は−tpx であり，従って，∞ で零（正確には b → ∞ で bpx → 0，もしくは，ω が
存在する場合には ω − x で 0）であり，一方，t は当然，t = 0 で 0 であるため，部
分積分をした第１項は 0 になる：

− d

dt
tpx = tpx · µx+t,

d

dt
t = 1
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なので，部分積分をすると∫ ∞

0

t · tpx · µx+t dt = [t · (−tpx)]
∞
0 −

∫ ∞

0

1 · (−tpx·) dt

=

∫ ∞

0
tpx dt

なので，

◦
ex=

∫ ∞

0
tpx dt (3.14)

† 簡単な計算で導くことが出来たのだが，

tpx を積分したものが平均余命

というあまりにも意味深い式が導かれたので，計算に頼らず概念的に納得したく
なる。
次のように考えてみよう（ここでは，ω の存在を前提とする。極限をとれば∞ に
変えることも出来るのだが，「納得」するだけのために一般化をする必要もない）：

1. tj =
j
k
, △t = 1

k
として，区分求積の形で完全平均余命を考える。

2. ℓx 人のなかで，期間 [tj, tj +△t] に発生する死亡は ℓx+tj − ℓx+tj+1
であり，

3. この期間での死亡は（近似的に）t 年生存したとみなし，また，ℓx+tj − ℓx+tj+1

を ℓx+tj · µx+tj △t で近似することにより，

4. 区分求積の式として∫ ω−x

0

t·ℓx+tj ·µx+tj △t ≒
(ω−x)k−1∑

j=0

t·(ℓx+tj−ℓx+tj+1
) （やはり，∞ にしとくべきだったか）

5. ここで，横軸を t, 縦軸を人数として関数

t 7→ ℓx+t

のグラフを考える。このグラフは，(0, ℓx) と (ω− x, 0) を結ぶ曲線であり，座
標軸と合わせて領域を囲む。この領域の面積は∫ x−ω

0

ℓx+t dt
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6. 関数 y = ℓx+t の，y の関数としての逆関数 t = g(y) を考えると，つまり，グ
ラフを縦軸を独立変数としてみると，y での値は t

7. 区間 [0, ℓx] を

ℓx+ 1
k
, ℓx+ 2

k
, . . . , ℓω− 1

k
,　（を大小逆順に並べたもの）

を分点として分割して，t = g(y) の区分求積を考えると，区間 [ℓx+tj+1
, ℓx+tj ]

での値は tj で近似できるので，∫ ℓx

0

g(y)dy ≒
(ω−x)k−1∑

j=0

tj(ℓx+tj − ℓx+tj+1
)

8. 左辺は囲まれた部分の面積を表し，右辺は ℓx·
◦
ex に収束するので

ℓx·
◦
ex=

∫ ω−x

0

ℓx+t dt

しかし，縦軸の分割は等分ではないので，この区分求積は高校数学でも触れている
意味での区分求積ではなく，「リーマン積分」と言わざるを得ない（したがって，テ
キストでは，無闇に必要な数学を増やさないために触れていない）。ここで説明し
た解釈は，縦軸の人数を余命の長い順に下から配置して「死神の命のろうそく」を
考えている描写であり，魅力的ではあるが，部分積分という簡単な計算で導ける式
を，間違いやすい（しかも記述が多少いい加減な）概念的理解で追い求めるも考え
物なので，

平均余命が tpx, もしくは，ℓx+t の積分で表されることには，概念的な根
拠もある

というだけで十分としておこう。

平均余命の変形版として，

定期平均余命 n 年以上の生存はすべて n 年生存として計算する平均余命 n
◦
ex，定

義は

n
◦
ex

def
=

∫ n

0

t · tpx · µx+t dt+ n

∫ ∞

n
tpx · µx+t dt
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据置平均余命 n 年後の生存者のみを考え，n年を超過した生存年数についての平均
をとった n|

◦
ex，定義は

n|
◦
ex

def
=

∫ ∞

n

(t− n) · tpx · µx+t dt

があり，この場合も∫ n

0

t · tpx · µx+t dt = [t · (−tpx)]
n
0 −

∫ n

0

1 · (−tpx) dt

= −n · npx +
∫ n

0
tpx dt

n

∫ ∞

n
tpx · µx+t dt = n [−tpx]

∞
n = n · npx

なので，

n
◦
ex=

∫ n

0
tpx dt

であり，また，∫ ∞

n

(t− n) · tpx · µx+t dt = [(t− n) · (−tpx)]
∞
n −

∫ ∞

n

1 · (−tpx) dt

= 0− 0 · (−npx) +

∫ ∞

n
tpx dt

=

∫ ∞

n
tpx dt

なので，

n|
◦
ex=

∫ ∞

n
tpx dt

となる。したがって，
◦
ex= n

◦
ex + n|

◦
ex

据置平均余命については，t− n = s と置いて変数変換をすると∫ ∞

n

(t− n) · tpx · µx+t dt =

∫ ∞

0

s · n+spx · µx+n+s ds

=

∫ ∞

0

s · npx · spx+n · µx+n+s ds

= npx·
◦
ex+n
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なので，

n|
◦
ex= npx·

◦
ex+n

という等式も得られる。

離散モデル

離散モデルでは，期間 [j, j + 1] での死亡についての生存年数を約束事として決め
てしまわなければならない。切り捨て，切り上げ，四捨五入などが考えられるが，切
り捨てを採用して，切り捨て平均余命 ex を考える：

ex
def
=

1

ℓx
(0 · dx + 1 · dx+1 + 2 · dx+2 + · · · ) (3.15)

この場合には，部分積分のような工夫を用いるまでもなく，

ℓx · ex = 0 · dx + 1 · dx+1 + 2 · dx+2 + · · ·
= 0 · (ℓx − ℓx+1) + 1 · (ℓx+1 − ℓx+2) + 2 · (ℓx+2 − ℓx+3) + · · ·
= 0 · ℓx + (1− 0)ℓx+1 + (2− 1)ℓx+2 + (3− 2)ℓx+3 + · · ·
= ℓx+1 + ℓx+2 + ℓx+3 + · · ·

となる（和は，ℓx からではなく ℓx+1 から始まることに注意）。定期平均余命や据置
平均余命についても同様。

†「部分積分をするまでもなく」と言ったのだが，本当は，部分積分の離散バージョ
ンとしての「部分和」という計算をしていると考えるべき。部分和については，そ
れが本質的な役割を果たす不等式への応用の所で述べる。

年齢による微分

ここまで，微分は t による微分だったのだが，平均余命については
◦
ex を x で微分

する計算が登場する。まず，平均余命については
∫∞
0 tpx dt から計算する方が楽なの

で，この式の微分を考えることになるのだが，厳密に言うと，ここで高校数学から
の逸脱が生じる（大学一年の微積分でも触れないこともある）。それは，

パラメータを含む関数の定積分の，パラメータについての微分
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であり（つまり，2 変数関数の１つの変数についての定積分の，もうひとつの変数
についての微分であり）

d

dx

∫ b

a

f(x, t)dt =

∫ b

a

d

dx
f(x, t)dt

という等式である。大学の「微積分」のセンスで言うならば， d
dx
f(x, t) は ∂

∂x
f(x, t)

と書くべきなのだが，これは

t を定数と考えて x のみの関数とみなして d
dx
としている

という「頭の切り替え」で済ましている。大学入試でも，「a を定数として・・・・・・」
で始まる設問の最後で「a が正の実数を動くとき・・・・・・」（a は変数！）と切り替わ
るような出題はざらにある。

1.
∫ b

a
f(x, t) dt では x を定数として t で積分していて，

2. d
dx
f(x, t) では t を定数として x で微分し，

3. その結果の関数を x を定数と見て t で積分

と言うと大変なことをしているようなのだが，要するに，大学受験の答案では使っ
て良いかわからなかった計算を，堂々と使って良いということ。それでは，計算を
してみよう：

d

dt
tpx =

d

dt

ℓx+t

ℓx

=
1

ℓx
· d

dt
ℓx+t

=
1

ℓx
· (−ℓx+t · µx+t)

= −tpx · µx+t

d

dx
tpx =

d

dx

ℓx+t

ℓx

=

(
d
dx
ℓx+t

)
· ℓx − ℓx+t · d

dx
ℓx

(ℓx)2

=
(−ℓx+t · µx+t) · ℓx − ℓx+t · (−ℓx · µx)

(ℓx)2

= −tpx+t · µx+t + tpx · µx

等式

d tpx
dx

= tpx(µx − µx+t) (3.16)
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は，覚えておくべき等式である。
平均余命

◦
ex の x による微分は

d
◦
ex

dx
=

d

dx

∫ ∞

0
tpx dt

=

∫ ∞

0

d

dx
tpx dt

=

∫ ∞

0
tpx(µx − µx+t) dt

= µx

∫ ∞

0
tpx dt−

∫ ∞

0
tpxµx+t dt

= µx·
◦
ex −1

であり，等式

d
◦
ex
dx

= µx·
◦
ex −1 (3.17)

を得る。

離散の場合

離散モデルで (3.17) に対応する等式を導いておこう。
まず，

ex =
ℓx+1 + ℓx+2 + ℓx+3 + · · ·

ℓx

ex+1 =
ℓx+2 + ℓx+3 + ℓx+4 + · · ·

ℓx+1

なので，

ex+1 − ex =
ℓx(ℓx+2 + · · · )− ℓx+1(ℓx+1 + ℓx+2 + · · · )

ℓx · ℓx+1

=
−ℓx+1 · ℓx+1 + (ℓx − ℓx+1)(ℓx+2 + · · · )

ℓx · ℓx+1

= −px + qx · ex+1

であり，等式

ex+1 − ex = qx · ex+1 − px (3.18)

を得る。
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平均余命の不等式

平均余命についての不等式は，大体において難しい。まず，常識的には，平均余
命は x について単調減少と思えるのだが，必ずしもそうではない。ごく短い期間だ
け極端に µx+t が鋭いピークを持つように生命表を変えても，平均余命には大した影
響を与えない（例えば，極端な話，ある１秒間だけ死亡確率が 100 倍になったとし
ても，1 秒間ではほとんど死亡は発生しないために年間の統計には，その影響は現
れない）。だが，(3.17) 式からわかるように，その１秒間では右辺の値は正になり，
死亡率のピークを越える時に平均余命は増加する。

それでは，

どのような条件があれは x 7→◦
ex が減少する関数になるか

だが，連続モデルでの条件として

t 7→ µx+t が増加関数ならば，t 7→◦
ex+t は減少関数

ということ，また，離散モデルでは

qx < qx+1 < qx+2 < · · · ならば，◦
ex>

◦
ex+1>

◦
ex+1> · · ·

ということが，その条件となる。ただし，証明には工夫が必要。

† 連続モデルには微分についての式 (3.17) があるので，増加現象の判断は簡単そう
に見えるのだが，右辺に

◦
ex が現れるためにうまく行かない。

３ステップで証明する（中間の結果も使い出がある）：

Step 1 ２つの死力 t 7→ µx+t と t 7→ µ′
x+t が与えられ，

µx+t ≥ µ′
x+t (for any t ≥ 0 )

であるとする（µ′
x+t は µx+t の微分ではなく別の関数）。このとき，

1. tpx = e−
∫ t
0 µx+s ds, tp

′
x = e−

∫ t
0 µ′

x+s ds なので，tpx ≤ tp
′
x

2. したがって，
◦
ex ≤

◦
e ′
x

Step 2 t 7→ µx+t が単調増加関数であると仮定し，一方，µ′
x+t は定数関数

µ′
x+t = µx （この値を c と置く）
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であるとする（したがって，µx+t ≥ µ′
x+t）。このとき，

tp
′
x = e−

∫ t
0 µ′

x+s ds = e−ct

◦
e ′
x =

∫ ∞

0
tp

′
x dt =

1

c

となるので，（Step 1. で等号が成立する場合も吟味して）次の結果が得られる：

t 7→ µx+t が単調増加関数ならば，

◦
ex ≤

1

µx

であり，等号が成立するのは，µx+t が定数のときのみ。

Step 3 後は (3.17) 式に代入するだけで，

d
◦
ex

dx
= µx·

◦
ex −1 ≤ µx ·

1

µx

− 1 ≤ 0

であることがわかり，x 7→◦
ex は単調減少。

離散の場合には，２つの数列 qx, qx+1, · · · と q′x, q
′
x+1, · · · が与えられ

qx+j ≥ q′x+j (for any j = 0, 1, 2, . . . )

であるとする。 このとき，

1. px+j ≤ p′x+j (for any j = 0, 1, 2, . . . ) であり，

2. したがって，ex ≤ e′x

qx ≤ qx+1 ≤ qx+2 ≤ · · · であることを仮定して，q′x+j を

qx+j = qx （この値を c と置く）

と定めると，

jp
′
x = (1− c)j

e′x = (1− c) + (1− c)2 + (1− c)3 + · · ·

= (1− c)
1

c
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なので，

ex ≤ 1− qx
qx

これを等式 (3.18) に代入して

ex+1 − ex = qx · ex − px

≤ qx ·
1− qx
qx

− px = 0

を得る。

3.2.4 生命表のモデル

生命表の関数 t 7→ ℓx+t を具体的な式で与えるモデル（死亡法則）として，

1. µx+t が一定の場合

2. ℓx+t が，t = 0 で ℓx, t = ω − x で 0 となる 1 次関数で与えられている場合
（ド・モアブルの法則）

3. ゴムパーツの法則

4. メーカムの法則と，その他，もっと複雑な式によるもの

がある。それぞれ，

1. µx+t が一定の場合は，最も重要だが ωpx = 0 となるω が存在しないので，
∫∞
0

の形の積分（正確には広義積分）が必要になる。したがって，テキストでは正
式な死亡法則としていない。しかし，

(a) 金利と死力が同じ役割を果たす

(b) 具体的な計算が容易

という利点があるので，積分についての記述が多少いい加減になるという代償
を払ってでも死亡法則に含めておきたい。具体的な計算として，特に簡単な形
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になるのは（死力を µx+t = c と置く）

tpx = e−ct

vt tpx = e−(δ+c)t

◦
ex =

1

c

āx:n⌉ =
1− e−(δ+c)n

δ + c

Ā1
x:n⌉

= cāx:n⌉, 特に　Āx =
c

δ + c

といったところ。これらの式から想像できるが，試験対策という意味で重要な
のは

一般に，δ と µx+t は “+” で結ばれる

という経験則。k−1
2k
という形と共に δ + µx+t は，保険数学の式に頻出する。

なお，この死亡法則は，単一の放射性同位元素の「死亡法則」（放射線による
死亡ではなく，放射能が減少する法則）でもある。保険数学とは全く関係ない
が，単一の放射性同一元素ではなく核爆発が発生させる放射性同位元素の混合
物（c の値が様々）については，「発生からの時間が 7 倍になると放射線は 10

分の 1 になる」という経験則を知っていると，何かのときに役に立つ。完全に
脱線するが，この経験則は原子炉事故には当てはまらない。原子炉周辺に蓄積
されている放射性物質は，長寿命のもの（c の値が小さいもの）の生き残りな
ので，簡単には減少しない（不幸の源は，放射能には金利 δ がかからないとい
うこと）。

2. ド・モアブルの法則について： 普通は 1 次式は簡単に処理できるのだが，vt

という係数との関係で，等差等比数列の和を求めることになり，それ程簡単な
結果は得られない。要点は

aj = 1 · 1 + 2 · r1 + 3 · r2 + 4 · r3 + · · ·+ n · rn−1

のような等差等比数列は，bj = raj − aj と置くと

bj = (1 · r + 2 · r2 + 3 · r3 + 4 · r4 + · · ·+ (n− 1) · rn−1 + nrn)

− (1 · 1 + 2 · r + 3 · r2 + 4 · r3 + 5 · r4 + · · ·+ nrn−1)

= −(1 + r + r2 + · · ·+ rn−1) + nrn

であり，等比級数の和の公式から計算できる形になる，ということ。
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3. ゴムパーツの法則は，やたらに定数を表す文字（多くは積分定数）が出てくる
ので，相互の依存関係を追うのが面倒なことが特徴。また，

an · am = an+m

という指数法則にあまりにも慣れているので，

g(c
x) · g(cy) = g(c

x+y) （⇐ これは間違い）

としてしまう罠がある。

4. メーカムの法則はまだしも，それ以上に複雑な式は，コンピュータという便利
な道具がある時代では重要性は減っているはず。
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第4章 箱型の保険数学

これまでに定義されている記号や関係式も含めて，年齢カウンター x の記号を用
いて整理する。生命表を持つための条件

t+spx = tpx+s · spx

を仮定することが不要な場合と必要な場合を，はっきりと分けて記述する。

4.1 契約開始時点での現在価値

4.1.1 定義

記号の書き換え

x と定数 ℓx が与えられ，確率 t 7→ tpx から ℓx+(t) が ℓx · tpx と定められていると
する。
ρ(t) = ℓx+(t), σ(t) = ρ(t)− ρ(t+ 1) = ℓx+(t)− ℓx+(t+ 1) = dx+t とすることによ
り，äx:n⌉, A1

x:n⌉
, A

x:
1
n⌉
, Ax:n⌉ を

äx:n⌉ =
1

ℓx

n−1∑
t=0

ℓx+(t)

[
t

1

]
(4.1)

A1
x:n⌉

=
1

ℓx

n−1∑
t=0

dx+t

[
t+ 1

1

]
(4.2)

A
x:

1
n⌉

=
1

ℓx
· ℓx+(n)

[
n

1

]
(4.3)

Ax:n⌉ = A1
x:n⌉

+A
x:

1
n⌉

(4.4)

と定めると，定理 1 の関係式を[
0

1

]
∼ d äx:n⌉ +A1

x:n⌉
+A

x:
1
n⌉

= d äx:n⌉ +Ax:n⌉ (4.5)
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と書き直すことができる。したがって，äx:n⌉, A1
x:n⌉

, A
x:

1
n⌉
, Ax:n⌉ を，それぞれ äx:n⌉,

A1
x:n⌉

, A
x:

1
n⌉
, Ax:n⌉ の現在価値として定めることにより，つまり，

äx:n⌉

[
0

1

]
∼ äx:n⌉

A
x:

1
n⌉

[
0

1

]
∼ A

x:
1
n⌉
, A1

x:n⌉

[
0

1

]
∼ A1

x:n⌉
, Ax:n⌉

[
0

1

]
∼ Ax:n⌉

と定めることにより，等式

1 = däx:n⌉ + Ax:n⌉ (4.6)

を得る。

† dx+t も dx+(t) と書いた方が良いのだが，面倒なので dx+t を用いる。

ここまでの話では，生命表を持つという条件は仮定されていない。したがって，記
号 x がベクトルの記号 x になった以外は，何も変わっていない。それでも，背景と
しての意味には相違があり，２章での ℓx には特に意味はなかった一方，ここでは，

箱の個数，正確には箱の個数の期待値

という意味づけがなされている。

Remark. ここでは，死亡保険を，

A1
x:n⌉

=
n−1∑
t=0

vt+1 (tpx − t+1px)

の形で定義している。一方，テキストでの定義は

A1
x:n⌉

=
n−1∑
t=0

vt+1
t|qx

である。気にせず素通りすることを勧めるが，どうしても違いが気になるならば，
「連合生命」の章の「扱いづらい順序付き確率」の後の Remark を参照。
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年払保険料

時間軸上に配置された金額というなんらかのオブジェクト F ∈ Ω とその t = 0 で
の現在価値F は，保険数学という観点からは，なんらかの保険サービス（保険商品，
もしくは，単に保険）とその一時払い（純）保険料という意味を持つ。

それでは，P を数値として

n∑
t=0

ℓx+t ·
[
t

P

] (
= P

n∑
t=0

ℓx+t ·
[
t

1

])
(4.7)

というオブジェクトを考え，なんらかのオブジェクト F ∈ Ω に ℓx 人が加入したと
するときに

ℓx F = P
n∑

t=0

ℓx+t ·
[
t

1

]
(4.8)

を満たす数値 P を

F の，期間 n 年の（平準）年払保険料

と言うことにする。

n∑
t=0

ℓx+t ·
[
t

1

]
= ℓx · äx:n⌉

なので，F がオブジェクト F の現在価値，つまり

F

[
0

1

]
= F

を満たす数値ならば，P は

F = P äx:n⌉

となる。P を，また，

一時払い保険料 F の，期間 n 年の年払保険料
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と言う。

A1
x:n⌉

, A
x:

1
n⌉
, Ax:n⌉ の期間 n 年の年払保険料を，それぞれ P1

x:n⌉
, P

x:
1
n⌉
, Px:n⌉ で表

す。したがって，

A1
x:n⌉

= P1
x:n⌉

äx:n⌉

A
x:

1
n⌉

= P
x:

1
n⌉
äx:n⌉

Ax:n⌉ = Px:n⌉ äx:n⌉

となる。

Remark. äx:n⌉ については，P は常に 1 なので，記号を用意する必要はない。

4.1.2 試験問題の核心（の核心）：その１

äx:n⌉，Ax:n⌉, Px:n⌉ の間の２つの等式

1 = d äx:n⌉ + Ax:n⌉

Ax:n⌉ = Px:n⌉ äx:n⌉

は（これを基本セット１と言うことにしておこう），試験問題（の元ネタ）の宝庫
である。流石に今では，そのままの形で出題されることはないのだが，他の等式を
トッピングとして添付することにより，かなりの難問まで生成することができる。
トッピングについては後で触れることにして，原形の形での趣旨は

dを既知として，３つの未知数 äx:n⌉, Ax:n⌉, Px:n⌉ についての２つの等式
なので，未知数の１つを与えると残りの２つがわかる

ということ。d も未知とするならば，未知数は４つなので，そのうちの２つを与え
ることになる。

このことだけ意識しておけば，後は連立１次方程式を解くだけのことで，d を既
知定数として

1. äx:n⌉ を用いて，Ax:n⌉ と Px:n⌉ を表す

2. Ax:n⌉ を用いて， äx:n⌉ と Px:n⌉ を表す

112



3. Px:n⌉ を用いて，äx:n⌉ とAx:n⌉ を表す

という３通りの解を求めることが出来る。

1. äx:n⌉ で表す：

Ax:n⌉ = 1− d äx:n⌉ (4.9)

Px:n⌉ =
1

äx:n⌉
− d (4.10)

2. Ax:n⌉ で表す：

äx:n⌉ =
1− Ax:n⌉

d
(4.11)

Px:n⌉ =
dAx:n⌉

1− Ax:n⌉
(4.12)

3. Px:n⌉ で表す：

äx:n⌉ =
1

d+ Px:n⌉
(4.13)

Ax:n⌉ =
Px:n⌉

d+ Px:n⌉
(4.14)

おそらく，これらの式を覚える必要はなく，

d を既知として，３つのうちの１つで残りの１つを求めることが可能

という方針だけ意識しておけば，必要に応じて連立方程式を解けば良いだけのこと。
(k)が付く場合でも，また，連続モデルの場合でも，基本セット１は同じ形のセット

1 = d ä
(k)
x:n⌉ + A

(k)
x:n⌉

A
(k)
x:n⌉ = P

(k)
x:n⌉ ä

(k)
x:n⌉

1 = d āx:n⌉ + Āx:n⌉

Āx:n⌉ = P̄
(∞)
x:n⌉ āx:n⌉

となるので，同じこと。
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Remark. ただし，P
(k)
x:n⌉ の定義は多少微妙であり，P̄

(∞)
x:n⌉ という記号も装飾過剰に

見えるが，次の「３つのタイプの組合せ」で述べるように，紛れを排除するために
はやむを得ない。

Remark. d(k) が既知でなく３つの内の２つが与えられているとして i(k) を求める
問題では，d(k) まで正しく求められたのに，最後に

i(k) =
d(k)

1− d(k)
· · · · · ·この式は誤り

として誤答となることがないように注意。

３つのタイプの組合せ

時間を

1. 離散的に扱うモデル

(a) t = 0, 1, 2, . . . , n として扱う離散モデル

(b) t = 0
k
, 1
k
, 2
k
, . . . , nk

k
として扱う (k) タイプの離散モデル

2. t を実数 0 ≤ t ≤ n として扱う連続モデル

の３つのタイプにより，対象としている保険（ここでは養老保険）と保険料納付の
扱いが異なるが，

保険と保険料納付の扱いが同じタイプであるときに限らないと基本セッ
ト１にはならない。

例えば，Ax:n⌉, ä
(k)
x:n⌉ という異なるタイプとなると

1 ̸= d ä
(k)
x:n⌉ + Ax:n⌉

であり，基本セットの形にはならない（d を d(12)に変えても等号は成立しない）。し
たがって，保険と保険料納付の扱いが同じタイプにシンプルな記号を割り当てたい
ところなのだが，現実の世界では，むしろ，死亡保険即時支払いで保険料月払いと
いうタイプの方が多いと思う。結論として言えることは，

P に付ける記号のすっきりとしたシステムはない
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ということであり，

• なにも飾りがついていないならば，Ax:n⌉ と äx:n⌉　（で Px:n⌉ =
Ax:n⌉
äx:n⌉
）

• P̄x:n⌉ ならば，

1. 死亡保険は即時支払いの Āx:n⌉

2. 保険料納付については，äx:n⌉

で計算するが，āx:n⌉ とすることも考えられる。

• P
(k)
x:n⌉ ならば，保険料は (k) タイプの ä

(k)
x:n⌉ で計算する。 P

(∞)
x:n⌉ は k → ∞ の連

続払い。死亡保険についても (k), (∞) の効力が及ぶかは微妙なのだが，すく

なくとも (k) のときは効力が及ぶと，つまり，P
(k)
x:n⌉ =

A
(k)
x:n⌉

ä
(k)
x:n⌉
と約束しているよ

うだ。

• 死亡保険即時支払いは P̄ として表され，上付き添え字の位置が空いているの
で，P̄

(k)
x:n⌉，P̄

(∞)
x:n⌉ という記号で意味を確定させることは可能。

• その他の場合は，文章で補うしか手段は無い。

要するに，複雑である。

Remark. 色々な組合せ（順列）があるので，それにしたがって近似式も色々なバ
リエーションがある。

Remark. 保険の契約期間と，保険料納付の期間が同一でない場合も，基本セット
にはならない。

なお，近似式を作るときには，精度の高い近似は用いずに，

ä
(k)
x:n⌉ ≒ äx:n⌉

(
1− k − 1

2k
(P1

x:n⌉
+ d)

)
āx:n⌉ ≒ äx:n⌉

(
1− 1

2
(P1

x:n⌉
+ d)

)
A

(k)
1
x:n⌉

≒ A1
x:n⌉

+
k − 1

2k
iA1

x:n⌉

Ā1
x:n⌉

≒ A1
x:n⌉

+
1

2
iA1

x:n⌉
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を組み合わせて近似式を作ると，例えば，

P̄
(k)
x:n⌉ =

Āx:n⌉

ä
(k)
x:n⌉

=
A

x:
1
n⌉

+ Ā1
x:n⌉

ä
(k)
x:n⌉

≒
A

x:
1
n⌉

+ A1
x:n⌉

+ 1
2
iA1

x:n⌉

äx:n⌉

(
1− k−1

2k
(P1

x:n⌉
+ d)

)
=

Ax:n⌉ +
1
2
iA1

x:n⌉

äx:n⌉

(
1− k−1

2k
(P1

x:n⌉
+ d)

) =
Px:n⌉ +

1
2
iP1

x:n⌉

1− k−1
2k

(P1
x:n⌉

+ d)

のような，心地よい近似式となる。ただし，分子のPx:n⌉ と P1
x:n⌉
は，なにかと間違

いやすい（TEXで入力していて，やはり間違えた）。
A

(k)
x:n⌉ = A

x:
1
n⌉
+A

(k)
1
x:n⌉
であって，生存保険は (k)の影響を受けないことがポイント。

4.2 生命表を持つ場合
ここから，生命表を持つ場合について考える：
したがって，tpx は

t+spx = tpx+s · spx

を満たし，ℓx+t = tpx ℓx は，ℓx+(t) を ℓx+t と書くことにすると，それと同値な条件

ℓ(x+s)+t = ℓx+s+t

をみたす（つまり，ℓ(x+s)+(t) = ℓx+(s+ t)）。

4.2.1 生存保険

生存保険

ℓx A
x:

1
n⌉

= ℓx+n

[
n

1

]
, A

x:
1
n⌉

= tpx

[
n

1

]
もしくは，現在価値の形で書いて

ℓx A
x:

1
n⌉

= vn ℓx+n A
x:

1
n⌉

= vn npx
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は，級数の形ではない単項であり，あまりにも簡単。特に調べる余地は無いように
見えるのだが，保険数学では意外に活躍する。

† 生命表を持つことは必須ではない。

据置期間 f 年の生命年金

据置期間 f 年の n年生命年金

ℓx · f | äx:n⌉ =
n+f−1∑
t=f

ℓx+t

[
t

1

]
, f | äx:n⌉ =

n+f−1∑
t=f

tpx

[
t

1

]

と，f + n 年生命年金

ℓx · äx:n+f⌉ =

n+f−1∑
t=0

ℓx+t

[
t

1

]
, äx:n+f⌉ =

n+f−1∑
t=0

tpx

[
t

1

]
との間には，

f | äx:n⌉ = äx:f+n⌉ − äx:f⌉

という関係が成り立つ。これは，ℓx+(t) が生命表を持つか否かと無関係であるどこ
ろか，等価という同値関係とも無関係に成り立つ等式である。一方，等式

f | äx:n⌉ = vf · fpx · äx+f :n⌉ (4.15)

は，生命表を持つ場合にのみ成り立つ等式である。確認しておこう：

(4.15) 式の証明：
生命表を持つので

f+jpx = jpx+f · fpx
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であり，

f |äx:n⌉ =
n−1∑
j=0

vf+j · f+jpx

=
n−1∑
j=0

vf+j(jpx+f · fpx)

= vf · fpx
n−1∑
j=0

vj · jpx+f

= vf · fpx · äx+f :n⌉

(
= A

x:
1
f⌉
· äx+f :n⌉

)

Remark. 同じことだが，オブジェクトの形で（今度は ℓx+t を用いて）式変形をす
るならば，

ℓx · f | äx:n⌉ =
n−1∑
j=0

ℓx+(f+j)

[
f + j

1

]

=
n−1∑
j=0

ℓ(x+f)+j

[
f + j

1

]
= ℓx+f · äx+f :n⌉

[
f

1

]
= äx+f :n⌉

{
ℓx+f

[
f

1

]}
= äx+f :n⌉A

x:
1
f⌉

また，特に f = 1 として

äx:n+1⌉ = äx:1⌉ + 1|äx:n⌉
= 1 + v · px · äx+1:n⌉

として得られる等式

äx:n+1⌉ = 1 + v · px · äx+1:n⌉ (4.16)
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は，出題向きの等式であり，基本セットのトッピングとして多用されている。多く
の場合，n+ 1 と n があからさまに出現するのはヒントになるので，

äx = 1 + v px äx+1

の形で使われる（連合生命 tpxy も生命表を持つので出題可能だが，単生命がほと
んど）。

据置期間 f 年の死亡保険

据置期間 f 年の死亡保険

ℓx · f |A1
x:n⌉

=

f+n−1∑
t=f

dx+t

[
t+ 1

1

]

についても，生命表を持つ場合には，t = f, f + 1, f + 2, . . . , f + n− 1 に対して

dx+t = ℓx+t − ℓx+t+1

= ℓx+(f+t−f) − ℓx+(f+t−f+1) （ 生命表を持つので ↓）
= ℓ(x+f)+(t−f) − ℓ(x+f)+(t−f+1)

= d(x+f)+(t−f)

なので（dx+t という表記を用いているため，途中の計算が不要に思えるほど当たり
前に見えるが，生命表を持つという条件が満たされていないと成立しない），

ℓx · f |A1
x:n⌉

=

f+n−1∑
t=f

vt+1 dx+t

=
n−1∑
j=0

vf+j+1 d(x+f)+j

= vf ℓx+f A 1
x+f :n⌉

となるので，

f |A1
x:n⌉

= A
x:

1
f⌉
· A 1

x+f :n⌉
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この等式も，f = 1 として終身死亡保険（終身養老保険）とした形（等式 Ax =

v qx + 1|Ax を使って導く）

Ax+1 = v qx + v px Ax+1 (4.17)

で，「基本セットへのトッピング」として用いられる。

一般形

据置期間つきの生命年金・死亡保険を，据置期間のない生命年金・死亡保険，及
び生存保険で表す等式を導いたが，一般には次のよう考え方をする：

1. t = 0 から始まる何らかのオブジェクトが与えられているとする。

2. t = f 時点で，そのオブジェクトを

(a) t = f までの部分

(b) t = f 以降の部分

に分解する。

3. t = f 以降の部分の，t = f 時点での現在価値を，なるべく簡単な記号で評価
する（これをX とする）。

4. その結果，最初のオブジェクトの t = 0 での現在価値は

(a) t = f までの部分の現在価値

(b) 期間 f で金額がX の生存保険の現在価値

の合計として求められる。

Remark. f 年据置の生命年金・死亡保険では，

1. t = f までの部分は何もないので，の t = 0 時点での現在価値は 0

(a) t = f 以降の部分は，t = f から開始される期間 n の生命年金・死亡保険
であり，その時点での年齢カウンターは x+ t となっているので，t = f

時点での現在価値は，それぞれ，äx+f :n⌉ と A 1
x+f :n⌉

（これが “簡単な記

号”）であり，
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(b) t = 0 時点から f 年間生存するとその金額の生存給付を受け取る，とい
うことと等価

(c) したがって，それぞれの t = 0時点での現在価値はA
x:

1
f⌉
· äx+f :n⌉ と A

x:
1
f⌉
·

A 1
x+f :n⌉

という流れで求めている。一般に，t = f 時点以降のオブジェクトを t = f 時点で
の現在価値に置き換えてしまう（保険会社の観点では，その後の保険料収入から保
険契約による支出を引いた純支出を支払ってしまうという現金化）という操作で，
t = f 以降を無いものとして扱うことができるのが強みとなる。このテクニックは，
保険が定年後やその後の生命年金の確定期間といった複雑な仕様になればなるほど，
強みを発揮する（のだが生命表を持たない場合は，場合分けが必要になる）。

4.3 責任準備金

4.3.1 過去法と将来法

債務残高の等式と責任準備金

責任準備金は，数学としての扱いでは（保険会社から見ての）債務残高と変わり
はない。ただし，責任準備金と言った場合には，契約者の集団に対しての総額では
なく，評価時点で残存している契約者１人あたりの数値を意味する。

Remark. 「契約者１人あたりの」とさりげなく書いたが，実は，その解釈は２通
りあり，後で「もう一つの責任準備金」を考えることになる（しかも，実際的な保
険数学では，こちらが本命）。しかし，とりあえず，気にしないことにしよう。

債務残高の評価は，一般的に等式[
0

S

]
∼
⌈
0

R0

∣∣∣∣+⌈ 1

R1

∣∣∣∣+ ⌈ 2

R2

∣∣∣∣+ · · ·+
⌈
n− 1

Rn−1

∣∣∣∣
+

∣∣∣∣ 1R′
1

⌉
+

∣∣∣∣ 2R′
2

⌉
+ · · ·+

∣∣∣∣n− 1

R′
n−1

⌉
+

∣∣∣∣ nR′
n

⌉
+

[
n

T

]
から始めたのだが，責任準備金については，

1. １人あたりということが絡む
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2. 収支を

(a) 一時払い保険料（もしくは，その一部）と契約終了時点での生存給付

(b) 年払い保険料と（期始払い）生命年金

(c) 死亡給付

に分けて考える

という理由で，次の形の一般形を考える：

ℓx

[
0

A

]
+

n−1∑
t=0

ℓx+(t) · Pt

⌈
t

1

∣∣∣∣
∼

n−1∑
t=0

ℓx+(t)

⌈
t

Et

∣∣∣∣+ n−1∑
t=0

dx+t

∣∣∣∣t+ 1

St

⌉
+ ℓx+(n)

[
n

E

]
(4.18)

† 最初の形との対応は

S = ℓx · A, Rt = ℓx+(t) (−Pt + Et), R′
t+1 = dx+t · St, T = ℓx+(n) · E

† ℓx+(t) は ℓx+t と書いた方が見やすいのだが，生命表を持つという条件がどこで必
要になるかをはっきりさせるため，ℓx+(t) というぎこちない記号を用いた。

Remark. ある保険の契約者の集団に対しての，保険会社の視点で考えると，左辺
は収入を表すオブジェクトであり，一方，右辺は支出を表すオブジェクトである。関
係式 (4.18) は，この両者が等価であることを主張している。記号の意味は

• A は契約開始時点での一時払い保険料（もしくは，その一部）

• Pt は [t, t+ 1] 期の保険料（期始払い）

• Et は t 時点での生存者に対する生存給付

• St は [t, t+ 1] 期での死亡に対する死亡給付（期末に支払う）

• E は契約終了時点での生存給付
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であり，いずれも１人あたりの金額。

関係式 (4.18) は，

収入 - 支出 が零と等価

という形（零オブジェクトの形）{
ℓx

[
0

A

]
+

n−1∑
t=0

ℓx+(t) · Pt

⌈
t

1

∣∣∣∣
}

−

{
n−1∑
t=0

ℓx+(t)

⌈
t

Et

∣∣∣∣+ n−1∑
t=0

dx+t

∣∣∣∣t+ 1

St

⌉
+ ℓx+(n)

[
n

E

]}
∼ 0 (4.19)

で書くことができるが，これを t 時点で分割して

• （t 時点までの収入）－（t時点までの支出），つまり，t 時点までの純収入と

• （t 時点以降の支出） － （t 時点以降の収入），つまり，t 時点以降の純支出

の差が零と等価，という考えておき，移項することにより

• t 時点までの純収入 tU
pは，

• t 時点以降の純支出 tU
f

と等価，という関係式

tU
p ∼ tU

f

を作ることができる。

「t 時点まで」と「t 時点以降」には重複があるので，tU
p, tU

f を明示的に定義
する：

tU
p def

=

{
ℓx

[
0

A

]
+

t−1∑
s=0

ℓx+(s)

⌈
s

Ps

∣∣∣∣
}

−

{
t−1∑
s=0

ℓx+(s) ·
⌈
s

Es

∣∣∣∣ +
t−1∑
s=0

dx+s ·
∣∣∣∣s+ 1

Ss

⌉}
,

t = 1, 2, . . . , n− 1
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tU
f def

=

{
n−1∑
s=t

ℓx+(s) ·
⌈
s

Es

∣∣∣∣+ n−1∑
s=t

dx+s ·
∣∣∣∣s+ 1

Ss

⌉
+ ℓx+(n)

[
n

E

]}

−
n−1∑
s=t

ℓx+(s)

⌈
s

Ps

∣∣∣∣
t = 1, 2, . . . , n− 1

t = 0, n の場合については，

1. nU
f =

[
n

E

]
とすることは問題がないのだが，

2. 0U
p =

[
0

A

]
とするか否かは，解釈（と使い方）に依存し，一概には言えない。

しかし，t = 0, n での責任準備金は余り重要ではないので，気にしないことにする。

tU
p, tU

f はいずれもオブジェクトであり，どの時点で評価するかということとは
無関係に定義されている。ここから，

1. t 時点での現在価値 tU
p, tU

f を評価し，

2. tU
p, tU

f の１人あたりの金額 tV
p, tV

f を求める

ということになる：

tU
p

[
t

1

]
∼ tU

p, ℓx+(t) · tV p = tU
p

tU
f

[
t

1

]
∼ tU

f ℓx+(t) · tV f = tU
f

定義はこれで終わりであり，また，常に，過去法による責任準備金 tV
p と将来法に

よる責任準備金 tU
f の等価

tU
p = tU

f

が成り立つ。

Remark. ここまでの議論は，総額で考えている限りでは，問題はない。しかし，
「１人あたりの」とする段階では「もう一つの責任準備金」という問題が絡むので，
「これはこれで，ひとつの定義」と考えておいて欲しい。
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Remark. 数式としての扱いに限れば，過去法と将来法の等価は自明であり，強調
するに値しない。しかし，過去法による評価は，実際に t 時点に立てば確率ではな
く試行の結果である一方，t 時点においても，将来法は確率に基づいて計算するこ
とになる。したがって，両者は必ずしも一致しない。また，年金数理のような，制
度発足時点での収支相等からのずれを伴う場合には，過去法は実際のファンド残高，
将来法は将来のサービスとしての債務という扱いになり，単なる数式の問題では済
まなくなる（のだと思う）。しかし，ここでは数理に徹するので，過去法と将来法の
一致は，(4.18) 式により自明。

以上で責任準備金は定義されているので，級数を用いて数式で表すことは可能で
ある。ここからは，生命年金，死亡保険，生存保険，養老保険といった「記号が定
められた基本的なもの」について，また，それらを一時払いとする場合，年払いに
する場合など，やはり「記号が定められた基本的なもの」について，

責任準備金を「それら定められた記号」で表す

という展開になる。
ここで，過去法と将来法では，生命表を持つという条件の重要性が違ってくる。
また，過去法では，漸化式が活躍する。一方，将来法では，t 時点において将来を
「基本的な記号」で評価することになるので，t 時点での「基本的な記号」（例えば，
s 7→ äx+t:s⌉）と，最初の t = 0 時点での「基本的な記号」（例えば，s 7→ äx:s⌉）との
関連が必要になる。この関連は，生命表を持つ場合には見過ごしてしまうほど簡単
なのだが，そうでない場合には，「連合生命の確率論」が要求されることになる。

4.3.2 過去法

A
x:

1
t⌉
を用いた表現

過去法による責任準備金の定義式

tU
p =

{
ℓx

[
0

A

]
+

t−1∑
s=0

ℓx+(s)

⌈
s

Ps

∣∣∣∣
}

−

{
t−1∑
s=0

ℓx+(s) ·
⌈
s

Es

∣∣∣∣ +
t−1∑
s=0

dx+s ·
∣∣∣∣s+ 1

Ss

⌉}
,

t = 1, 2, . . . , n− 1
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において，多くの場合，右辺の各項は「期間を表す記号 n を t に変えただけの簡単
な記号」で表すことができる。特に，Ps, Es, Ss が s に依存せずに定数P,E, S の場
合，右辺は

ℓx

{
A

[
0

1

]
+ P · äx:t⌉

[
0

1

]
− E · äx:t⌉

[
0

1

]
− S · A1

x:t⌉

[
0

1

]}
なので，

tU
p = ℓx

(
A+ P · äx:t⌉ − E · äx:t⌉ − S · A1

x:t⌉

)[0
1

]
もっと一般に，右辺の括弧の中を「期間を表す記号 n を t に変えただけの簡単な記
号」（これをX と置く）で表すことができたならば，tU

p を

tU
p = ℓxX

[
0

1

]
と「簡単な記号で書かれた」項X を使って書き下すことが出来る。

tU
p や責任準備金 tV

p は t 時点での評価なので

tU
p = ℓx+t · tV p

[
t

1

]
であり，したがって，

ℓx+t · tV p

[
t

1

]
= ℓxX

[
0

1

]
となる。よって，生存保険A

x:
1
t⌉
の定義により，等式

A
x:

1
t⌉
· tV p = X

を得る。つまり，

1. t まで生存するとその時点で責任準備金 tV
p （解約返戻金と思ってしまうのが

簡単）を受け取る生存保険の，t = 0 での現在価値（一時払い保険料）は，

2. t までのオブジェクトの断片の，t = 0 時点での現在価値に等しい

という一般的等式が得られる。上の例では

A
x:

1
t⌉
· tV p = A+ P · äx:t⌉ − E · äx:t⌉ − S · A1

x:t⌉
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äx:n⌉,A
x:

1
n⌉
, A1

x:n⌉
, Ax:n⌉ など，オブジェクトとして表記が定義されているものに

ついては，例えばAx:n⌉ ならば，零オブジェクト

Ax:n⌉

[
0

1

]
− Ax:n⌉ ∼ 0

についての責任準備金として，その責任準備金 tV (Ax:n⌉) を定義する。

代表的なものとしては，

A
x:

1
t⌉
· tV (äx:n⌉) = äx:n⌉ − äx:t⌉

A
x:

1
t⌉
· tV (A

x:
1
n⌉
) = A

x:
1
n⌉

A
x:

1
t⌉
· tV (A1

x:n⌉
) = A1

x:n⌉
− A1

x:t⌉

A
x:

1
t⌉
· tV (Ax:n⌉) = Ax:n⌉ − A1

x:t⌉

（過去法であることを示す添え字 p は省略）。いずれも，右辺第１項は t = 0 時点で
の一時払い保険料（つまり，保険サービスというオブジェクトの現在価値）であり，
第２項は責任準備金評価時点までの（保険会社の）支出現価である（生存保険では
t 時点までの支出はないので，第２項はない）。

ここまでは，tV (·) の括弧の中に該当するオブジェクトを書いて表す，という記号
の使い方として，一貫性があり，また，テキストでの括弧の中に現在価値を書いて
表すやり方とも大きな差はない。しかし，保険料年払いの場合には，該当するオブ
ジェクトの記号は用意していないので，保険料を n 年平準年払いとしたときの生存
保険A

x:
1
n⌉
, 死亡保険A1

x:n⌉
, 養老保険Ax:n⌉ についての零オブジェクト

P
x:

1
n⌉

· äx:n⌉ − A
x:

1
n⌉

∼ 0

P1
x:n⌉

· äx:n⌉ − A1
x:n⌉

∼ 0

Px:n⌉ · äx:n⌉ − Ax:n⌉ ∼ 0

の責任準備金を，それぞれ，tV (P
x:

1
n⌉
), tV (P1

t:x⌉
n), tV (Px:n⌉)，もしくは（主にこ

ちらを用いる）

tV
x:

1
n⌉
, tV 1

x:n⌉
, tV x:n⌉
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と表すことにする（したがって，一般的に x がベクトル表示となっている以外はテ
キストの記号と同じ）。

これらについても，

A
x:

1
t⌉
· tV

x:
1
n⌉

= P
x:

1
n⌉

· äx:t⌉ (4.20)

A
x:

1
t⌉
· tV 1

x:n⌉
= P1

x:n⌉
· äx:t⌉ − A1

x:t⌉
(4.21)

A
x:

1
t⌉
· tV x:n⌉ = Px:n⌉ · äx:t⌉ − A1

x:t⌉
(4.22)

となる。いずれも右辺第１項は，責任準備金評価時点までの保険料収入（の t = 0

時点での現在価値）。

Remark. (4.22) 式の右辺の A1
x:t⌉
は，これで正しく，Ax:t⌉ ではないことに注意。

t < n 時点では生存保険金は支払われないし，t = n 時点でも，責任準備金を評価し
た直後に生存保険金を支払うとしている（ので nV x:n⌉ = 1）。

また，両辺を äx:t⌉ で割った形では

P
x:

1
t⌉
· tV

x:
1
n⌉

= P
x:

1
n⌉

(4.23)

P
x:

1
t⌉
· tV 1

x:n⌉
= P1

x:n⌉
− P1

x:t⌉
(4.24)

P
x:

1
t⌉
· tV x:n⌉ = Px:n⌉ − P1

x:t⌉
(4.25)

であり，いずれの等式も

P
x:

1
t⌉
と P1

x:t⌉
について成り立つ等式

となっている。特に，(4.25) を，Px:t⌉ の定義式と連立させると，

Px:t⌉ = P
x:

1
t⌉
+ P1

x:t⌉

P
x:

1
t⌉
· tV x:t⌉ = Px:n⌉ − P1

x:t⌉

であり，これは，

５つの未知数 Px:n⌉, Px:t⌉, P
x:

1
t⌉
, P1

x:t⌉
, tV x:n⌉ について成立する２つの方

程式

なので，５つの内の任意の３個を既知数として与えれば，残りの２個を問う問題を
作ることができる。
例えば，テキストの「第５章　練習問題（１）」の (5)
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tVx = 0.190, Px = 0.02, P
x:

1
t⌉
= 0.072 のとき，P1

x:t⌉
および Px:t⌉ を求めよ

といったタイプの問題。

Remark. この問題では，終身養老保険の終身年払いとして添え字 n が現れないよ
うにしている。これはテキストでの問題なので特に理由はないと思うが，試験問題
では，n が表れないようにする効果は，

過去法で考えるか将来法で考えるかの判別を，分かりづらくする

という点にある。実際，後で見るように，将来法を使っている場合には n − t の形
の添え字が現れるのだが，終身になると n と共に n− t も式から消えて見えなくな
る。ただし，将来法ではP

x:
1
t⌉
のような添え字 t が現れることはないので，その辺り

で見抜くことは可能。

なお，テキストの「第５章　練習問題（１）」の (3) は (4.25) 式を求める問題。

過去法の再帰式

責任準備金の再帰式は，オブジェクト tU
p と t+1U

p との関係から導くことも出来
るが，ℓx+t · tV が ℓx+t+1 · t+1V へ変わる過程を追跡する方がわかりやすい。

1. t 時点で生存している契約者の集団 ℓx+(t) 人に対しての

(a) 責任準備金総額を評価すると ℓx+(t) · tV
(b) 次の瞬間に，保険料 ℓx+(t) · Pt が収入され，生存給付 ℓx+(t) · Et を支出

(c) 結果として，責任準備金総額は ℓx+(t) (tV + Pt − Et) に変わっている

2. それから１年間経過した t+ 1 時点（の一瞬前）では，責任準備金総額は

(1 + i) · ℓx+(t) · (tV + Pt − Et)

3. その一瞬後に，その集団（での死亡）に対して総額

dx+t · St

の死亡給付がなされ，その一瞬後に t+ 1 時点での責任準備金総額の評価が行
われるので，その値は

(1 + i) ℓx+(t) (tV + Pt − Et)− dx+t · St
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4. この総額は，t+ 1 時点で生存している契約者 ℓx+(t+ 1) 人の責任準備金の総
額に等しいので，

ℓx+(t+ 1) · t+1V = (1 + i) ℓx+(t) (tV + Pt − Et)− dx+t · St (4.26)

もちろん，生命表を持つ場合には ℓx+(t) を ℓx+t と書いて良いし，また，連合生命で
ないならば，x は x で良い。生命表を持たない連合生命でも，記号 ℓx+(t) を使えば
責任準備金総額に関する限り問題はないのだが，責任準備金については「１人あた
り」ということの解釈が別れる。これについては，この章の「もう一つの責任準備
金」で触れる。

(k) モデル

再帰式 (4.26) は，時間の単位を 1/k に，期間 n を nk に，v を v1/k （もしくは，
1 + d(k)

k
）に変えるだけで，自動的に (k) の場合に書き換えられる。

ただし，Pt, Et については，年率換算（単純に k 倍するという線形の発想による
換算）で年額が Pt, Et になるように，金額は Pt/k, Et/k とする：

ℓx+(t+
1

k
) · t+ 1

k
V

=

(
1 +

i(k)

k

)
ℓx+(t)

(
tV +

Pt

k
− Et

k

)
−
(
ℓx+(t)− ℓx+(t+

1

k
)

)
· St (4.27)

† 残念なことに，t = k/j としての [t, t + 1
k
] 期における死亡数 ℓx+(t +

1
k
) − ℓx+(t)

を表す記号は用意されていない。金利についての記号 i(k), d(k) の発想に倣うならば

d
(k)
x+t

k
= ℓx+(t)− ℓx+(t+

1

k
)

と定義すれば良いのだが，d(k) と紛らわしいので，この記号は使用しない。ただし，
概念としてこの記号を意識しておくと，(k) モデルの d

(k)
x+t から k → ∞ として瞬間

死亡率 µx+t に移る過程が辿りやすいと思う。

Remark. 保険料が定値の場合には Pt

k
は P (k)

k
であり，年金額が 1 ならば Et

k
は 1/k。
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微分方程式による記述

(4.26) は再帰式ではあっても t+1V − tV を求める形にはなっていない。(4.27) に
ついても同様。それならば，差の形に直せば良さそうなものだが，差の形を簡潔な
式で表すことは，一般的には無理。

面白いことに，と言うよりは，このことこそ無限小解析（微分法）の強みなのな
のだが，k のままでは難しかった作業が k → ∞ にすると簡単になることが多い。そ
れでは，現代の「微分積分学」の教科書的教養から離れて，古典的な無限小解析の
発想で k → ∞ を考察してみよう：

1. △t
def
= 1

k
とおく。k → ∞ は△t → +0 を意味する。

2. △V
def
= t+ 1

k
V − tV とおく。

3. △ℓ
def
= ℓx+(t+

1
k
)− ℓx+(t) とおく。

このように記号を定めた上で，(4.27) を(
1− d(k) · △t

)
· (ℓx+(t) +△ℓ) · (tV +△V )

= ℓx+(t) (tV + Pt · △t− Et · △t)

+
(
1− d(k) · △t

)
· △ℓ · St

と書き換え，展開して△t, △ℓ, △V について

1. 0 次の項

2. 1 次の項

3. 2 次以上の項

にまとめる。
左辺は，

1 · ℓx+(t) · tV
+ 1 · ℓx+(t) · △V + 1 · △ℓ · tV − d(k) · △t · ℓx+(t) · tV
（ここから下は無視することになる）

+ 1 · △ℓ · △V − d(k) · △t · ℓx+(t) · △V − d(k) · △t · △ℓ · tV
− d(k) · △t · △ℓ · △V
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となる。8 個の項が出てきて面倒なのだが，実は後で見るように，2 次以上の項は
具体的に計算する必要はなく，慣れれば最初から捨ててしまって良い。
同様に，右辺は，

ℓx+(t) · tV
+ ℓx+(t) · (Pt − Et) · △t+△ℓ · St

（ここから下は無視することになる）

− d(k) · △t · △ℓ · S

となっている。

微分という考え方が通用するための必須の条件は（つまり，t 7→ tV が微分可能で
あるための必要条件の１つは），0 次の項が打ち消し合って存在しないことである。
この条件は，左辺と右辺が共に ℓx+(t) · tV なので満たされている。
次に，t 7→ ℓx+(t) が微分可能であること，つまり

lim
△t→0

△ℓ

△t
が収束する

ということ必要なので，これを仮定し（したがって，△t → 0 のとき△ℓ → 0 とな
るのだが），さらに，左辺と右辺を見比べて，△t → 0 のとき△V → 0 となること
を確認しておく。

µx+t
def
= − 1

ℓx+(t)
lim
△t→0

△ℓ

△t

と定義する（死力の定義）。

左辺と右辺の差（これは零）を△t で割ると，0 次の項は打ち消し合い，2 次以上
の項はすべて△t → 0 のとき 0 に収束するので，

ℓx+(t) ·
△V

△t
+

△ℓ

△t
tV − d(k) · ℓx+(t) · tV − ℓx+(t) (Pt − Et)−

△ℓ

△t
· St

は 0 に収束する。 両辺を ℓx+(t) で割ってから△t → 0 の極限をとると，死力の定
義を用いて

d

dt
tV − µx+t · tV − δ · tV − (Pt − Et) + µx+t · St = 0

であり，

d

dt
tV = (δ + µx+t) · tV + Pt − Et − µx+t · St (4.28)
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という微分方程式（Thiele の微分方程式）が得られる。

Remark. 右辺第１項の δ と tV の積は利力 δ による責任準備金の増加，Pt −Et は
保険料収入と生存給付に依る増減，第３項は死亡給付の支払いと納得がいくのだが，
第１項の µx+t との積 µx+t · tV は分かりづらいかも知れない。これは，契約者の人
数が減少することに依る「１人あたりの分け前」の増加という効果。

4.3.3 将来法

生命表を持つ場合

将来法による責任準備金についても，Et, St, Pt が定値E, S, P である場合に「基
本的な記号」で表してみよう。定値である場合には

tU
f =

{
E

n−1∑
s=t

ℓx+(s) ·
⌈
s

1

∣∣∣∣+ S
n−1∑
s=t

dx+s ·
∣∣∣∣s+ 1

1

⌉
+ ℓx+(n)

[
n

E

]}

− P
n−1∑
s=t

ℓx+(s)

⌈
s

1

∣∣∣∣
であり，生命表を持つ場合には ℓx+(s) は ℓx+s と書くことができ，

tU
f =

{
E

n−t−1∑
s=0

ℓx+(t+s) ·
⌈
t+ s

1

∣∣∣∣+ S
n−t−1∑
s=0

dx+(t+s) ·
∣∣∣∣t+ s+ 1

1

⌉
+ ℓx+n

[
n

E

]}

− P
n−t−1∑
s=0

ℓx+(t+s)

⌈
t+ s

1

∣∣∣∣
=

{
E

n−t−1∑
s=0

ℓ(x+t)+s ·
⌈
t+ s

1

∣∣∣∣+ S
n−t−1∑
s=0

d(x+t)+s ·
∣∣∣∣t+ s+ 1

1

⌉
+ ℓx+n

[
n

E

]}

− P

n−t−1∑
s=0

ℓ(x+t)+s

⌈
t+ s

1

∣∣∣∣
= ℓx+t

{
E äx+t:n−t⌉ + S A 1

x+t:n−t⌉
+ A

x+t:
1

n−t⌉

}
− ℓx+t · P · äx+t:n−t⌉

となるので，

tV = E · äx+t:n−t⌉ + S · A 1
x+t:n−t⌉

+ A
x+t:

1
n−t⌉

− P · äx+t:n−t⌉ (4.29)

133



を得る。

このように簡単に「基本的な記号で表す」ことができるためには，生命表を持つ
という条件は必須である。更に言うならば，生命表を持たない場合には，責任準備金
の定義そのものを考え直す必要が生じる。この点についての検討は後に回して，ま
ず，(4.29) から導かれる等式をまとめておこう。特に重要なケースは，養老保険で
保険料が年払いのケースである：

tV x:n⌉ = Ax+t:n−t⌉ − Px:n⌉ · äx+t:n−t⌉ (4.30)

右辺には，äx+t:n−t⌉, Ax+t:n−t⌉, Px:n⌉ が現れるが，基本セット

1 = d · äx:n⌉ + Ax:n⌉

Ax:n⌉ = Px:n⌉ · äx:n⌉
1 = d · äx:n−t⌉ + Ax+t:n−t⌉

Ax+t:n−t⌉ = Px+t:n−t⌉ · äx+t:n−t⌉

を用いて，右辺を

1. すべて，d と äx:n⌉, äx+t:n−t⌉ で表す

2. すべて，d とAx:n⌉, Ax+t:n−t⌉ で表す

3. すべて，d と Px:n⌉, Px+t:n−t⌉ で表す

という３通りの書き換えを行うことが出来る。面白いことに，最初の２つでは，d

は消えてしまい右辺に残らない：

基本セット２（責任準備金）

tV x:n⌉ = 1−
äx+t:n−t⌉

äx:n⌉
(4.31)

tV x:n⌉ =
Ax+t:n−t⌉ − Ax:n⌉

1− Ax:n⌉
(4.32)

tV x:n⌉ =
Px+t:n−t⌉ − Px:n⌉

Px+t:n−t⌉ + d
(4.33)

これは，責任準備金の基本セットとでも言うべき等式で，
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(4.31) 式： ３つの未知数 tV x:n⌉, äx+t:n−t⌉, äx:n⌉ の間の等式。したがって，３つの
未知数の２つを既知として与えることにより，残りの１つを問うことが出来る

(4.32)式： ３つの未知数 tV x:n⌉, Ax+t:n−t⌉, Ax:n⌉ の間の等式。したがって，３つの
未知数の２つを既知として与えることにより，残りの１つを問うことが出来る

(4.33)式： ４つの未知数 d, tV x:n⌉, Px+t:n−t⌉, Px:n⌉ の間の等式。したがって，４つ
の未知数の３つを既知として与えることにより，残りの１つを問うことが出
来る

という仕掛けにより，問題の宝庫となる。

4.3.4 もう一つの責任準備金

解釈

生命表を持つということを，あらためて解釈してみよう。
生命表を持つという条件が満たされているときには

t+spx = tpx+s · spx

であり，したがって，

t+spx

spx
= tpx+s

となる。この式の左辺は

年齢カウンターが x の初期の時点で，s 年間生存した後にさらに t 年間
生存する確率を計算したもの

であり，右辺は

それから s年経過した時点での（年齢カウンターが x + s となっている
時点での）t 年間生存する確率

なので，両者が等しいということは，確率が変わっていないことを意味する。
言い換えると，生命表を持たないということは，確率が変わってしまうことを意
味するのだが，それには

1. 時間の経過と共に（例えば医学の進歩などで）死亡確率が変わる場合
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2. スクリーニングが行われた場合

という２つの場合が考えられる。死亡確率の変化は，もちろんあり得るのだが，責
任準備金との絡みで言うと重要なのは後者の場合である。
これは，責任準備金を評価している時点において，以下の状況が発生してるため：

• 将来法による責任準備金を「基本的な記号」で表すためには，スクリーニング
が必要。「基本的記号」を考えているときには，初期状態（この場合は責任準
備金を評価する時点）で箱を開けて，内側の小箱のランプがすべて点灯してい
ることを前提としている。例えば，x 歳のアライグマと y 歳のフェネックの

どちらか一方でも生存しているならば生存

という連合生命での死亡保険では，契約開始時点で両者が生存していること
（当たり前だ）を前提として，A 1

xy:n⌉
等の「基本的記号」が定められている。

一方，責任準備金評価時点でランプが点灯している箱の中には，すでに一方の
ランプが消灯しているものも含まれている。そもそも，確率 tpxy も両者生存
からの生存確率として定義されている。したがって，生命表を持たない。

一方

両者が生存しているならば生存

という連合生命では，外側のランプが点灯している箱は，それを開けて見るま
でもなく，内側の箱は両方とも点灯している。この連合生命は，生命表を持つ。

• したがって，「どちらか一方でも生存しているならば生存」については，責任
準備金評価時点でランプの点灯している箱を開けて

1. 両者生存

2. アライグマのみ生存

3. フェネックのみ生存

に分類した上で，それぞれについての将来法による責任準備金を「基本的な記
号」で表すことになる。

• しかし，そうなると「１人あたりの」という意味が異なってくる。生命表を持
たない場合も含めて責任準備金を定義するならば，責任準備金の評価という操
作には，
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箱を開けて内側の箱の状態で分類する

という操作を加えるべきで，それぞれについての「１人あたり」を評価する，
と定めるべきであろう（テキスト下巻「連合生命」での定義）。このように
して，

責任準備金のもう一つの定義（こちらが本命）

が登場する。

• ただし，過去法となると，このような「１人あたり」は考えづらい。責任準
備金の本来の意味は将来法としての定義であり，過去法の意味は「ファンド残
高」といった（予測値ではなく）結果として得られた値に近くなってくる。
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第5章 連合生命

5.1 確率の計算
箱の中の箱

箱に中に，それぞれ年齢カウンター x, y を持った箱 Box1, Box2 があり，t にお
いて点灯している確率が tpx, tpy であるとする（生命表を持つことは要請しない）。
添え字はベクトルとしている。これは，x でも x でも式の扱いが変わらないとい
うこともあるのだが，主な理由は，後で復帰年金を考えるときに必要になるからで
あり，Box1 と Box2 も，その中にいくつかの箱を持つ連合生命であっても良い。

そうなると，マトリューシカ人形のように「箱の中にいくつかの箱があり，それ
ぞれの箱の中にいくつかの箱があり，さらに，それぞれの箱の中に・・・・・・と幾ら
でも続けることになりそうなのだが，大体は「箱の中に箱がある」という二重マト
リューシカで片付く。

ここまで，例えば二重マトリューシカでは，

1. 外側の箱の中にいくつかの箱があり

2. 内側の箱のランプの状態から外側の箱のランプの状態を決める回路がある

3. 内側の箱（仮に中箱と言っておこう）のそれぞれには，その内側の小箱があり，
それらのランプの状態から中箱のランプの状態を決める回路がある

というアプローチを取っている。しかし，外側の箱のランプの状態が「内側の箱の
内側の小箱」から直接決まると考えることもできる。

Remark. 例えば，年齢カウンター x が，アライグマの年齢 x とフェネックの年齢
y からなるベクトルで，y がエゾヒグマの年齢 z, カムチャツカオオヒグマの年齢 u,

コディアックヒグマの年齢w からなるベクトルである場合，外側の箱のランプの状
態は

139



1. 二重マトリューシカとして

(a) アライグマの小箱とフェネックの小箱のランプの状態からBox1 のランプ
の状態が決まり

(b) エゾヒグマの小箱とカムチャツカオオヒグマの小箱とコディアックヒグ
マの小箱のランプの状態からBox2 のランプの状態が決まり

その結果として，Box1 とBox2 のランプの状態から決まる

2. アライグマ，フェネック，エゾヒグマ，カムチャツカオオヒグマ，コディアッ
クヒグマの５個の小箱から（直接に）外側のランプの状態が決まる

という２つのアプローチで求めることが可能であり，また，それらの結果を結ぶ等
式を得ることもできる。

したがって，マトリューシカのようにネスティングしている箱を考えなくても，い
つでもそのネスティングをほどいて単なる箱にすることが可能なので，考えるにし
ても，二重のマトリューシカまでで十分なのだ。

それならば，二重のマトリューシカですら不要と言い切ることも可能なのだが，保
険数学には

連合生命としてのBox1 のランプが消灯することがトリガーとなって，連
合生命としてのBox2 への生命年金の給付が開始される

という仕様の保険（復帰年金）が登場する。したがって，

箱の中にBox1 とBox2 があり，

• Box1 のなかにいくつかの小箱があり，

• Box2 のなかにもいくつかの小箱がある

という形までは想定しておく必要がある。ただし，このケースでの外側の箱の機能
は，Box1 とBox2 をペアとするという働きが主になり，どちらかというと，その蓋
は常に開けられているイメージ。
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5.1.1 ℓx · ℓy という発想

ある時点において

• Box1, Box2 の両者が点灯しているという事象を ↑↑, その確率を ↑↑p

• Box1 が点灯していて Box2 が消灯しているという事象を ↑↓, その確率を ↑↓p

• Box1 が消灯していて Box2 が点灯しているという事象を ↓↑, その確率を ↓↑p

• Box1, Box2 の両者が消灯しているという事象を ↓↓, その確率を ↓↓p

と表すと，t 時点におけるそれぞれの確率は

↑↑
tp = tpx · tpy

↑↓
tp = tpx · tqy

↓↑
tp = tqx · tpy

↓↓
tp = tqx · tqy

であり（ただし，tpx と tpy が独立であるという仮定が必要），

xy 座標平面におかれた頂点を (0, 0), (1, 0), (0, 1), (1, 1) とする正方形を
４つの排反事象に分割

という図をイメージすることになる。

† 生存確率と死亡確率の記号 tpx tqx も ↑px,
↓px と表すことにした方が居心地が良い

のだが，文字 p, q の役割はそのままにしておく。

確率を考える代わりに，「人数」（外側の箱の個数）を考えたいならば，適当に大
きな数値L を選んで確率にかけておき，それを t 時点の人数であるかのように考え
れば良い。L として何を選んでも良いので，L = ℓx · ℓ′y を選ぶと，例えば

L · ↑↓tp = (ℓx · tpx) (ℓy · tqy)
= ℓx(t) · ℓ′y(t)

となるので，今度は

xy 座標平面におかれた頂点を (0, 0), (ℓx, 0), (0, ℓ
′
y), (ℓx, ℓ

′
y) とする長方形

を４つの排反事象に分割
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という図をイメージすることになる。
ただし，この場合の ℓx, ℓ

′
y は人数とか個数といった意味は持たないことに注意。

あくまでも，確率に定数L = ℓx · ℓ′y （これは人数，個数という意味を持つ）をかけ
たものを架空の「因数分解」をするイデアル人数のようなものに過ぎない。同様に，
ℓx(t), ℓ

′
y(t) も人数としての意味を持たない。一方，積の形の ℓx(t) · ℓ′y(t) は，人数と

考えることが出来るので，やはり，L = ℓx · ℓ′y 人の集合を（４つの排反事象に対応
する）部分集合に分割した形になっている。

Remark. ℓx 人の集団を追跡すれば，t 年経過後の生存者は ℓx(t) 人であり，ℓ′y に
ついても同様。しかし，連合生命はペアになっているのであって，最初の人数が異
なっている以上，これは別の話。

† 記号 ℓ′y は，単に ℓy としても x, y と異なる記号が添え字として付くのだから，区
別は出来る。しかし，理屈の上では（数値ベクトルとして）x = y となるケースも
考えられるので，厳密には必要。とは言っても煩わしいので，これからは省略する
ことにしよう。

保険数学では，確率で考えるよりも人数（個数）で考える方が間違いが少ない。特
に過去法による責任準備金となると，確率は非常に危険である。しかし，連合生命
の場合，上の説明からも分かるように，無理に人数で考えるよりも確率で考えた方
が「もやもやしない」と思う。生命表を持たない連合生命では，責任準備金も将来
法しかまともに扱えなくなるので，確率で押し通しても間違える可能性は低くなる。

連合生命は確率論の演習問題

と開き直って，主に確率で考えて行くことにする。
したがって，（長方形ではなく）正方形を排反事象に分割するイメージを採用する。

5.1.2 単純な確率の計算

tpx = tpx · tpy の場合

最初に，x = (x, y)で tpx = tpx · tpy の場合について考える。
テキストの記号に従って，tpx を tpxy と書く：

tpxy = tpx · tpy
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また，

tqxy = 1− tpxy

t|qxy = tpxy − t+1pxy

と定義する。したがって，

tqxy = 0|qxy + 1|qxy + · · ·+ t−1|qxy

Remark. この連合生命は，

x 歳のアライグマと y 歳のアライグマの，いずれか一方が死ぬと連合生
命として死亡

という連合生命だが，それだけでなく，重要な仮定として

アライグマが死亡という事象と，フェネックが死亡という事象は独立

ということを仮定している。実際には，連合生命としての保険に加入するような関
係ならば（アライグマとフェネックが保険に加入するかは別として），共に行動す
ることも多く濃厚接触の状態にあるので，生存の確率が独立であることを仮定する
ことは難しい。しかし，連合生命のモデルとしては，独立性を仮定する。保険数学
としての連合生命では，多くの場合，特に明言しなくても独立性を仮定している。

Remark. 生存確率 tpx の余事象として死亡確率を考える立場から tqx を定義した。
ただし，生存は継続である一方，死亡は瞬間での出来事であり，その点は慎重に扱
う必要がある（後で，死亡の順序に依存する連合生命を考えるが，そのときには特
に注意が必要）。

この連合生命は，連合生命を構成するアライグマとフェネックが生命表を持つな
らば，生命表を持つ：

t+spxy = t+spx · t+spy

= (tpx+s · spx) (tpy+s · spy)
= tpx+s · tpy+s · spx · spy
= tpx+s,y+s · spxy

いつまでもアライグマとかフェネックを振り回すでもないので，それぞれの年齢
を示す文字 x, y を流用して，(x), (y) と呼ぶことにする。
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tqx = tqx · tqy の場合

これは，x = (x, y) であって，(x), (y) 両者が死亡して初めて死亡とする連合生命
に対応する。この連合生命を考えているときには，添え字 xy に overline を引いて

tpxy といった記号を用いる。

tpxy は，生命表を持つための条件

t+spxy = tpx+s,y+s · spxy

を満たさない。これは，右辺の tpx+s,y+s が，

完全な状態の連合生命を初期状態として想定しているため

である。つまり，

最初の (x),(y) が，s 年経過時点した時点で両者共に生存している場合以
外では，その時点からの生存確率を tpx+s,y+s とすることが出来ない

という（残念な）事情のためであり。この連合生命の場合，s 年経過した時点で（箱
を開けて）３通りのケースに分けて，式を立てる必要がある：

t+spxy = tpx+s,y+s · (spx spy)

+ tpx+s · (spx sqy)

+ tpy+s · (sqx spy)

右辺の項は，それぞれ最初から時間が s 経過した時点で

1. 両者共に生存

2. (x) のみ生存（年齢は x+ s 歳になっている）

3. (y) のみ生存（年齢は y + s 歳になっている）

の場合に対応する。

より複雑なケース

連合生命を構成する人数が 3 人，4 人と増すに従って，より複雑な連合生命を考
えることが可能になる。

tpxy のタイプの連合生命ならば，tpxyz, tpxyzu, tpxyzuv と人数が増えても，実質的に
は単生命と同じことで（生命表を持つということの強み），なにも問題は生じない。
一方，tpxyz となると，等式 (5.1) に対応する等式の右辺は
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1. (x),(y),(z) が生存の場合

2. (x) と (y) が生存，(z) が死亡の場合

3. (y) と (z) が生存，(x) が死亡の場合

4. (z) と (x) が生存，(y) が死亡の場合

5. (x) が生存，(y) と (z) が死亡の場合

6. (y) が生存，(z) と (x) が死亡の場合

7. (z) が生存，(x) と (y) が死亡の場合

という 7 通りの場合に分けて（つまり，(x),(y),(z) が死亡という場合を除く 23 − 1

通りの場合に分けて）7 つの項を書かなければならない。さらに，(x), (y), (z), (u)

の連合生命となると，右辺には 24 − 1 = 15 項が表れることになり，人数が増える
に従って，項の数は指数関数的に増加する。

さらにものごとを複雑にする要因は，連合生命としての生存の条件（ランプが点
灯しているための条件）を

1. (x) and (y) が生存

2. (x) or (y) が生存

とするときの，“and”と “or”が混ざって現れても良いためであり，例えば，(x), (y),
(z) の連合生命としての生存を

（ (x) and (y) が生存 ）or （ (z) が生存 ）

とする連合生命を考えることも可能。したがって，構成人数が多い連合生命につい
て，その一般形を議論することは無謀である。

また，m 人から成る連合生命であり，m 人のなかの少なくとも r 人が生存して
いるときは生存，という連合生命を考えることも可能。
例えば，m = 5 で (x), (y), (z), (u), (v) のなかの少なくとも r = 2 人が生存する確
率を記号

tp 2
xyzuv

で表す。tp 2
xyzuv

を tpx 等で表すためには，排反事象
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• 5 人が生存している場合

• 4 人だけが生存している場合

• 3 人だけが生存している場合

• 2 人だけが生存している場合

に分けて計算する必要があるので，t 年経過後に r 人だけが生存している確率を，
記号

tp [r]

xyzuv

で表すことにすると，

tp 2
xyzuv

= tp [5]

xyzuv
+ tp [4]

xyzuv
+ tp [3]

xyzuv
+ tp [2]

xyzuv

となる。さらに，例えば，tp [3]

xyzuv
も，(x), (y), (z), (u), (v) のどの 3 人が生存してい

るかで 10 通りの場合があり，式を書くと（長い式になることを見せたいだけで，ど
うでも良いのだが）

tp [3]

xyzuv
= tpx tpy tpz tqu tqv + tpx tpy tqz tpu tqv + tpx tpy tqz tqu tpv

+tpx tqy tpz tpu tqv + tpx tqy tpz tqu tpv + tpx tqy tqz tpu tpv

+tqx tpy tpz tpu tqy + tqx tpy tpz tqu tpy + tqx tpy tqz tpu tpy

+tqx tqy tpz tpu tpy

となる（要するに 5 個のなかから 3 個を選ぶ組合せに従って 10 通りの積を書けば
良い）。

tp [2]

xyzuv
も 10 通り，tp [4]

xyzuv
は 5 通り，tp [5]

xyzuv
はひとつの項 tpx tpy tpz tpu tpv とな

るので，tp [3]

xyzuv
は合計

1 + 5 + 10 + 10 = 26

個の項の和として表される（つまり，やっていられない）。

Remark. イタリック体の p を用いるテキストの記号 tp [3]

xyzuv
ではなく記号 tp [3]

xyzuv

を用いたが，これは，tp [3]

xyzuv
は確率を計算するための補助的記号であり，生存確率

としての意味は持たないため。t = 0 のときには，

0p [3]

xyzuv
= 0
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であることに注意。

その他，幾らでも複雑な連合生命を考えることが出来るのだが，基本的には，確
率の問題として丁寧に計算をすれば，（後で扱う条件付き生命確率を除けば）連合生
命を構成する個々の単生命についての基本的記号まで還元することができる。

箱形の連合生命

ここまでで扱ってきた連合生命，例えば tpxy, tpxy, tp 2
xyzuv

などについての等式は，

x, y, z, u, v が単生命を表すスカラー値でなく，それ自身が連合生命を表すベクトル
値の x,y, z,u,v であっても成立する。つまり，

箱の中にベクトル値の年齢カウンターをもつ小箱が入っていて，それら
小箱のランプの点灯状態から外側のランプが点灯している否かを決める
回路仕様が指定されている

という設定でも成立する。

ここで，「回路仕様」と言っているものについて，明確にしておこう。n 個の単生
命により構成される連合生命において，それらの単生命を番号 1, 2, . . . , nをつけて
表し，単生命 iのランプの状態を fi で表す：

fi =

{
1 ランプが点灯

0 ランプが消灯

ここで，1 は真，0 は偽として fi を命題と見なし，“and” を記号 “∧”, “or” を記号
“∨” で表すことにすると，

1. 連合生命 tpxy のランプの状態 f は，f = f1 ∧ f2

2. 連合生命 tpxy のランプの状態 f は，f = f1 ∨ f2

であり，また，より複雑な例としては，

連合生命 tp 2
xyzuv

のランプの状態 f は，

f = (f1 ∧ f2) ∨ (f1 ∧ f3) ∨ (f1 ∧ f4) ∨ (f1 ∧ f5)

∨ (f2 ∧ f3) ∨ (f2 ∧ f4) ∨ (f2 ∧ f5)
...

∨ (f4 ∧ f5)
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となる。

簡単に確かめられるように，回路仕様が論理記号 “∧” と “∨”（と補助的な記号で
ある括弧）のみで書かれた連合生命では，以下が成り立つ。この条件を「生存表示
の条件」と言うことにする（これは，ここだけの用語）：

1. 完全な状態において，つまり，連合生命を構成する fi がすべて1のとき，f = 1

であり，したがって，初期状態での生存確率 tpは1（つまり，初期状態で生存）。

2. f = 0 の状態で，連合生命を構成する fi のどれかを 1 から 0 に変えても，f

が 1 に復帰することはない。

連合生命 tp 2
xyzuv

を表す上の式は 10 個の項を “∨” で繋いだ形をしているが，それ

ぞれの項をすべて，例えば f2 ∧ f3 を f1 ∧ f2 ∧ f3 ∧ f4 ∧ f5 に書き換える，といった
ように置き換えてしまうと，

t 時点において，ちょうど２人が生存している確率 ( = tp [2]

xyzuv
)

となる。しかし，この場合には，「生存表示の条件」はどちらも成り立たない。なお，
fi は fi の否定を表す：

fi =

{
0 iffi = 1

1 iffi = 0

回路仕様が論理記号 “∧” と “∨” のみで記述される（したがって否定の記号は使わ
れていない）連合生命を，ここでは単純な箱形と言うことにする。

単純な箱形の連合生命がいくつか与えられたとき，それら箱を構成要素とする単
純な箱形の連合生命も，上の条件を満たす。また，この二重マトリューシカを解い
て単生命の連合生命と見なしても，それも “∧”, “∨” のみで記述される単純箱形の連
合生命となる。さらに，深いネスティングとしても同じことである。結局の所，否
定の記号を使わない命題論理での，括弧の展開の問題に過ぎない。

以上，回路仕様についての条件を述べたのだが，最も重要な点は，

回路そのものは時間に依存していない

148



ということである。それにも関わらず，連合生命を指定する際に tp 2
xyzuv

という文字

t を含む記号を用いるのは，混乱の元となる。ここでは，連合生命そのものを表す
記号として，

Box 2
xyzuv

といった記号を用いることにする。

5.1.3 連合生命の死力

死力の定義

µx+(t) = − 1

tpx

d

dt
tpx

は，連合生命でも単生命でも変わらない。ここでは，基本的な連合生命について，死
力の満たす等式を導く。

tpx = tpx · tpy の場合

x = (x, y)で tpx = tpx · tpy の場合は最も簡単であり，

µx+(t) = − 1

tpx · tpy
· {tpx · tpy}′

= − 1

tpx · tpy
·
{

d

dt
tpx · tpy + tpx ·

d

dt
tpy

}
= − 1

tpx
· d

dt
tpx −− 1

tpy
· d

dt
tpy

= µx(t) + µy(t)

† この連合生命は生命表を持つので，t を変数とする関数であることを強調した記号
µx+(t) を用いる必要はなく，テキストの記号 µx+t,y+t を用いても危険はない。
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tqx = tqx · tqy の場合

これは，x = (x, y) であって，(x), (y) 両者が死亡して初めて死亡とする連合生命
に対応する。死力の記号は，しばらくの間，µx+t,y+t と書くことは控え，t の関数で
あることを強調して µx+, y+(t) と表す。

この場合も単純に計算してみよう：

1− tpxy = (1− tpx)(1− tpy)

を t で微分して

− d

dt
tpxy = − d

dt
tpx · (1− tpy)− (1− tpx) ·

d

dt
tpy

= tpx · µx+t · (1− tpy) + (1− tpx) · tpy · µy+t

となる。この場合には，µx+, y+(t) の定義式を

− d

dt
tpxy = tpxy · µx+, y+,(t)

としておいて左辺に代入し，

tpxy · µx+, y+(t) = tpx · µx+t · (1− tpy) + (1− tpx) · tpy · µy+t (5.1)

という，やや複雑な等式を得ることになる。この等式は，むしろ，両辺に△t （例
えば△t = 1/365）をかけて

tpxy · µx+,y+(t) · △t

= tpx · µx+t · (1− tpy) · △t+ (1− tpx) · tpy · µy+t · △t

とした方が考えやすく，△t = 1/365 として年単位で考えると

• 左辺は，この連合生命が t 年間生存して次の１日で消滅する確率

• 右辺は

1. 第１項は，t 年経過時点で (y) は既に死亡していて (x) が生存していて，
次の１日で (x) が死亡する確率

2. 第２項は，t 年経過時点で (x) は既に死亡していて (y) が生存していて，
次の１日で (y) が死亡する確率
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を表している。

Remark. t 年経過時点で (x),(y) 両者が生存していて，次の１日で両者が死亡確率
は零ではない。しかし，独立事象であることを仮定している以上，△t が小さくな
るにしたがって，この確率は（年率換算しても）零に近づく。

Remark. この等式からわかるように，µx+,y+(0) は常に零である。µx+(t)，もしく
は，µx+,y+(t)，という記号を用いていれば安全なのだが，これを µx+t,y+t と表す通
常の記号では，

µx+0,y+0 = 0

となる。うっかり “+0” を省略してしまうと，µxy = 0 となってしまい，死力は常に
零という誤った結論に陥るので注意。

ここまでで記号 µx+t,y+t という記号の危険性は十分に確認できたと思うので，逆
に言うと，この記号を用いても誤解が生じることはないはずだ。ここからは，通常
の記号 µx+t,y+t を用いることにしよう：

d

dt
tpxy = −tpxy · µx+t,y+t

tpxy · µx+t,y+t = tpx(1− tpy)µx+t + (1− tpy)tpyµy+t

5.2 順序付き生命確率
ここから，順序付き生命確率とそれを基にしての生命保険を扱う。順序付き生命
確率は，むしろ，「順序付き死亡確率」という印象のものなのだが，一方，生存と死
亡は互いの余事象でもあるので，拘る必要はないようにも思える。しかし，やはり
この違いは重要なのであり，これから慎重に検討する。
なお，「t 経過」と言うより「t 年経過」という方がイメージしやすいと言う理由に
より，時間の単位は，1 年とする。
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5.2.1 当たり前のようなこと

余事象としての tq□

最初の，ランプを持つ箱という一般的な設定に戻ろう。初期状態から t年経過し
た時点で観測した結果，ランプが点灯している状態，つまり，生存している，もし
くは

未だ逝っていない

状態である確率は，tp□ で与えられる。初期状態での箱の個数を表す適当に大きな
数 L を乗じて考えると，生存している人数と捉えることも可能。
余事象の確率 tq□ = 1− tp□ は

既に逝っている

状態の確率となる。

tp□ と t+1p□ の差

tp□ − t+1p□

は，

tp□ − t+1p = (1− tq□)− (1− t+1q□) = t+1q□ − tq□

と表すこともできる。これは

初期状態から t 年経過した時点からの 1 年間で死亡する確率（死亡した
人数）

を表すと考えられる 。

Remark. 数学的には，これは当たり前のことではなく，t が実数を動くのではな
く有理数しか値をとらないならば，（ランプの状態を表す）関数 f(t) の区間 [t, t+ 1]

での不連続点（死亡の瞬間）の存在は，保証されない。実数を考えることの意味は，
このような不連続点の存在を保証するためでもある。しかし，不連続点の存在が保
証されたとしても，その不連続点での f(t) の値は 1 か 0 であり，不連続点において
も「未だ逝っていない」か「既に逝っている」のいずれかであり「逝きつつある」と
いうわけではないのだが，まあ，これは死亡した瞬間ということの定義として，気
にしないことにしよう。
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観察期間での死亡

それでは，

t|q□
def
= t+1q□ − tq□

と定義してみよう。これは，

初期状態から t 年経過した時点からの 1 年間で死亡する確率

を表し，当然の結果として，

0|q□ + 1|q□ + · · ·+ t−1|q□

は，

tq□ − 0q□ = tq□

と等しい（ここで，0q□ = 0 であること，同じことだが 0p□ = 1 であることを用い
ている）。

ここまで，「当たり前のようなこと」を述べてきたが，順序付き死亡確率を意識す
ると，要点は

死亡するという瞬間というイベントには関与せず，ある時点（期間の期
初と期末）での生存の情報から間接的に，その期間での死亡を記述して
いる

ということである。

5.2.2 順序付き生命確率

導入

例として，(x), (y), (z), (u), (v) の連合生命について考えよう。これらをベクトル
として x = (x, y, z, u, v) と表し，年齢カウンター x と連合生命としての生存を表す
ランプを持つ箱を想定する。ここでは，(x), (y), (z), (u), (v) の生死からランプの状
態を決める「回路仕様」は

(x), (y), (z) の順で死亡が発生したとき（したがって (z) 死亡の時点で
(u), (v) は生存している），(z) の死亡が発生した瞬間にランプは消灯
する
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と指定されているとしよう。この仕様を満たす回路を設計することは可能であり，重
要な点は，

この回路は，t を計測する時計とは無関係に作ることが可能

ということである。

† この「回路仕様」は，

いずれはランプは消灯する

という条件を満たさないのだが，実は，これまで色々な等式を導いてきた議論では，
この条件は用いていない。このような連合生命に対しても，ここまで用いてきた記
号 tpx を使って良いことする。

この連合生命を

Boxx
1
y
2
z
3
uv

と表すことにする。また，

t = 0 において完全であった（つまり，(x), (y), (z), (u), (v) が全員生存し
ていた）箱のランプが，t 時点においても点灯している確率は

tpx
1
y
2
z
3
uv

である。

回路の特殊性

連合生命

Boxx
1
y
2
z
3
uv

の回路仕様は，順番が指定されているために論理記号のみでは記述できないだけで
なく，f を

f1, f2, f3, f4, f5 を変数とする関数として，f = f(f1, f2, f3, f4, f5) の形で
表すこともできない。
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補助的なフラッグを用意すれば回路を設計することは可能なのだが，かなり微妙な
問題を含む。次のように設計してみよう。

表記を簡単にするために，例えば f1 = 0, f2 = 1, f3 = 0, f4 = 1, f5 = 1 であるこ
とを 01011 と表すことにし，この連合生命のフラッグと呼ぶことにする。
さらに，32 通りのフラッグのうち，

11111, 01111, 00111, 00011, 00001, 00010, 00000

の７個を正常フラッグ，残りの 32− 7 = 25 個のフラッグを以上フラッグと言うこと
にする。

1. まず，フラッグが

11111, 01111, 00111

以外になると消灯するフラッグ f̂ を考える。フラッグが

11111 // 01111 // 00111 // 00011

と変わる場合には（これは，(x), (y), (z) と「正しい順序で」死亡する場合），
フラッグが 00011 になった瞬間にランプは消灯し，これは期待通りの振る舞
い。しかし，例えば，

11111 // 10111 // 00111 // 00011

と変わると，ランプはフラッグが 10111（これは異常フラッグ）に変わった瞬
間に消灯し，00111 に変わると再び点灯してしまう。

2. そこで，次のような補助的なランプ g を考える：

(a) 初期状態 11111 では消灯

(b) フラッグが異常フラッグに変わると点灯

(c) g は非可逆的であり，一度でも点灯すると消えることはない

3. こうしておいて，

f = f̂ ∨ g

とおくと，f が消灯するのは一度も異常状態を経ずに 00011 に辿り着く場合
のみであり（これは，g が非可逆であるということの威力），望み通りの動作
をする回路設計が得られる。
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回路設計の１つを提示してみたのだが，これは「設計が可能である」ということ
を示したかっただけで，詳細は重要ではない。点灯すると二度と変更不可能という
設定は，物理的には簡単に実現できるのだが，関数を中心に組み立てられた数学の
世界で記述するには向かない。非可逆性には時間の前後という関係が隠されている
のだが，それをうまく数式で書き表すのは難しい（もしかすると不可能？）。

別の回路設計

次に，もう少し「時間という要素」を明示的に取り込んだ回路を考えてみよう。

まず，ベクトル値の年齢カウンターW = (x, y) と連合生命

Boxx
1
y
2

を考える。このとき，

Boxx
1
y
2
z
3
uv = BoxW

1
z
2
uv

となる。連合生命BoxW
1

z
2
uv において，それを構成する小箱W, z, u, v のフラッグを

fW , f3, f4, f5 とする。したがって，f3,f4, f5 は，これまで通り，それぞれ (z), (u), (v)

の生存を表す。fW は連合生命Boxx
1
y
2
の生存を表すフラッグ。

1. 十分に大きな k を選んで，連合生命の初期状態 s = 0 から始まる時間を，s =
0
k
, 1
k
, 2
k
, . . . と分割して離散的に扱う。

2. 補助的なフラッグとし△qj を用意しておく。

3. t = j
k
におけるフラッグの値を fW , f3, f4, f5 とするとき, t = j+1

k
におけるフ

ラッグの値を f ′W , f ′
2, f

′
3, f

′
4, f

′
5 で表し

△qj = fW ∧
(
f3 ∧ f ′

3

)
∧ f ′

4 ∧ f ′
5 (5.2)

と定める。つまり，

(a) 期初に連合生命Boxx
1
y
x
は既に消滅

(b) (z) はこの期間で死亡

(c) 期末に (u), (v) は生存（同じことだが，連合生命Boxuv は生存）
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のときのみ，言い換えると，期間 [ j
k
, j+1

k
] で連合生命の消滅があった場合にの

み△qj = 1 としている（それ以外では△qj = 0 ）。

4. s = N
k
においてのフラッグ f の値を

f = 1− (△q0 +△q1 +△q2 + · · ·+△qN−1)

と定める。

5. k が十分に大きいならば，この f を連合生命BoxW
1

z
2
uv の生存を表すフラッグ

と見なして良い。

以上，やはり連合生命の形Boxx
1
y
x
が残っているのだが，連合生命を構成する箱の

個数は減っているので，再帰的にこの議論を繰り返せば単生命に帰結させることが
できる。

しかし，この「十分大きいならば・・・・・・見なして良い」の「見なして良い」は，実
は，あまり良くない。問題は，期間 [ j

k
, j+1

k
] の間に

1. 連合生命 BoxW
1

y
2
uv の消滅と（その後に，やはりこの期間で）(z) の死亡が生

じた場合

2. (z) の死亡と（その後に，やはりこの期間で）(u), (v) いずれか（もしくは両
方）の死亡が発生した場合

という可能性であり，これらのケースは連合生命 BoxW
1

y
2
uv の消滅を意味するにも

関わらず，上の設計での△qj を 1 に変えることにはならないので，「見なして良い」
とはならない。
そこで，「十分大きいならば」に頼るわけであり，

kが十分大きいならば期間 [ j
k
, j+1

k
]は極めて短い期間であり，(x), (y), (z), (u), (v)

の死亡が独立であると仮定すれば，このような死亡の同時発生は生じな
いと見なして良い

という理屈である。

しかし，k がどれ程大きくても同時発生の可能性はあるのだから，「見なして良い」
と言って良いかは微妙。厳密な議論にするためには，結局，
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1. １つの箱の運命としてのフラッグ f を，そのような箱の生存確率に置き換え
（したがって，「見なして良い」は定量的な近似の問題になる），

2. k → ∞ と極限をとる

ということになるので，それならば最初から

死力と積分という枠組みで扱った方が早い

という結論になる。死力を用いた議論は次の節で扱う。

観察期間における順序付き死亡確率

t|qx
1
y
2
z
3
uv は区間 [t, t + 1] でこの連合生命のランプが消灯すること（の確率）を意

味している。さらに，(z) の死亡は必然的に，区間 [t, t + 1] で発生しているはずで
ある。一方，(x),(y) の死亡は，(z) に先立っていること，また (x),(y) の順であるこ
とのみが必要であり，期間 [t, t+ 1] で発生していることまでは要求されていない。
それでは，[t, t + 1] を観察期間とよぶことにして，この観察期間に発生している
ことを要求している事象は，それを強調して，順番を示す数字を上に書くことにし
て，t|qx

1
y
2
z
3
uv を

t|qx
1
y
2

3
z uv

と書くことにする。こうして，

観察期間での発生を要求するか否かまで指定しての順序付き死亡確率

というものが考えられるようになる。
ただし，この場合には

t|qx
1
y
2

3
z uv

= t|qx
1
y
2
z
3
uv

であり，(z) の死亡が観察期間で発生するということは，Boxx
1
y
2
z
3
uv の死亡が観察期

間で発生するということの，必然的結果にすぎない。

Remark. 記号 t|qx
1
y
2
z
3
uv での観察期間 [t, t+ 1] で何を観察しているのかと言うと，

外側のランプが依然として点灯しているか
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を観察しているのであり，死亡の順番という瞬間の出来事に係わる処理は，箱の回
路設計が引き受けている。一方，t|qx

1
y
2

3
z uv
では，

外側のランプを確認しているだけでなく，(z) の死亡が３番目であるこ
とまで観察している

という意味なので，例えば外側のランプが消灯するときに，(z) が３番目の死亡であ
ることも表示される，というようなイメージ。これは，既に「外側のランプだけを
観察していれば良い」という大枠からは外れている。ただ，t|qx

1
y
2

3
z uv

= t|qx
1
y
2
z
3
uv な

ので，相変わらず

外側のランプを観察するだけで，それが観察期間で消灯すれるときには
３番目の死亡としての (z) の死亡が観察期間で発生したこと

を推論することが出来る。なんとか，「箱型の保険数学」という大枠に踏みとどまっ
ている。

扱いづらい順序付き死亡確率

それでは，(x),(y) の順序付き死亡確率として

t|q1
x

2
y

を考えてみよう。これを，

初期状態 t = 0 で生存していた (x), (y) が，期間 [t, t + 1] において，
(x),(y) の順で死亡する確率

として定義する。しかし，この確率は，極めて扱いづらい。

1. まず，これは死亡という瞬間のイベントから直接定義されているのであり，回
路仕様で定められた箱とランプという枠組みには収まらない。これを回路で実
現しようとするならば，その回路は (x),(y) のランプの点灯のみではなく，観
察期間 [t, t+ 1] にいるかどうかを組み込むために，時計を必要とする。

2. 排反事象の和

t|q1
x

2
y
+ t+1|q1

x
2
y

は，
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t = 0 の初期状態で生存していた (x), (y) が，期間 [t, t + 2] におい
て，(x),(y) の順で死亡する確率

ではない。後者の確率には

(x) は期間 [t, t+1) で死亡し (y) は期間 [t+1, t+2] で死亡する場合

が含まれているのだが，前者には含まれない。

3. 結果として，等式

tp1
x

2
y
= 0|q1

x
2
y
+ 1|q1

x
2
y
+ · · ·+ t−1|q1

x
2
y

は，成立しない。

4. さらに，この確率を定義する期間 [t, t+1]を，期間の長さを 1/k にして [t, t+ 1
k
]

にしてしまうと，確率

t| 1
k
qx
1
y
2

は k の二乗に反比例して小さくなると想定しなければならない（(x) の死亡と
(y) の死亡が独立と仮定していないなら別だが）。したがって，年率換算した
極限として死力を定義することは，不可能（0 になってしまう）。

結論：　保険数学を展開するためには，その発生を観察期間に限定するイベントは，
１つにしておく方が，余計な紛糾を避けられる。つまり，順序指定の数字でx, y, z, . . .

の上にある数字は，１つだけと限定しておくのが無難。

結論はそうなのだが，死力を用いて積分で表す場合などでは，t|q1
x

2
y
の形の条件付

き死亡確率まで扱えるようにしておいた方が良い。

Remark. ここに来て初めて，「箱型の保険数学」という定義もせずに使ってきた言
葉の説明をすることが可能になった：

外側の箱のランプを観察するだけで死亡保険を定めることができる連合
生命を，箱型の連合生命という。つまり，等式

t|qx = tpx − t+1px

が成り立つ連合生命
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例えば，死亡保険が

A1
x

2
y:n⌉

=
n−1∑
t=0

vt+1
t|q1

x
2
y

で与えられるような連合生命は，箱型ではない。

5.2.3 連合生命の積分表示

連合生命の死力

順序付き死亡確率 tqx
1
y と tqx

1
y
2
の死力について考える。

Remark. 実は，ここからの話のほとんどは，x, y がベクトル値の年齢カウンター
の場合でも成立する。しかし，そうでなくても分かりづらい議論なので，単生命 (x),

(y) としておく。それらの単生命が生命表を持つことは仮定しない（このことを強
調して，記号 µx+(t) を用いる）。ただし，(x), (y) 両者の死亡が独立であることは仮
定する。

(x), (y) の死亡が独立であるという仮定により，極めて短い期間 [s, s + △s] で
(x), (y) 両者の死亡が発生する確率は無視して良い。したがって，期間 [s, s+△s] で
この連合生命が消滅する確率は，

1. tqx
1
y については，

• (y) は s 時点で生存していて，

• (x) は [s, s+△s] で死亡する

という事象の確率として，

spy
(
spx µx+(s)△s

)
であると考えて良く，この連合生命 x = (x, y) の死力 µx+(s) は

spx · µx+(s) = spx · spy · µx+(s) (5.3)

を満たす。また，

sqx
1
y =

∫ t

0
spx · spy · µx+(s) ds (5.4)
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であり，

t|qx
1
y =

∫ t+1

t
spx · spy · µx+(s) ds (5.5)

2. tqx
1
y
2
については，

• (x) は s 時点で既に死亡していて

• (y) は [s, s+△s] で死亡する

という確率として，

sqx
(
spy µy+(s)△s

)
であると考えて良く，この連合生命 x = (x, y) の死力 µx+(s) は

spx · µx+(s) = sqx · spy · µy+(s) (5.6)

を満たす。この連合生命の場合，積分での表示は慎重に扱う必要がある。

積分による表示

tqx
1
y
2

の積分表示は，(x) の死亡と (y) の死亡の２つの瞬間が関わるので，本来は

重積分となるのだが，(x),(y) のどちらか一方の死亡に着目して，（重積分ではなく）
普通の積分で表すことができる：

1. (y) が s 時点で死亡（その時点で (x) は既に死亡）として積分すると，

tqx
1
y
2
=

∫ t

0
sqx · spy · µy+(s) ds (5.7)

であり，

t|qx
1
y
2
=

∫ t+1

t
sqx · spy · µy+(s) ds (5.8)

となる。なお，t ≤ s ≤ t+ 1 に対して sqx を排反事象の確率

• [0, t] で (x) が死亡する確率 tqx
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• [t, s] で (x) が死亡する確率 sqx − tqx

に分けて考えると，

t|q
x
1

2
y

=

∫ t+1

t
sqx · spy · µy+(s) ds

=

∫ t+1

t

(tqx + sqx − tqx) · spy · µy+(s) ds

= tqx

∫ t+1

t
spy · µy+(s) ds+

∫ t+1

t

(sqx − tqx) · spy · µy+(s) ds

であり，右辺第１項は tqx · t|qy, 第２項は t|q1
x

2
y
に等しいので，等式

t|q
x
1

2
y
= tqx · t|qy + t|q1

x
2
y

(5.9)

を導くことも出来る（この等式は，両辺それぞれの意味を考えれば明らか）。

2. (x) が s 時点で死亡（その時点で (y) は生存していてその後の t− s の間に死
亡）として積分する。ただし，「その時点で (y) は生存していてその後の t− s

の間に死亡」を「その時点で (y)は生存しているが t時点では生存していない」
と言い換えてから積分する：

tqx
1
y
2

=

∫ t

0
spx · µx+(s) · (spy − tpy) ds (5.10)

この等式 (5.10) は間違いを誘発しやすい等式である（被積分関数に t が入って
いることに注意）。

t|q1
x

2
y
= t+1qx

1
y
2

− tqx
1
y
2

(5.11)

であり，

tqx
1
y
2
=

∫ t

0
spx · µx+(s) · (spy − tpy) ds

なのだが，単純に積分区間の差をとって

t+1qx
1
y
2
− tqx

1
y
2
=

∫ t+1

t
spx · µx+(s) · (spy − tpy) ds
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とは出来ない（t+ 1 までの積分のときには tpy ではなく t+1py）。したがって，
前処理が必要であり，∫ t+1

0
spx · µx+(s) · (spy − t+1py) ds

=

∫ t+1

0
spx · µx+(s) · (spy − tpy) ds+

∫ t+1

0
spx · µx+(s) · (tpy − t+1py) ds

としてから差をとると，

t|qx
1
y
2

=

∫ t+1

t
spx · µx+(s) · (spy − tpy) ds+

∫ t+1

0
spx · µx+(s) · (tpy − t+1py) ds

=

∫ t+1

t
spx · µx+(s) · spy ds

−
∫ t+1

t
spx · µx+(s) ds · tpy · · · · · ·この項と

+

∫ t+1

0
spx · µx+(s) ds · tpy · · · · · ·この項で

−
∫ t+1

0
spx · µx+(s) ds · t+1py

=

∫ t+1

t
spx · µx+(s) · spy ds

+

∫ t

0
spx · µx+(s) ds · tpy · · · · · ·この項になる

−
∫ t+1

0
spx · µx+(s) ds · t+1py

= t|qx
1
y + tqx · tpy − t+1qx · t+1py

となるので，等式

t|q
x
1

2
y
= tqx · tpy + t|qx

1
y − t+1qx · t+1py (5.12)

を得る。この等式も，両辺それぞれの意味から理解することは可能だが，難
しい（下の Remark に考え方の一例を述べてあるが，かなり面倒）。例えば，

tqx · tpy + t|qx
1
y は t+1qx

1
y ではないことに注意。

等式 (5.12) は，
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t|q
x
1

2
y
と t|qx

1
yの関係を，順序の関係しない基本的記号（この場合 tqx, tpy, t+1qx, t+1py）

のみを用いて与える等式

として重要である。

Remark. t|qx
1
y = tpx

1
y − t+1px

1
y であり，右辺の事象を

1. t ではBoxx
1
y は点灯，かつ，

2. t+ 1 ではBoxx
1
y は消灯

という事象と考える。ここで，t+ 1 で消灯しているということにより，

t+ 1 までの間で，一度も異常状態にはなっていない

ということが保証される（分析がかなり楽になる）。したがって，(x) の死亡より先
に (y) の死亡が発生する（という異常な状態の）可能性は考える必要はなく，

1. t でBoxx
1
y のランプが点灯しているということは，

(x) が生存しているだけでなく，(y) も生存していること

を意味する。

2. したがって，

tqx · tpy + t|qx
1
y

は，

(a) t 時点で (y) は生存，(x) については何も言っていない

(b) t+1 時点では，(x) は (y) に先だって死亡しているが，(y) については何
も言っていない

という事象の確率となる。したがって，（この事象の中で）(y) が t+ 1 時点で
も生存している場合の確率 t+1qx · t+1py を引けば，

tqx · tpy + t|qx
1
y − t+1qx · t+1py

は，
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(a) (x) は (y) に先だって死亡

(b) (y) は t で生存

(c) (y) は t+1 時点までに死亡（必然的に，(x) より後の死亡であり，t で生
存していたのだから観察期間内での死亡）

という事象の確率であり，

t|q
x
1

2
y

に等しい。

面倒で，しかも，間違いやすい（上の議論もどうなのだが）。
短い試験時間で間違えずに考えて，しかも，正しく記述しようと試みるのは無謀。
結論は

積分で計算するに限る

・・・・・・のだが，余裕がある間の訓練としてならば，色々間違えてみるのも良さそう。

5.2.4 復帰年金

寡婦年金

期間n 年の，(x) の死亡により開始される (y) への生命年金を寡婦年金と言う。正
確に定義すると，

契約開始時点から n 年間の間で，(x) が死亡した場合，(x) が死亡した
期間を [j, j + 1) として，

1. t = j を（仮想的な）契約開始時点としての，

2. 期間 n− j 年の

3. 期末払いの

(y) への生命年金を支払う

ということになる。

期末払い生命年金として定義しているのだが，期始払い・期末払いという解釈を
離れて記述するならば，
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(x) が [j, j + 1) で死亡すると，t = j + 1, j + 2, . . . , n において (y) が生
存している限り 1 を支払う

ということ。この現在価値を，記号

ax|y::n⌉

で表す。

Remark. 期末払いと考えるか，期始払いと考えるかだが，これは一長一短：

1. t = j + 1 から開始される期始払いとして扱うと，（期始払い生命年金は開始時
点の 1 は必ず支払われることになってしまうので）t = j + 1 で (y) が死亡し
ていないという条件を加える必要がある。

2. その点は，期末払いと考えれば，自動的に (y) の生存チェックが行われるので
簡単になる。

3. しかし，期末払いと考えると，契約開始時点は t = j （確率 1 で (x) の死亡
以前）であり，このような契約は死神の助力が不可欠。したがって，あくまで
も，「仮想的な契約開始時点」である。また，(x) の死亡時点で既に (y) が死亡
している可能性もあるので，その意味でも「仮想的」。

しかし，責任準備金が絡まない限り，本質的な違いにはならないので，気にするこ
とはないと思う。

それでは，期始払い・期末払いという解釈からは離れて

ax|y:n⌉
def
=

n−1∑
j=0

(j+1qx − jqx) ·
n∑

ℓ=j+1

vℓ · ℓpy (5.13)

と定義することにしよう。

復帰年金

(5.13) の形で定義しておけば，x, y が単生命の年齢でなく，連合生命の年齢カウ
ンター x,y であっても，x, y を x,y に変えただけの同じ式で定義を拡張することが
出来る（復帰年金）：

ax|y:n⌉
def
=

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=j+1

vℓ · ℓpy

}
(5.14)
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ただし，x を構成する連合生命と y を構成する連合生命に重複がないことは仮定
する。

(5.14) の右辺は二重級数の形であり，添え字 ℓ についての級数の範囲は j に依存
していることに注意。このような二重級数についても，総和の記号の順序を変える
ことは可能だが，総和の範囲も変わることになるので，少し難しい。n = 5 などの
具体例で総和をとる (j, ℓ) を図示して三角形の範囲となることを確かめておくと順
序変更の要点が分かると思う。このような具体的な図示で感性を養っておくと年金
数理などでも楽になるのだが，ここでは，ちょとしたトリックで順序変更をしてみ
よう。

1. j, ℓ に対して，２変数関数 φ≤(j, ℓ) を

φ(j, ℓ) =

{
1 if j ≤ ℓ

0 if j > ℓ

と定める。

2. φ(j, ℓ) を用いると

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=j+1

vℓ · ℓpy

}
=

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=1

φ≤(j + 1, ℓ)vℓ · ℓpy

}
と書き換えることが出来る。

3. この式の右辺は（総和をとる範囲が固定されているので），単純な順序交換が
可能であり

n−1∑
j=0

{
(j+1qx − jqx) ·

n∑
ℓ=1

φ≤(j + 1, ℓ)vℓ · ℓpy

}

=
n−1∑
j=0

n∑
ℓ=1

(j+1qx − jqx) · φ≤(j + 1, ℓ)vℓ · ℓpy

=
n∑

ℓ=1

(
n−1∑
j=0

(j+1qx − jqx) · φ≤(j + 1, ℓ)

)
vℓ · ℓpy

=
n∑

ℓ=1

(
ℓ−1∑
j=0

(j+1qx − jqx)

)
vℓ · ℓpy

と変形できる。
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4. したがって，

ax|y:n⌉ =
n∑

ℓ=1

(
ℓ−1∑
j=0

(j+1qx − jqx)

)
vℓ · ℓpy

となるのだが，

5.
ℓ−1∑
j=0

(j+1qx − jqx) = ℓqx − 0qx = ℓqx なので，等式

ax|y:n⌉ =
n∑

ℓ=1

vℓ · ℓqx · ℓpy (5.15)

を得る。

6. また，ℓqx を 1− ℓpx に書き直すと，

ax|y:n⌉ =
n∑

ℓ=1

vℓ · ℓpy −
n∑

ℓ=1

vℓ · ℓpx · ℓqy

= ay:n⌉ − axy:n⌉

となるので，等式

ax|y:n⌉ = ay:n⌉ − axy:n⌉ (5.16)

を得る。

なお，式変形で導いてはみたものの，このような計算に依る導出はあまり勧めら
れない。式変形のカラクリを感覚的に把握するためには，n = 5, n = 6 ぐらいの具
体的な値で，総和の記号を使わずに，すべての項を書いてしまう方が早道だと思う
（各項を，うまく三角形の形に並べて考えると良い）。

Remark. 等式 (5.15), (5.16) は，このような計算をしなくても，t = 1, 2, . . . , n 時
点での年金の支払い条件を考えれば，直接に書くことも可能。
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上の式変形では，連合生命 x, y が生命表を持つことは仮定されていない。y が生
命表を持つ連合生命の場合には（特に単生命の場合には）

n∑
ℓ=j+1

vℓ · ℓpy =
n∑

ℓ=j+1

vℓ · ℓ−(j+1)py+j+1 · j+1py · · · · · ·m = ℓ− j − 1 と置くと ↓

=

(
n−j−1∑
m=0

vm+j+1
mpy+j+1

)
· j+1py

= vj+1 · äy+j+1:n−j−1⌉ · j+1py

なので，

ax|y:n⌉ =
n−1∑
j=0

(j+1qx − jqx) · vj+1 · äy+j+1:n−j−1⌉ · j+1py

という表示も可能。
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第6章 近似と補間

6.1 数学的な一般論

6.1.1 サイエンスにおける近似

近似式というもの

乱暴な分け方だが，小さな実数 εに依存する２つの実数Aε, Bε の間の近似式Aε ≒
Bε には，３つの解釈がある：

1. 誤差の大きさ |Aε −Bε| を不等式などで厳密に評価。

2. ε → 0 の極限として考える。

3. 実際的な近似と考える。

最初の誤差の厳密な評価は，保険数学では登場しない。２番目の極限を考えるアプ
ローチは，区分求積としての定積分（ε = 1/n），利力の定義（ε = 1/k）, 死力の定
義（ε = △t） などの形で，すでに扱ってきた。

数学の世界から見ると分かりづらいのは「実際的な近似」という，すでに意味不
明な言葉で説明されている近似なのだが，サイエンス（ただし純粋数学は除く）の
世界では，それぞれの分野での独特の感性に基づく「なんとなく近似している近似」
をいかに使いこなすかが，それぞれの分野での腕の見せどことなっているようだ。
「なんとなく近似している近似」と言うと，いかにもいい加減なもののようなの
だが，実は，実数という概念は，十九世紀以前の数学，及び，現代のサイエンス（数
学を除く）では，「大体この位の値」というかなりいい加減な感覚のものであり，だ
からこそ，実用的なものとなっているのであろう。例えば，

2.4507789 · · ·

の “· · · ” は，数学の解釈では無限個の数字の省略なのだが，サイエンスでは，（それ
が理論値でない限り）ある桁から先は，それを問題にすること自体が感性を疑われ
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る「どうでもよい」（もしくは，とりあえずはどうでも良い，もしくは，今はこの位
で満足している）ものを意味するのであり，無限個の数値が続くことは最初から想
定していない。

これから，このような「柔らかな感性」での近似を，まとめて扱う。これらの近
似は，数学的な背景から導かれたものなのだが，それ自身は数学の対象とは言えな
い。したがって，これらの近似式は，証明されるものではなく，導入の説明がされ
るだけのものとなる。

1 次近似と 2 次近似

このタイプの「柔らかな近似の発想」を理解するために，等比級数の和の公式

1

1− ε
= 1 + ε+ ε2 + ε3 + · · ·

から始める。ここで，ε は「小さな実数」（正確には絶対値が零に近い実数）である
とすると

0 次近似 1
1−ε

≒ 1

1 次近似 1
1−ε

≒ 1 + ε

2 次近似 1
1−ε

≒ 1 + ε+ ε2

3 次近似 1
1−ε

≒ 1 + ε+ ε2 + ε3

などの近似が考えられ，さらに高次の近似式を考えることも可能。これらの近似式
は，いずれも「等比級数の和の公式を打ち切った式」という数学的な背景を持つ。ま
た，両辺の差を不等式で評価することも，ε → 0 の極限で考えることも可能なのだ
が，ここでの見方は，具体的な数値による感覚であり，例えば，−ε が金利 i を表し
その値が 0.02 ならば， 1

1+0.02
の値 0.980392156863 の近似として

0 次近似 0.980392156863 ≒ 1

1 次近似 0.980392156863 ≒ 0.98

2 次近似 0.980392156863 ≒ 0.9804

3 次近似 0.980392156863 ≒ 0.980392
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となる。0 次近似は「低金利だし，金利なんてどうでも良い」という発想であり，1

次近似は（個人的な財政事情だと）「まあ妥当な近似」，2次近似はかなりの大金を運
用するならばこの位の近似なのだが，3 次近似となるとブルームバーククラスの資
産家でも気にするかどうか。そもそも，ここまで精度が欲しいならば，関数電卓で
計算すれば良いことだし，また，本当の厳密値が欲しいならば Mathmatica, Maple

のような数式処理ソフトで計算すればよいだけのこと。つまり，

まあ，だいたいは，1 次近似か 2 次近似で済ませる

ということになる。
これから，色々な 1 次近似や 2 次近似（定数項がない場合は 2 次近似や 3 次近似）
が登場するが，多くの場合，2 次近似（定数項がない場合は 3 次近似）は式が煩雑
になり，あまりメリットはない。複雑な形の近似式は，「どうしても心配ならば試験
直前に覚えようと試みる」というくらいで良いと思う。したがって，なるべく簡単
な形の，かつ，意味のある近似式を中心に扱う。それらの式は，すべて覚えてしま
う位の覚悟で味わっておいて，損はない。

Remark. 「定数項がない場合は 2次近似か 3次近似」などと好き勝手なことを言っ
ているので迷惑だと思うが，要するに，「近似と言うに値する近似と，その次に精密
な近似」ということが趣旨。例えば，i(k) を i で近似する式

i(k) ≒ i− k − 1

2k
· i2

は 2 次式による近似なのだが，

1. i とか i(k) は小さいので両方 0 とみなす（0 次近似に相当）とか，

2. i と i(k) はあまり違いがないので等しいと見なす

という見解は，（納得できないわけではないが）近似式と言うよりは開き直りであり，
i2 の項まで考慮した式が「最も簡単な近似式」となる。定数項がない近似式は，だ
いたいはこのパターンであり，言い方を変えると，

i, i(k) と同じくらいのスケールで物事を見ている（ので 2 乗の項からが
「小さいスケール」）

ということ。一方，定数項がある式（例えば v ≒ 1− d(k)）では，定数項のスケー
ルで物事を見ているので，1 乗の項は小さい項と見ている。

173



6.1.2 数学的技巧

テーラー展開

近似式を作る技巧はテーラー展開であり，f(x0 + ε) の近似式を

0 次近似 f(x0 + ε) ≒ f(x0)

1 次近似 f(x0 + ε) ≒ f(x0) + f ′(x0) ε

2 次近似 f(x0 + ε) ≒ f(x0) + f ′(x0) ε+
f ′′(x0)

2
ε2

3 次近似 f(x0 + ε) ≒ f(x0) + f ′(x0) ε+
f ′′(x0)

2
ε2 +

f ′′′(x0)

6
ε3

という形で作る。0 次近似は単に ε を 0 無視しているだけなので，実質的には，近
似と言えるのは 1 次近似からになる。f ′(x) ε を近似の主要項と言うことにする。

これらの近似式の一般形は，f (j)(x0)がf(x)の j 回微分，j!は j の階乗1·2·3·· · ··j
を表すとして，j 次の項を

f (j)(x0)

j!
εj

とする n 次多項式を，n 次近似とする。しかし，保険数学では，一般の関数に対
してのテーラー展開まで必要になることはなく，f(x) = ex で x0 = 0 の場合と，
f(x) = (1+ x)±

1
k で x0 = 0 の場合のみで十分であり，3 次近似を書くと（0 次近似，

1 次近似，2 次近似は 3 次近似の多項式を打ち切れば良い）

eε ≒ 1 + ε+
1

2
ε2 +

1

6
ε3 (6.1)

(1 + ε)
1
k ≒ 1 +

1

k
ε− k − 1

2k2
ε2 +

(k − 1)(2k − 1)

6k3
ε3 (6.2)

(1 + ε)−
1
k ≒ 1− 1

k
ε+

k + 1

2k2
ε2 − (k + 1)(2k + 1)

6k3
ε3 (6.3)

となる。

r = 0, 1, 2, . . . に対しての 2 項展開の公式

(1 + ε)n =
n∑

j=0

nCj ε
j
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の２項係数 nCj の定義を

n · (n− 1) · · · · (n− j + 1)

j!

としておくと，この定義式は n が整数でなくても意味を持つ（j は 0, 1, 2, . . . に限
定されるが）。そこで任意の実数 r に対して

(
r

j

)
=

j個︷ ︸︸ ︷
r · (r − 1) · · · · (r − j + 1)

j!

と定義すると，

(1 + ε)r ≒ 1 +

(
r

1

)
ε+

(
r

2

)
ε2 +

(
r

3

)
ε3 + · · ·

という，２項展開に似た形の近似式が成り立つ（テーラー展開）。特に r = 1/k,

r = −1/k として計算すると，近似式 (6.2), (6.3) が得られる。

近似の手法

基本的には，近似公式 (6.1), (6.2), (6.3) から出発するのだが，もう一つ，

近似式から別の近似式を作る手法

が必要になる。

まず，手法と言う以前の手法として

多項式やテーラー展開の高次の項を捨てて近似式を作る

がある。

その他の手法には一般論はないのだが，

近似式に対して普通の等式と同じように計算を進めて，得られた多項式
の高次の項を捨てる

という流れであり，以下がよく使われる。

1. 近似式に別の近似式を代入して，高次の項を捨てる。

2. 等比級数の和の公式を利用して分母を処理する。

それでは，保険数学に登場する近似式について簡単にまとめることにしよう。
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6.2 金利の近似式

6.2.1 基本的な近似式

２項定理を使って展開

多項式の高次の項を捨てるだけの「手法以前の手法」により，

1. i を i(k) で近似する近似式

2. d を d(k) で近似する近似式

を作ることができる。3 次の項まで評価した近似式を作ってみよう：
等式

i =

(
1 +

i(k)

k

)k

− 1

−d =

(
1− d(k)

k

)k

− 1

を２項定理を用いて展開して，4 次以上の項を捨てる：(
1 +

i(k)

k

)k

≒ 1 + k · i
(k)

k
+

k(k − 1)

2
· (i

(k))2

k2
+

k(k − 1)(k − 2)

6
· (i

(k))3

k3

= 1 + i(k) +
k − 1

2k
(i(k))2 +

(k − 1)(k − 2)

6k2
(i(k))3

となるので，

i ≒ i(k) +
k − 1

2k
(i(k))2 +

(k − 1)(k − 2)

6k2
(i(k))3 (6.4)

同じように計算して（もしくは (6.4) の i, i(k) を−d,−d(k) に置き換えて）

d ≒ d(k) − k − 1

2k
(d(k))2 +

(k − 1)(k − 2)

6k2
(d(k))3 (6.5)

を得る。
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† i, d を i(k), d(k) で近似しても使い道が無さそうに思えるが，後で

i

i(k)
≒ 1 +

k − 1

2k
i(k) +

(k − 1)(k − 2)

6k2
(i(k))2 (6.6)

d

d(k)
≒ 1− k − 1

2k
d(k) +

(k − 1)(k − 2)

6k2
(d(k))2 (6.7)

の形で用いる。

(1 + ϵ)
1
k の形の展開

今度は，i(k) を i で近似する近似式，d を d(k) で近似する 3 次の近似式を作る。
等式

i(k) = k
{
(1 + i)

1
k − 1

}
d(k) = k

{
1− (1− d)

1
k

}
を用いる：

1. (6.2) の ε に i を代入して，

(1 + i)
1
k ≒ 1 +

1

k
i− k − 1

2k2
i2 +

(k − 1)(2k − 1)

6k3
i3

なので，

i(k) ≒ i− k − 1

2k
i2 +

(k − 1)(2k − 1)

6k2
i2 (6.8)

2. (6.2) の ε に−d を代入して，

(1− d)
1
k ≒ 1− 1

k
d− k − 1

2k2
d2 − (k − 1)(2k − 1)

6k3
i3

なので，

d(k) ≒ d+
k − 1

2k
d2 +

(k − 1)(2k − 1)

6k2
d3 (6.9)
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ä
(k)
n⌉ , a

(k)
n⌉ の近似式

次に，ä
(k)
n⌉ , a

(k)
n⌉ の近似式を作る。

ä
(k)
n⌉ =

1− vn

d(k)
= än⌉ ·

d

d(k)

a
(k)
n⌉ =

1− vn

i(k)
= an⌉ ·

i

i(k)

なので， d
d(k)

, i
i(k)
を評価することが必要になる。やり方は同じなので， d

d(k)
の近似式

を作ることにする。これには，２つのアプローチがある：

近似式に近似式を代入 近似式 (6.7)

d

d(k)
≒ 1− k − 1

2k
d(k) +

(k − 1)(k − 2)

6k2
(d(k))2

の右辺は d(k) で書かれているのだが，必要なのは d で書かれた近似式なので，
d(k) に近似式 (6.9) を代入して，3次以上の項を捨てる：

d

d(k)
≒ 1− k − 1

2k

(
d+

k − 1

2k
d2 +

(k − 1)(2k − 1)

6k3
d3
)

+
(k − 1)(k − 2)

6k2

(
d+

k − 1

2k
d2 +

(k − 1)(2k − 1)

6k3
d3
)2

≒ 1− k − 1

2k

(
d+

k − 1

2k
d2
)

+
(k − 1)(k − 2)

6k2
d2

= 1− k − 1

2k
d+

(
−(k − 1)2

4k2
+

(k − 1)(k − 2)

6k2

)
d2

= 1− k − 1

2k
d− k2 − 1

12k2
d2

等比級数の和の公式で分母を処理 d
d(k)
の分母に (6.9) を用いると

d

d(k)
≒ 1

1 + k−1
2k

d+ (k−1)(2k−1)
6k2

d2

178



この右辺に等比級数の和の公式（を 2 次で打ち切ったもの）を用いて

d

d(k)
≒ 1−

(
k − 1

2k
d+

(k − 1)(2k − 1)

6k2
d2
)
+

(
k − 1

2k
d+

(k − 1)(2k − 1)

6k2
d2
)2

≒ 1− k − 1

2k
d+

(
−(k − 1)(2k − 1)

6k3
+

(k − 1)2

4k2

)
d2

= 1− k − 1

2k
d− k2 − 1

12k2
d2

最も重要な近似式

以上，金利に関係する近似式を導いたが，実際には近似の主要項のみで十分であり，

i ≒ i(k) +
k − 1

2k
(i(k))2 (6.10)

i(k) ≒ i− k − 1

2k
i2 (6.11)

d ≒ d(k) − k − 1

2k
(d(k))2 (6.12)

d(k) ≒ d+
k − 1

2k
d2 (6.13)

i

i(k)
≒ 1 +

k − 1

2k
i (6.14)

d

d(k)
≒ 1− k − 1

2k
d (6.15)

この形の近似式の場合，近似式から近似式を導く計算は簡単であり，例えば，２
項定理による展開を打ち切っただけの近似式 (6.10) から (6.11) 式を導くためには，

1. (6.10) 式で移項をして

i(k) ≒ i− k − 1

2k
(i(k))2

2. 右辺の i(k) を i で近似すると c を未知定数として i(k) ≒ i + ci2 となるはずだ
が，これを右辺の i(k) に代入して i の 3 次以上の項を捨てると

i(k) ≒ i− k − 1

2k
{i+ (i の 2 以上の項)}2 ≒ i− k − 1

2k
i2
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3. つまり，右辺の (i(k))2 は i に置き換えてしまって良い。

† 更に一般に，近似式

δ ≒ ϵ+ aϵ2

から ϵ を δ で表す近似式を導くためには，

ϵ ≒ δ − aϵ2 ≒ δ − aδ2

とするだけで良い。つまり，信じがたいほど簡単。

k → ∞ の極限をとることにより，近似式

δ ≒ i− i2

2
(6.16)

δ ≒ d+
d2

2
(6.17)

を得るが，これらの等式 2 次の項は符号が異なるので，(6.16), (6.17) の平均をとる
と 2 次の項が（完全にではないが）打ち消し合うと期待してして，近似式

δ ≒ i+ d

2
(6.18)

を得る。

† 「期待して」という程度の理由で導いたのだが，「証明」とまで言うならば，例え
ば，等比級数の和の公式

i =
d

1− d
= d(1 + d+ d2 + d3 + · · · )

から導かれる近似式

i ≒ d+ d2 + d3

を (6.16) の２次の項に用いて

δ ≒ i− d2

2
+ (d の 4 次以上の項)
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としてから (6.17) との平均をとって

δ ≒ i+ d

2

とするようなプロセスが必要。

eε の近似式を用いる例としては，等式

i = eδ − 1

に近似式 (6.1)

eδ ≒ 1 + δ +
δ2

2
+

δ3

6

を用いて，

i ≒ δ +
δ2

2
+

δ3

6

を得る計算を挙げることができる。

金利に関係した近似式としてはハーディーの公式があるが，これは別の流れの近
似式なので，後で触れることにする。

時間平均としての
k − 1

2k

最後に
k − 1

2k
という項の意味について考えてみよう。

ä
(k)
n⌉ ≒

(
1− k − 1

2k
d

)
än⌉

という近似式で考える。k = 12 として「一ヶ月」という便利な言葉を使うと

1. än⌉ では期初に 1 = 1
k
·k を受け取るのだが，それに対して ä

(k)
n⌉ では，1/k を 0ヶ

月，1ヶ月， 2ヶ月，. . .，11 ヶ月遅れて受け取るので金利分の損失が生じる。

2. 正しくは金利分の損失の平均を計算すべきなのだが，支払いの遅れの平均を計
算すると

0
k
+ 1

k
+ 2

k
+ · · ·+ k−1

k

k
=

1

k2
· (k − 1)k

2
=

k − 1

2k
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3. つまり，k−1
2k
は遅延の時間平均を表す。

4. 1 が k−1
2k
遅れて支払われるとした近似式は

ä
(k)
n⌉ ≒ (1− d)

k−1
2k än⌉

5. しかし，どうせ近似をしているのだから単利計算でも良いだろうということ
で，更に近似して

ä
(k)
n⌉ ≒

(
1− k − 1

2k
d

)
än⌉

を得る。

以上，k 回の遅延を時間平均をとって１回の遅れに置き換えてしまうという，かな
り大胆な発想の近似だが，簡潔で強力な手段である。
死亡保険A

(k)
1
x:n⌉
とA1

x:n⌉
を比較する場合も同じことで，k = 12 とすると，A

(k)
1
x:n⌉
の

場合は死亡の発生した月末，A1
x:n⌉
では死亡の発生した年末なので，死亡保険金支払

いが早まる時間平均は（最初の月では 11 ヶ月，最後の月では 0ヶ月なので），
k−1
k

+ k−2
k

+ · · ·+ 0
k

k
=

k − 1

2k

であり，

A
(k)
1
x:n⌉

≒ (1 + i)
k−1
2k A1

x:n⌉

となるが，さらに単利計算で近似して

A
(k)
1
x:n⌉

≒
(
1 +

k − 1

2k
i

)
A1

x:n⌉
(6.19)

6.2.2 ハーディーの公式

ハーディーの公式

外部からの流入・流出（例えば保険料収入や保険金支払い）と資産運用の両方に
より増減する資産 A(t) について，資産運用収入の積算 I と金利の関係を求める近
似式としてハーディーの公式がある。これは，期初の資産をA = A(0), 期末の資産
をB = A(1)，その期の資産運用収入（日々の金利収入の単純な積算）を I として

i ≒ 2I

A+B − I
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とする近似式である。

最も簡単な解釈は，

期末の資産B から金利収入 I を除いたB − I と期初の資産A との平均
A+B−I

2
を運用したと考えてしまう

いう発想であるが，これはあまりにも大胆である。そこで，テキストにある説明で
導出することになるのだが，これは，正直なところ「作為的な計算」という印象を
受ける。おそらくこれは，微分方程式（変数分離の形ではない微分方程式）を試験
範囲に含めないための温情の結果だと思う。もう少し自然な導出をすると以下のよ
うになる。

Remark. したがって，試験対策としては，以下は不要。なんとなく満たされない
思いがあるので，自分で満足できる導出をしてみただけのことなので，以下を読む
よりも，テキストの導出で満足できない人は自分で導出を試みてみる方がよいかも
しれない。
いずれにせよ，必要なことは，ハーディーの公式を覚えることと，

I = δ

∫ 1

0

A(t)dt

という厳密式までで，後は具体的に与えられたA(t) に対して計算する程度で十分。

別のアプローチでの導出（参考）

外部からの流入・流出により増減する資産 g(t) を考える。また，t = 0 から t = 1

の間に，この資産を運用した結果も含めて増減する資産 f(t)を考える。tから t+△t

の間の f(t) の増減は

1. g(t) の増減 g′(t)△t

2. f(t) の利息収入 f(t) δ△t

の和と考えることが出来るので，微分方程式

f ′(t) = f(t) δ + g′(t)

を立てる。初期条件としては，f(0) = g(0) を要求することになる。
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このとき，t = 0 から t = 1 の間の，各瞬間での利息収入の単純合計 Iは定積分

I = δ

∫ 1

0

f(t) dt

で求められる。また，

f(1)− f(0) =

∫ 1

0

f ′(t)dt =

∫ 1

0

δf(t) + g′(t) dt

= I +

∫ 1

0

g′(t) dt

= I + g(1)− g(0)

であり，初期条件として f(0) = g(0) を課しているので，f(1) = B と置くと，

g(1) = B − I (6.20)

を得る。

g(t) の最も簡単な形として，初期値をA とする１次関数

g(t) = A+ ct

を考えると（ここでは f(t) を１次関数と考えるのではなく，g(t) を１次関数と考え
る），等式 (6.20) により

c = −A+B − I (6.21)

であり，微分方程式は

f ′(t) = δ f(t) + c

となり，この一般解はK を任意定数として

f(t) = Keδt − c

δ

である（変数分離形ではないので，解き方までは踏み込まないが，微分方程式に代
入してみれば解であることはわかる）。したがって，f(1) = B, eδ = 1 + i であるこ
とから，

B = K(1 + i)− c

δ
(6.22)
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であり，また，I の定義から

I = δ

∫ 1

0

Keδt − c

δ
dt = δ

[
K

eδt

δ
− c

δ
t

]1
0

= K
(
eδ − 1

)
− c

= Ki− c (6.23)

を得る。
等式 (6.22) と (6.23) からK を消去して，

iB − (1 + i)I = −c

δ
i+ c(1 + i)

となる。
この等式から i を求めることが出来るはずだが，eδ = i という関係により対数関
数の絡む非線形な方程式となってしまい，簡単な解は得られない。そこで，この等
式を簡単にするために近似式

δ ≒ 1− i

2

を用い，さらに，等比級数の公式 1+ ϵ+ ϵ2+ · · · = 1
1−ϵ
の左辺を 1 次の項で打ち切っ

た近似式を用いて，

i

δ
≒ 1

1− i
2

≒ 1 +
i

2

としておいて，等式 (6.21) を用いると

iB − (1 + i)I ≒ −c ·
(
1 +

i

2

)
+ c(1 + i)

= c · i
2
= (−A+B − I) · i

2

という近似式が得られる。これを等式であるように考えて文字 iについて整理すると，

i

{
B − I − −A+B − I

2

}
− I = 0

となり，ハーディーの公式

i =
2I

A+B − I

を得る。
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6.3 補間公式による近似

6.3.1 大域的な補間

補間公式については，数学として面白い所なので楽しんで書いたのだが，保険数
学の試験に占める比重は少ないと思う。適当に読み流してほしい。

年齢の関数としての生命表 ℓx の値が整数値に対して与えられているとして，それ
を補間する「補間公式」について述べる。

ラグランジュの補間公式

一般に，離散的な変数に対しての関数 f(x) の値として，n + 1 個の数値 xm <

xm+1 < · · · < xm+n に対しての値 ym, ym+1, . . . , ym+n が与えられているとする：

yj = f(xj), j = m,m+ 1, . . . ,m+ n

これらの離散的なデータを補間する関数，つまり，

P (xj) = yj, j = m,m+ 1, . . . ,m+ n

を満たす関数は無数にあるのだが，そのなかでもなるべく簡単な形のものを探した
い。そこで「なるべく次数の低い多項式」を探すと，このような多項式P (x) は，ラ
グランジュの補間公式により簡単に求められる：

1. まず，Q(x) = (x− xm)(x− xm+1)(x− xm+2) · · · · · (x− xm+n) と置くと，

Q(xj) = 0, j = m,m+ 1, . . . ,m+ n

となる。

2. Q(x) を作る n 個の積のなかで，添え字が j のもの (x − xj) を取り除いた積
（別の言い方をすると (x− xj) を 1 に置き換えた積）をQj(x) で表す：

Qj(x) =
Q(x)

x− xj

（を約分した多項式）

3. このとき，

Qj(xk) = 0 if j ̸= k, Qk(xk) ̸= 0

となる。

186



4. n 次多項式 P (x) を，係数 am, . . . , am+n は未定のままで，

P (x) = amQm(x) + am+1Qm+1(x) + · · ·+ am+nQm+n(x) (6.24)

と置くと，

P (xk) = akQk(xk), k = m,m+ 1, . . . ,m+ n

となるので，

ak =
yk

Qk(xk)
(6.25)

と置くことにより，条件を満たす n 次多項式 P (x) を得る。

Remark.

1. 満たすべき条件の個数と自由に選べる係数の個数との関係は，つじつまが合っ
ている。：

(a) 満たすべき条件 P (xj) = yj は j = m から j = m + n までの n + 1 個で
あり，

(b) n 次多項式の係数は n 次から 0 次までの n+ 1 個なので，

(c) それらの係数を未知数として n + 1 個の連立方程式を立てれば，解を求
めることは可能。

しかし，連立方程式を解こうとすると，n = 3 で 4 個の未知数という比較的
簡単そうな場合であっても十分に面倒であり，また，解の形の見通しも効かな
い。連立方程式は泥沼である。

2. ラグランジュの補間公式は，それに比べて遙かに簡単であり，また，なにかと
見通しが良い。それにも関わらず，生命表の場合のように n が 100 個近くに
なると，P (x) も 100 次近くの高次多項式になる。このような次数の高い多項
式は，数値を代入して計算しようとしても，「極めて大きな数のプラスマイナ
スの打ち消し合い」という数値計算にとって最悪の状況をもたらすのであり，
まったく使い物にならない。

従って，１つの多項式で全体を補間しようとすること自体，無謀なのであり，全
体を補間するときには，
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それぞれの区間 [xj, xj+1] を別々の多項式で補間してつなぎ合わせる

という方針をとることになる。

（区分的）線形な補間 f1(x)

最も簡単な補間は，

各区間 [xj, xj+1] の端点で P (xj) = yj, P (xj+1) = yj+1

という条件だけを要求した補間であり，1 次関数（1 次多項式）で補間することに
なる。つまり，2 点 (xj, yj), (xj+1, yj+1) を線分で結ぶグラフの式を書けば良い。大
域的な補間は，これらの線分を繋いだ折れ線とする線形補間（正確には区分的線形
補間）。

線形補間をした関数を f1(x) で表すことにする。ただし，f1(x) を与える式は，各
区間毎に異なる。f1(x) は，極端な長所と短所を持つ：

長所 積分が簡単に求められる。1 次関数の式を書いて定積分をするまでもなく，台
形の面積の公式により，∫ xj+1

xj

f1(x)dx =
(yj + yj+1)(xj+1 − xj)

2
(6.26)

短所 x が整数値のときに，f1(x) は微分不可能。

（区分的）3 次関数による補間

短所を補うためには，グラフをつなぎ合わせる所で傾きが一致するように細工す
ることが必要になる。そのためには，

1. あらかじめ各 xj での微分（となるべき）値 cj を指定しておき，

2. 各区間 [xj, xj+1] において，

f(xj) = yj, f(xj+1) = yj+1
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となるだけでなく，

f ′(xj) = cj, f
′(xj+1) = cj+1

となる 3 次関数を作り（満たすべき方程式の個数が 4 なので，係数も 4 個必
要であり，3 次多項式），

3. 各区間で作られた関数を，つなぎ合わせる。

こうすれば，つなぎ合わせる点での右微分と左微分は一致し，全体として微分可能
な関数 f3(x) ，ただし定義式は各区間で異なる，を得ることが出来る。

この方法では，ラグランジュの補間公式の改良版が必要になり，また，どのよう
にして「予め指定された微分の数値」を決めるのかという問題を解決して置く必要
がある。
最初に，

離散的なデータを局所的に補間して微分を求める方法

について述べる。

6.3.2 微分を求めるための補間１

両側 1 点ずつ

x−1 < x0 < x1 における y の値 y−1, y0, y1 が与えられているとして，それを補間
する関数 f(x) の x0 における微分 f ′(x0) を求める。

この場合も，f(x) としては，なるべく簡単な関数を選びたいので，ラグランジュ
の補間公式

f(x) = a−1(x− x0)(x− x1) + a0(x− x−1)(x− x1) + a1(x− x−1)(x− x0)

の形の関数を採用する：　係数 a−1, a0, a1 は，

a0 =
y0

(x0 − x−1)(x0 − x1)
,

a−1 =
y−1

(x−1 − x0)(x−1 − x1)
,

a1 =
y1

(x1 − x−1)(x1 − x0)
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補間公式のそれぞれの項について，x = x0 での微分を求めると，例えば，

a−1 {(x− x0)(x− x1)}′ |x=x0 = a−1 {(x− x1) + (x− x0)} |x=x0

= a−1(x0 − x1)

となる。要するに，(x− x0) を積に含む項は，それを微分して消してしまわない限
り x0 を代入すると 0 になるので，積の微分は (x − x0) に作用すると考えて良いと
いうことであり，同じく，a1(x− x−1)(x− x0) の x = x0 での微分も

a1 {(x− x−1)(x− x0)}′ |x=x0 = a1(x0 − x−1)

となる。(x− x−1)(x− x1) については，積の微分として計算する必要があり，

a0 {(x− x−1)(x− x1)}′ |x=x0 = a0(x0 − x1) + a0(x0 − x−1)

したがって，

f ′(x0) = a0(x0 − x1) + a0(x0 − x−1) + a−1(x0 − x1) + a1(x0 − x−1)

であり，

f ′(x0) =
y0

x0 − x−1

+
y0

x0 − x1

+
y−1(x0 − x−1)

(x−1 − x0)(x−1 − x1)
+

y1(x0 − x−1)

(x1 − x−1)(x1 − x0)

となる。

得られた結果は，あまり簡単な形とは言えない。しかし，x−1, x0, x1 が等間隔で
並んでいる場合には，

y0
x0 − x−1

+
y0

x0 − x1

= 0

であり，また，間隔を△ として x−1 = x0 −△, x1 = x0 +△ と置くと，

f ′(x0) =
y1 − y−1

2△
(6.27)

という簡単な形になる。これは，x0 を中心としての左右 2 点を結ぶ割線の傾き。
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補題 1. 3 点 x−1, x0, x1 が等しい間隔△ > 0 で並んでいるとする：

x−1 = x0 −△, x0, x1 = x0 +△

また，y−1, y0, y1 が与えられているとする。このとき，等式

f(xj) = yj, j = −1, 0, 1

を満たす 2 次関数の x = x0 における微分は

f ′(x0) =
y1 − y−1

2△

左右両側 2 点ずつ

次に，x0 での微分を求めるために，x0 の左右両側 2 点ずつを利用してみる。

x−2 < x−1 < x0 < x1 < x2

での値

y−2, y−1, y0, y1, y2

が与えられているとして，ラグランジュ補間公式を用いて 4 次多項式 f(x) を作り，
f ′(x) を計算する。考え方は，両側 1 点ずつの場合と同じで，また，すっきりした
計算で導くことが出来るのだが，書かれた証明を読むのは記号を追うだけで嫌にな
る。補題まで飛ばしてしまうことを勧める。

式がやたらに長くなることを避けるために，

Q(x) = (x− x−2)(x− x−1)(x− x0)(x− x1)(x− x2)

と置き，記号

Qj(x) =
Q(x)

x− xj

（を約分した 4 次式), j = −2,−1, 0, 1, 2

を用い，さらに，0 以外の j = −2,−1, 1, 2 に対して，

Q0,j(x) =
Q0(x)

x− xj

(
=

Q(x)

(x− x0)(x− xj)
を約分した 3 次式

)
とする。この記号が必要になるのは，Qj(x) の x0 での微分を計算するときで，例え
ばQ1(x) を例にとると
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1. Q1(x) =
Q(x)
x−x1

は，(x − x1) 以外の項の積 (x − x−2)(x − x−1)(x − x0)(x − x2)

なので，

2. 微分すると

Q′
1(x) = (x− x−1)(x− x0)(x− x2)

+ (x− x−2)(x− x0)(x− x2)

+ (x− x−2)(x− x−1)(x− x2)

+ (x− x−2)(x− x−1)(x− x0)

3. x に x0 を代入して零にならないのは x− x0 を含まない項だけなので，

Q′
1(x0) = (x0 − x−2)(x0 − x−1)(x0 − x2)

（つまり，Q′
1(x0) を計算するときには，微分は (x− x0) に作用すると見切って

計算して良い。）

4. これは，Q0(x) から x− x1 を取り除いた式Q0,1(x)に x0 を代入した形なので，

5. Q′
1(x0) = Q0,1(x0)

それでは，ラグランジュの補間公式で得られる 4 次関数に対して，微分 f ′(x0) を
計算しよう。ラグランジュ補間公式では

f(x) = a0Q0(x) + a−2Q−2(x) + a−1Q−1(x) + a1Q1(x) + a2Q2(x) (6.28)

であり，x0 での微分 f ′(x0)を，

1. Q′
0(x0)については，普通に４つの項の積の微分として計算し（多少めんどう），

2. その他の Q′
j(x0) (j ̸= 0) については，微分は (x− x0) に作用すると見切って

計算すると（こちらは簡単），

等式

f ′(x0) = a0 {Q0,−2(x0) +Q0,−1(x0) +Q0,1(x0) +Q0,2(x0)}
+ a−2Q0,−2(x0) + a−1Q0,−1(x0) + a1Q0,1(x0) + a2Q0,2(x0)

を得る。ラグランジュの補間公式での係数 a−2, a−1, a0, a1, a2 は

aj =
yj

Qj(xj)
, j = −2,−1, 0, 1, 2
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と求められるので，これを代入することにより，f ′(x0) の値が得られる。

これは煩雑な式になるのだが，x−2, x−1, x0, x1, x2 が等間隔で

x−2 = x0 − 2△, x−1 = x0 −△, x0, x1 = x0 +△, x1 = x0 + 2△ (6.29)

と与えられているときには，式は極めて簡単な形になる：

まず，記号Q0,j(x) の定義により

Q0,j(x0) =
Q0(x0)

x0 − xj

, j = −2,−1, 1, 2

なので，

a0 {Q0,−2(x0) +Q0,−1(x0) +Q0,1(x0) +Q0,2(x0)}

= a0Q0(x0)

{
1

x0 − x−2

+
1

x0 − x−1

+
1

x0 − x1

+
1

x0 − x2

}
= a0Q0(x0)

{
1

2
+

1

1
+

1

−1
+

1

−2

}
· 1

△
= 0 · · · · · ·最初の４つの項は消滅

次に，残りの 4 項 a−2Q0,−2(x0), a−1Q0,−1(x0), a1Q0,1(x0), a2Q0,2(x0) の値を求め
る：

ajQ0,j(x0) =
yj

Qj(xj)
· Q0(x0)

x0 − xj

,

Q0(x0) = (x0 − x−2)(x0 − x−1)(x0 − x1)(x0 − x2)

= 2 · 1 · (−1) · (−2) · △4 = 4△4

であり，まず，

Q0(x0)

x0 − x−2

=
4△4

2△
= 2△3

Q0(x0)

x0 − x−1

=
4△4

△
= 4△3

Q0(x0)

x0 − x1

=
4△4

−△
= −4△3

Q0(x0)

x0 − x2

=
4△4

−2△
= −2△3
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また，

Q−2(x−2) = (x−2 − x−1)(x−2 − x0)(x−2 − x1)(x−2 − x2)

= (−1) · (−2) · (−3) · (−4)△4 = 24△4

Q−1(x−1) = (x−1 − x−2)(x−1 − x0)(x−1 − x1)(x−1 − x2)

= 1 · (−1) · (−2) · (−3)△4 = −6△4

Q1(x1) = (x1 − x−2)(x1 − x−1)(x1 − x0)(x1 − x2)

= 3 · 2 · 1 · (−1)△ = −6△
Q2(x2) = (x2 − x−2)(x2 − x−1)(x2 − x0)(x2 − x1)

= 4 · 3 · 2 · 1△ = 24△4

補間公式にこれらの値を代入して，等式

f ′(x0) =

(
y−2

12
− 2y−1

3
+

2y1
3

− y2
12

)
· 1

△
(6.30)

を得る。

補題 2. 5 点 x−2, x−1, x0, x1, x2 が等しい間隔△ > 0 で並んでいるとする：

x−2 = x0 − 2△, x−1 = x0 −△, x0, x1 = x0 +△, x2 = x0 + 2△

また，y−2, y−1, y0, y1, y2 が与えられているとする。このとき，等式

f(xj) = yj, j = −2,−1, 0, 1, 2

を満たす 4 次関数の x = x0 における微分は

f ′(x0) =

(
y−2

12
− 2y−1

3
+

2y1
3

− y2
12

)
· 1

△

† ラグランジュの補間公式により等式を満たす 4次関数を見つけることが出来たのだ
が，その一意性は証明していなかった。これは，他にも等式を満たす 4 次関数 g(x)

が存在するならば，f(x)− g(x) は相異なる 5 個の解 x−2, x−1, x0, x1, x2 を持つ 4 次
以下の多項式となるが，その場合，因数定理により f(x) − g(x) は零多項式となる
ことからわかる。
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6.3.3 死力の近似式

近似式

x = 0, 1, 2, . . . に対しての値 ℓ0, ℓ1, ℓ2, . . . が与えられているとして（つまり，生命
表のデータが与えられているとして），x における死力を求める：

µx = − 1

ℓx

dℓx
dx

は，x を中心として左右 1 点ずつをとっての 2 次式による補間 (6.27) の微分として,

µx = − 1

ℓx

ℓx+1 − ℓx−1

2

= − 1

ℓx

(ℓx+1 − ℓx) + (ℓx − ℓx−1)

2

=
dx + dx−1

2

もしくは，左右 2 点ずつをとっての 4 次式による補間 (6.30) の微分として，

µx = − 1

ℓx

(
ℓx−2

12
− 2ℓx−1

3
+

2ℓx+1

3
− ℓx+2

12

)
=

−ℓx−2 + 8ℓx−1 − 8ℓx+1 + ℓx+2

12ℓx

=
−(ℓx−2 − ℓx−1) + 7(ℓx−1 − ℓx) + 7ℓx − {−(ℓx+2 − ℓx+1) + 7(ℓx+1 − ℓx) + 7ℓx}

12ℓx

=
−dx−2 + 7dx−1 − dx+1 + 7dx

12ℓx

なので，それぞれ近似式

µx ≒ −1

2
(dx−1 + dx) (6.31)

µx ≒ 1

12ℓx
(−dx−2 + 7dx−1 − dx+1 + 7dx) (6.32)

を得る。
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近似ということの意味

補間公式を用いた「近似」は，それを近似と考えれば良いだけのことなのだが，考
え始めると微妙な問題を含む（のだが無視しても良いので，すべて Remarkとした）。

Remark. ここでの「近似」ということの意味，また，「良い近似」ということの意
味は微妙である。

1. (6.31) は両側 1 点ずつのデータからの 2 次式による補間の微分

2. (6.32) は両側 2 点ずつのデータからの 4 次式による補間の微分

なのだが，これはあくまでも離散データの補間である。保険数学では，

ℓx は，整数値以外のデータが得られていなくても，実数値 x の関数とし
て存在している

と想定されているので，これらの補間を近似とみなしている。両側 1 点よりも 2 点
のデータを用いた方が良い近似であると考えるのが自然なので，(6.31)よりも (6.32)

の方が良い近似式になっていると考えるも当然である。

Remark. しかし，i(k) を i で近似する場合では，テーラー展開の誤差評価により
厳密な論拠を与えることが可能であり，また，i → 0 の極限という背景を持つ。そ
れに対して，ここでの補間の間隔は 1 に固定されているため，近似であることの評
価は難しい。例えば，ℓx がある点 x の近くで本当に 2 次関数で与えられているなら
ば，(6.31) は等式になり，(6.32) という近似式よりも良い近似式（であるどころか
等式）となる。したがって，両側 2 点の方が良い近似となることを論証するために
は，ℓx の関数形について制限を加える必要がある。だが，このような制限について
厳密な議論は，かなり困難である。おそらく，これらの補間から得られた µx を近似
として認める根拠，また，(6.31) よりも (6.32) の方が良い近似式であると判定する
根拠は，保険数学の実務に携わってきた長年の経験なのであろう。
サイエンス（ただし純粋数学を除く）は，多かれ少なかれ経験科学なのであり，こ
のような「経験に基づく判断」こそが「その分野の専門家」の専門家たる所以なの
であろう（数学屋にとっては残念なことなのだが）。したがって，例えばテキストの
近似式

dx ≒ ℓx+ 1
2
µx+ 1

2
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を補間公式や「・・・・・・にほぼ等しく」とか，「極めて小さいと見れば」という論拠で
導く論証は（近似式であることには異存はないのだが，論証として成り立っている
という根拠は），おそらく経験科学に属するのであり，数学屋にとってはお手上げ
である。したがって，論証に深入りはしない。

Remark. 安心できることは，試験では，このような経験の蓄積を持つ専門家の感
覚を要求することは，まずないだろう，ということであり，生命表や死力について
の「近似式」は結果のみ覚えておけば良さそう。

Remark. もう一つの厄介な問題は，例えば ℓ0, ℓ1, ℓ2, . . . から µ0 を求めようとし
たときに，x0 の左側の点が存在しないことである（両側 2 点を使おうとすると，µ1

でも困る）。これは，誕生すぐでの死亡率に関係するデリケートな問題を含むので，
テキストに任せることにする。

6.3.4 3 次関数による補間

離散データからその微分を求める近似式を得たので，次に，それらの微分を使っ
て，各区間での補間をつなぎ合わせる方法について説明する。これもラグランジュ
の補間公式の考え方に基づくのだが，変形版である。

補間

xL < xR での値 yL, yR と，そこでの微分の値 cL, cR が与えられているという設
定で，

f(xL) = yL, f(xR) = yR, f ′(xL) = cL, f
′(xR) = cR

を満たす３次関数 f(x) を求める。まず，

f(xL) = yL, f(xR) = yR

という条件だけならば，ラグランジュ補間公式により 1 次式の形

f(x) =
aL

xL − xR

· (x− xR) +
aR

xR − xL

· (x− xL),
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で求められる（ラグランジュが登場するまでもなく，高校数学の範囲）。この式に，
c を任意の実数として

c(x− xL)(x− xR)

という項を加えても，端点で値 yL, yR をとるという条件を損なうことはない。さら
に次数を高くして，

c(x− xL)(x− xR)
2

という項を考えると，

1. xRでの微分は0 （微分しても (x− xR)
2 が 2(x− xR) に変わるだけなので零 ）

2. xLでの微分はc(xL−xR)
2 （微分することにより (x− xL) という因子を消せる ）

となっている。また，c(x− xL)
2(x− xR) については，

1. xL での微分は 0　

2. xR での微分は c(xR − xL)
2

なので，

f(x) =
yL

xL − xR

· (x− xR) +
yR

xR − xL

· (x− xR)

+
cL

(xL − xR)2
· (x− xL)(x− xR)

2 +
cR

(xR − xL)2
· (x− xL)

2(x− xR)

と置くことにより，与えられた条件を満たす３次式を得る。

その定積分

このようにして，区間 [xL, xR] における

1. 端点での値が yL, yR

2. 端点での微分の値が cL, cR
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という条件を満たす補間を作ることができたのだが，実際に必要となるのは，この
関数の定積分∫ xR

xL

f(x)dx

なので，この値を計算しておく。最初に∫ xR

xL

(x− xL)
2(x− xR)dx

を部分積分を用いて計算する（一般論は，ベッセル関数の積分）：∫ xR

xL

(x− xL)
2(x− xR)dx =

[
(x− xL)

3

3
(x− xR)

]xR

xL

−
∫ xR

xL

(x− xL)
3

3
· 1dx

= 0−
∫ xR

xL

(x− xL)
3

3
dx

= −
[
(x− xL)

4

12

]xR

xL

= −(xR − xL)
4

12

同様に，部分積分を用いて計算すると∫ xR

xL

(x− xL)(x− xR)
2 =

(xL − xR)
4

12

となる。最初の２つの項は，定積分を用いて計算するか，もしくは，台形の面積と
して計算すると

(yL + yR)(xR − xL)

2

なので，定積分の値として∫ xR

xL

f(x)dx =
(yL + yR)(xR − xL)

2
+

cL − cR
12

(xR − xL)
2 (6.33)

を得る。

この等式は，

1. 第１項は 1 次式で補間した場合の積分であり，
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2. 第２項は，微分まで考慮した場合の補正項

と，完全に分離されているという点で，「幸せな形」をしている。
xm, xm+1, . . . , xm+n と，そこでの値 yj, 微分の値 cj が与えられているという設定
では，折れ線で近似した場合との積分の差は，第２項

n−1∑
j=m

cj − cj+1

12
(xj+1 − xj)

2

なのだが，xm, xm+1, . . . , xm+n が等間隔（xj+1 − xj = △ と置く）で与えられてい
て場合には，この近似式は「幸せの骨頂」に変容する。

n−1∑
j=m

cj − cj+1

12
· △2 =

cm − cm+n

12
· △2 (6.34)

であり，補正項には最初と最後の微分の値 cm と cm+n のみが関わる。

6.3.5 まとめ

以上をまとめると次のようになる：

1. xm < xm+1 < · · · < xm+n が等間隔で与えられているとして，xj+1 − xj を △
と置く。

2. xm, xm+1, · · · , xm+n での値 ym, ym+1, · · · , ym+n が与えられているとして，各
区間で線形な近似をして（つまり，折れ線で n+ 1 個の点 (xj, yj) を結んだグ
ラフの関数を f1(x) として），その積分を計算すると∫ xm+n

xm

f1(x)dx =
n−1∑
j=0

(ym+j+1 + ym+j)

2
· △ (6.35)

3. さらに，xm, xm+1, · · · , xm+n での微分値 cm, cm+1, · · · , cm+n が与えられている
として，各区間での両端での微分がこの値になるように 3 次関数 f3(x) で各区
間を補間すると（したがって，全体として微分可能な関数になる），積分の値
には

cm − cm+n

12
· △2 (6.36)

という補正項が加わる。
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4. cm, cm+1, . . . , cm+nの値が与えられているとするのではなく，ym, ym+1, · · · , ym+n

から近似値として計算する場合には，

(a) 両側 1 点ずつのデータから計算

cj =
yj+1 − yj−1

2△

(b) 両側 2 点ずつのデータから計算

cj =

(
yj−2

12
− 2yj−1

3
+

2yj+1

3
− yj+2

12

)
· 1

△2

とすれば良い。

ただし，両側 1 点ずつ，もしくは，両側 2 点ずつが選べなくなる端点では，工
夫が必要になる。

6.3.6 āx:n⌉ と ä
(k)
x:n⌉ の近似式

āx:n⌉ を近似

最初に，f(t) = vt tpx と置いて，

āx:n⌉ =

∫ n

0

f(t)dt

を äx:n⌉ で近似する近似式を作る。補間公式を用いるのだが，変数は x ではなく t と
していることに注意。

各区間 [j, j + 1] において，yL = f(j), yR = f(j + 1), cL = f ′(j), cR = f ′(j) とし
て端点のデータを与え，これを補間するように作った 3 次関数 f3(t)，つまり，

yL = f3(j), yR = f3(j + 1), cL = f ′
3(j), cR = f ′

3(j + 1)

を満たす３次関数を考え，近似式∫ j+1

j

f(t)dt ≒
∫ j+1

j

f3(t)dt

が成立していると考える。
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積分の値を与える公式 (6.33) は，変数を t として書き直すと∫ tR

tL

f3(t)dt =
(yL + yR)(tR − tL)

2
+

cL − cR
12

(tR − tL)
2 (6.37)

であり，ここでは

tL = j, tR = j + 1, yL = f(j), yR = f(j + 1), cL = f ′(j), cR = f ′(j + 1)

として公式を用いる。∫ j+1

j

f3(t)dt =
f(j) + f(j + 1)

2
+

f ′(j)− f ′(j + 1)

12
(6.38)

であり，∫ j+1

j

f3(t)dt− f(j) =
f(j + 1)− f(j)

2
+

f ′(j)− f ′(j + 1)

12
(6.39)

となるので，

āx:n⌉ − äx:n⌉ ≒
∫ n

0

f3(t)dt−
n−1∑
j=0

f(j)

=
n−1∑
j=0

(∫ j+1

j

f3(t)dt− f(j)

)

=
n−1∑
j=0

f(j + 1)− f(j)

2
−

n−1∑
j=0

f ′(j + 1)− f ′(j)

12

=
f(n)− f(0)

2
− f ′(n)− f ′(0)

12

という簡単な形の近似式が得られる。
f(0) = 1, f(n) = vn npx であり，

f ′(t) = −δ · vt tpx + vt(−tpx µx+t)

であることから，

f ′(0) = −δ − µx, f ′(n) = −δ · vn npx − vn(npx µx+n)

なので，この値を代入して

āx:n⌉ − äx:n⌉ ≒ vn · npx − 1

2
− −(δ + µx+n) · vn · npx + (δ + µx)

12
(6.40)
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を得る。

Remark. f ′(j) の値−tpx · µx+t は与えられているとして近似式を作ったが，これ
も「両側 1 点ずつ」，もしくは「両側 2 点ずつ」を用いて ℓx+j のデータから（近似
値として）作っても良い。

ä
(k)
x:n⌉ を近似

次に，ä
(k)
x:n⌉ の近似式を作る。

最初に，与えられたデータ yL, yR, cL, cR に対して

f3(tL) = yL, f3(tR) = yR, f
′
3(tL) = cL, f

′
3(tR) = cR

を満たす 3 次関数は１つしか存在しない。

† これは自明ではなく，厳密には証明が必要。他にもこの条件を満たす 3次関数 g3(t)

が存在するならば，h3(t) = f3(t)− g3(t) と置くと

h3(tL) = 0, h3(tR) = 0, h′
3(tL) = 0, h′

3(tR) = 0

となるのだが，これは h(t) が恒等的に零でないかぎりあり得ないことを証明すれば
良い。代数的な手段で証明することが望ましいのだが，簡単なのは，

1. h3(tL) = h3(tR) なので，tL と tR の間にもう一つ h′(t) = 0 となる t が存在
する。

2. h′(tL) = h′(tR) = 0 なので，方程式 h′(t) = 0 の解は 3 個以上存在することに
なるが，

3. h′(t) の次数は 2 以下なので，h′(t) のすべての係数が 0 でない限り解の項数は
2 以下のはず。

4. したがって，h(t) は定数となるのだが，h(tL) = 0 なのでこの定数は 0

とすることであろう。

特に，f(t)が3次関数ならば，定義域に含まれる区間 [tL, tR]でf(tL), f(tR), f
′(tL), f

′(tR)

から作った３次関数は，この区間で f(t) と一致する。
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以上を念頭に置いて，ä
(k)
x:n⌉ の近似式を作る。

各区間 [ j
k
, j+1

k
] において，3 次関数 f3(t) を以下のように作る。

1. f(0), f(1), f(2), . . . , f(n) の値，及び，f ′(0), f ′(1), f ′(2), . . . , f ′(n) の値が与え
られているとする。

2. 各区間 [j, j + 1], j = 0, 1, 2, . . . , n− 1 において，f(j), f(j + 1), f ′(j), f ′(j + 1)

を用いて 3 次関数 f3(t) を作る。

3. この 3 次関数 f3(t) を k等分された各区間 [ j
k
, j+1

k
], j = 0, 1, 2, . . . , nk − 1 に

制限してた関数を，その区間での 3 次関数 f
(k)
3 (t) とする。

f
(k)
3 (t) は，また，区間 [ j

k
, j+1

k
] において

yL = f3(
j

k
), yR = f3(

j + 1

k
), cL = f ′

3(
j

k
), cR = f ′

3(
j + 1

k
)

として作った 3 次関数でもあるので，∫ j+1
k

j
k

f (k)(t)dt− f(
j

k
) · 1

k
=

f( j+1
k
)− f( j

k
)

2k
−

f ′( j+1
k
)− f ′( j

k
)

12k2

であり，j = 0 から j = nk − 1 までの総和をとると，f3(t) = f (k)(t) なので∫ n

0

f3(t)dt−
nk−1∑
j=0

f(
j

k
) =

f(n)− f(0)

2k
− f ′(n)− f ′(n)

12k2

となる。j = 0, 1, 2, . . . , n− 1 との違いは分母の 2 が 2k に，12 が 12k2 に変わって
いるだけであり，近似式

āx:n⌉ − ä
(k)
x:n⌉ ≒ vn · npx − 1

2k
− −(δ + µx+n) · vn · npx + (δ + µx)

12k − 2

を得る。また，近似式 (6.40) との差をとって

ä
(k)
x:n⌉ − äx:n⌉ ≒ k − 1

2k
· (vn · npx − 1)

− k2 − 1

12k2
{−(δ + µx+n) · vn · npx + (δ + µx)} (6.41)

を得る。
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簡易版

使いやすさを考えると，この近似式は少し精密すぎるのであり，k2−1
12k2

を係数とす
る項を捨てて

ä
(k)
x:n⌉ ≒ äx:n⌉ −

k − 1

2k
(1− vn · npx)

とした（大雑把な）近似式の方が使いやすい：

1− vn · npx = 1− A
x:

1
n⌉

= 1− Ax:n⌉ + A1
x:n⌉

= d äx:n⌉ + P1
x:n⌉

· äx:n⌉

であることを利用すると，

ä
(k)
x:n⌉ ≒ äx:n⌉

(
1− k − 1

2k
(d+ P1

x:n⌉
)

)
(6.42)

を得る。
この近似式は，既に「時間平均で置き換える」という大胆なアイデアで得た近似
式 (6.19)

A
(k)
1
x:n⌉

≒
(
1 +

k − 1

2k
i

)
A1

x:n⌉
(6.43)

との相性が良く，(k) を 1, k, ∞ （つまり，k → ∞） とすることにより，

1. 分子は A1
x:n⌉

,A
(k)
1
x:n⌉

, Ā1
x:n⌉
のうちのどれか

2. 分母は äx:n⌉, ä
(k)
x:n⌉, āx:n⌉ のどれか

という 9 通りの選択をした式を，Px:n⌉ で表す近似式を簡単に作ることができる。

† (6.42) 式も，各期での支払いの遅れの時間平均を使って（さらに単利で置き換え
て）作ることもでき，ここでも，k−1

2k
は時間平均としての意味を持つ。

6.3.7 その他の近似式

中点で近似

近似式∫ 1

0

f(t)g(t) dt ≒ f(1/2)

∫ 1

0

g(t) dt
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は，テキストにあるように，0, 1/2, 1 での値を使った 2 次関数による補間として導
くことが出来る。テキストの導出では，F (t) = f(t)− 1

2
が 1/2 で符号を変えること

を利用していないのだが，実は，F ′(1/2) = 0 であることも組み込んで 3 次関数に
よる補間を用いても，結果は変わらない（のだが，余計な議論を避けるために触れ
ていないのだと思う）。なお，2 次関数で補間するのではなく折れ線で補間しても近
似式を導くことが出来るが，その場合には，誤差評価の係数 1/6 が 1/4 になり，近
似としての精度は多少粗くなる。

† この近似式は，µx が年齢に依らず一定となっている場合には，等式になる。

同様に，近似式

dx ≒ ℓx+ 1
2
· µx+ 1

2

も，2 次関数でなく折れ線で補間して導くことが出来るが，この場合にも誤差の係
数は 1/6 ではなく 1/4 になる。

Remark. おそらく，実際のデータにこの近似式を当てはめると，近似の誤差は，こ
こでの評価よりもずっと良いのだろう。数学屋としての立場から言うと，これらの
近似式は

中央の値で置き換えるのが妥当と思える

という荒っぽい考え方で導いたものと見なして，

近似式の妥当性は専門家の経験により保証されている

として片付けた方が気持ちが良い。

qA∗
x と qAx の近似式

１年間の間で，

1. 確率 qA∗
x で脱退を発生させるメカニズムA と，

2. 確率 qB∗
x で脱退を発生させるメカニズムB
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があって，脱退はA かB いずれかのメカニズムに依るとする（病気退社なども考え
て，死亡とは言わず，一般的な用語「脱退」を用いている）。それぞれの脱退は，そ
の年度のある瞬間で発生するのだが，A による脱退がB による（発生するはずだっ
た）脱退よりも早く発生するならば，B による（発生するはずだった）脱退は，現
実には発生しない。したがって，内部的なメカニズムとしての確率 qA∗

x , qB∗
x とは別

に，実際に観察される脱退の確率として qAx , q
B
x を考える必要がある。大抵の場合，

qA∗
x , qB∗

x の値は小さいので，その両者が発生する確率 qA∗
x · qB∗

x はさらに小さいと考
えられるが，∗ の付く確率と ∗ なしの確率の違いを考えるためには，qA∗

x · qB∗
x 程度

の大きさまでは，考慮に入れる必要がある。
これを評価するためには，

A とB の両者が共に発生する場合に，どちらが早く発生するのか

という問題を考えなければならないのだが，それらのメカニズムについての追加の
情報が与えられない限り，手の付けようがない。例えば（年度は１月１日から始ま
るとして），A が餅のようなものを原因とし，B が海の事故のようなものを原因と
するならば，A の方が早く発生しそう。しかし，そのような片寄りがありそうも無
いならば，

どちらが早いかは五分五分

と仮定してしまうのも，ひとつの考え方である。その場合，

qAx ≒ qA∗
x − 1

2
· qA∗

x · qB∗
x

qBx ≒ qB∗
x − 1

2
· qA∗

x · qB∗
x

という近似式を得る。

脱退理由が２つでなく，A,B,C の３つの場合にも一般化はできるし，また，それ
以上の個数でも似たようなものであり，後は，簡単な確率の問題に過ぎない。

注意が必要な点は，

qA∗
x ≒ qAx +

1

2
· qAx · qBx

qB∗
x ≒ qBx +

1

2
· qAx · qBx

は間違いではないということだろう：

qAx ≒ qA∗
x − 1

2
· qA∗

x · qB∗
x
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を移項した式は

qA∗
x ≒ qAx +

1

2
· qA∗

x · qB∗
x

なのだが，右辺第２項は

小さい数 × 小さい数

なので，それらの「小さい数」qA∗
x , qB∗

x を qAx , q
B
x に置き換えて発生する誤差は

小さい数の誤差 × 小さい数の誤差

という，大体「小さい数の 4 乗」位の「すごく小さい数」なので無視して良い，と
言う理屈である。

一般に，qAx , q
B
x , q

A∗
x , qB∗

x のうちの２つの積の形の項は，∗を付けたり外したり，勝
手に変えてしまっても近似式として成り立つ。
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第7章 不等式

7.1 不等式の数学

7.1.1 不等式というもの

不等式についての専門書

不等式をテーマとする専門書は，極めて少ない。おそらく，理由は「統一的な理
論が構築できない」ということだと思う。それどころか，不等式のなかには，何ら
かの探求の結果として得られたのではなく，副作用として偶然見つかったものも多
くあり，また，証明をしてみたところで，「なぜその不等式が成立するのか」という
納得には繋がらないものも多い。したがって，代数や解析と違って，多少の時間を
割いて「不等式一般」の実力を付けるための勉強をしてみたところで，効果は少な
い。保険数学の勉強をして不等式に悩まされたとしても，保険数学に登場する以外
の不等式までは手を伸ばさないこと。

試験と不等式

保険数学に登場する不等式に限定しても，各種様々であり，簡単に分かるものも
あれば，また，出題された不等式について熟慮したところで，証明に辿り着くとは
限らないものも含まれる。極端なことをいうと，不等式についての設問は，少し考
えて答えが分からないときには，速やかに放棄した方がロスタイムが少ない。
また，勉強をするときにも，少し考えて（もしくは，ほとんど考えなくても）分
かる不等式は押さえておくべきなのだが，難しいものを深追いすることは，試験対
策としての時間効率は，かなり悪いと思う。
それにも関わらず，以下で重み付き平均に関連した不等式について述べる。これ
は難しいと言えば難しいのだが，不等式としては比較的まとまりがあるので，目を
通しておく価値はあると思う。
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7.2 重み付き平均の不等式

7.2.1 重み付き平均の数学

数学としてのまとまりがある一連の不等式として，重み付き平均の不等式がある
ので，それらについて述べる。

定義と簡単な結果

α1, · · · , αn は

αj ≥ 0 (j = 1, 2, · · · , n), α1 + α2 + · · ·+ αn > 0

をみたす n個の実数とする．n個の実数 x1, · · · , xn に対して，

α1x1 + · · ·+ αnxn

α1 + · · ·+ αn

を，

x1, · · · , xn の，重みを α1, · · · , αn とする重み付き平均

という．
c > 0 に対して，重みを α1, · · · , αn とする重み付き平均と，重みを cα1, · · · , cαn

とする重み付き平均は等しい．
したがって，一般に重みとして α1 + · · · + αn = 1 をみたす重みを考えることに
なる．
特に断らない限り，α1, · · · , αn と β1, · · · , βn は α1+· · ·+αn = 1, β1+· · ·+βn = 1

をみたす重みとする．
x1, · · · , xn の最大値を xmax, 最小値を xmin とすると，

xmin ≤ α1x1 + · · ·+ αnxn ≤ xmax

命題と補題

命題 1. α1, · · · , αn と β1, · · · , βn は

t∑
j=1

αj ≥
t∑

j=1

βj (t = 1, 2, · · · , n)
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をみたす和が 1の重みとする．このとき，

x1 ≥ x2 ≥ · · · ≥ xn

をみたす数列 x1, · · · , xn に対して，

n∑
j=1

αjxj ≥
n∑

j=1

βjxj

が成り立つ．

補題 3. α1, · · · , αn と β1, · · · , βn （ただし，βj はすべて正とする）は

α1

β1

≥ α2

β2

≥ · · · ≥ αn−1

βn−1

≥ αn

βn

をみたす和が 1の重みとする．このとき，α1, · · · , αn と βn, · · · , βn は

t∑
j=1

αj ≥
t∑

j=1

βj (t = 1, 2, · · · , n)

をみたす．

命題 2. α1, · · · , αn と β1, · · · , βn （ただし，βj はすべて正とする）は

α1

β1

≥ α2

β2

≥ · · · ≥ αn−1

βn−1

≥ αn

βn

をみたす和が 1の重みとする．このとき

x1 ≥ x2 ≥ · · · ≥ xn

をみたす数列 x1, · · · , xn に対して，

n∑
j=1

αjxj ≥
n∑

j=1

βjxj

が成り立つ．
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系 1. α1, α2, . . . , αn は

α1 ≥ α2 ≥ · · · ≥ αn−1 ≥ αn

を満たす和が 1 の重みとする．このとき，

x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ xn

を満たす数列 x1, x2, . . . , xn−1, xn に対して

n∑
j=1

αjxj ≥
1

n

n∑
j=1

xj

まず，補題 4 の不等式は，「考えれば分かる」タイプの不等式であり，証明の記述
は色々なやり方があるにしても，証明すること自体は簡単。

補題 4 の証明

G(t) =
t∑

j=0

αj, H(t) =
t∑

j=0

βj, cj =
αj

βj
と置く。このとき，仮定により c1 ≥ c2 ≥

· · · ≥ cn であり，また，G(n) = H(n).

G(t) < H(t) となる t, 1 ≤ t ≤ n, が存在すると仮定して，背理法で証明する。
まず，ct ≥ 1ならば，j = 1, 2, . . . , tについても cj ≥ 1であり，G(t) =

∑t
j=1 cjbj ≥∑t

j=1 bj = H(t) となり背理法の仮定に反する。したがって，t において ct < 1。し
かし，この場合，cj < 1, j = t + 1, . . . , n であり，

∑n
j=t aj <

∑n
j=t bj となるが，

G(n) = G(t) +
∑n

j=t+1 aj < H(t) +
∑n

j=t+1 bj = H(n) となり，G(n) = H(n) とい
う仮定の反する。よって，G(t) < H(t) となる t は存在せず，G(t) ≥ H(t),≤ t =

1, 2, . . . , n。

命題 2は命題 2と補題から直ちに得られるので，核心部分は命題 1の証明である。
まず，部分和についての一般論を述べ，その応用として命題 1 を証明する。

† 命題 1 も，最後に同着となるレースを考えて直感的に導くことが可能なので（可
能に思えるので，と言うべきか），「考えれば分かる」と言ってしまうこともできそう
だが，その直感を「証明」と言うに値する様式で記述するのは，かなり難しい（ま
た，この手の「直感」は間違いやすい）。
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部分和

命題 1 の連続モデル版の証明は，部分積分をするだけで簡単に得られる：

［命題 1. の連続モデル版］
g(t), h(t) は条件∫ 1

0

g(s)ds =

∫ 1

0

h(s)ds = 1,

∫ t

0

g(s)ds ≥
∫ t

0

h(s)ds (for any 0 ≤ t ≤ 1 )

を満たし，f(t) は 0 ≤ t ≤ 1 で単調減少であるとする。このとき，∫ n

0

f(s)g(s)ds ≥
∫ n

0

f(x)h(s)ds

証明 G(t) =
∫ t

0
g(s)ds, H(t) =

∫ t

0
f(s)h(s)ds と置くと∫ n

0

f(s)g(s)ds = [f(s)G(s)]n0 −
∫ n

0

f ′(s)G(s)ds

= f(n)G(n)− f(0) · 0−
∫ n

0

f ′(s)G(s)ds

= f(n)G(n)−
∫ n

0

f ′(s)G(s)ds （であり，同様に）∫ n

0

f(s)h(s)ds = f(n)H(n)−
∫ n

0

f ′(s)H(s)ds

となるが，G(n) = H(n), G(t) ≥ H(t), f ′(t) ≤ 0 なので，∫ n

0

f(s)g(s)ds ≥
∫ n

0

f(s)h(s)

要するに，部分積分をするだけのことなので，t = 0, 1, 2, . . . , n と離散的な値をと
る場合にも「離散版の部分積分」（これは部分和と呼ばれる）を開発しておけば良さ
そうである。ただし，離散の場合には端点の処理がなにかと面倒。
このケースでは，f(j), g(j) が j = 1, 2, . . . , n に対して定義されているとして，

G(j) = g(1) + g(2) + · · ·+ g(j), j = 1, 2, . . . , n, G(0) = 0

として

f(j)G(j − 1), j = 1, 2, . . . , n

を考えるとうまく行く。
部分和では，
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微分という演算の代わりに，j + 1 での値と j での値の差（差分）

を考える。
まず，f(j)G(j − 1) の差分は

f(j+1)G(j)− f(j)G(j− 1) = {f(j + 1)− f(j)}G(j)+ f(j) {G(j)−G(j − 1)}

であり，これが「積の微分の公式」に対応する。両辺の和を j = 1 から n− 1 まで
とると

f(n)G(n− 1)− f(1)G(0) =
n−1∑
j=1

{f(j + 1)− f(j)}G(j) +
n−1∑
j=1

f(j)g(j)

となるので，左辺と右辺第２項に f(n)g(n) を加え，G(0) = 0 であることを使って
式の形を整えると

f(n)G(n) =
n−1∑
j=1

{f(j + 1)− f(j)}G(j) +
n∑

j=1

f(j)g(j)

であり，部分和の公式

n∑
j=1

f(j)g(j) = f(n)G(n)−
n−1∑
j=1

{f(j + 1)− f(j)}G(j)

を得る。同じく

n∑
j=1

f(j)h(j) = f(n)H(n)−
n−1∑
j=1

{f(j + 1)− f(j)}H(j)

なので，g(j) = αj, h(j) = βj, f(j) = xj として G(n) = H(n), G(j) ≥ H(j),

f(j + 1) ≤ f(j) であることを用いて，命題 1 が証明される。

† 命題 1 は証明から分かるように，重み付き平均としての条件 xj ≥ 0を要請しな
くても成立する。

† 部分和という発想は使い路が多いので，部分和の一般論から不等式を導いたのだ
が，結果としての式変形を「納得」するためには，n を具体的な数（大きすぎると
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式が長くなり，短すぎてもパターンが分からないので n = 4 程度がお勧め）として，
徐々に式を変形していった方がわかりやすい：

f(1)g(1) + f(2)g(2) + f(3)g(3) + f(4)g(4)

= {f(1)− f(2)} g(1)
+ f(2) {g(1) + g(2)}+ f(3)g(3) + f(4)g(4)

= {f(1)− f(2)}G(1) + {f(2)− f(3)} {g(1) + g(2)}
+ f(3) {g(1) + g(2) + g(3)}+ f(4)g(4)

= {f(1)− f(2)}G(1) + {f(2)− f(3)}G(2) + {f(3)− f(4)} {g(1) + g(2) + g(3)}
+ f(4) {g(1) + g(2) + g(3) + g(4)}
= {f(1)− f(2)}G(1) + {f(2)− f(3)}G(2) + {f(3)− f(4)}G(3)

+ f(4)G(4)

この手の式変形では，途中を “· · · ” として省略すると，最後の項を間違いやすい。
式変形を書き切る気になる程度のn を選ぶこと。最後まで式変形を終えた後ならば，
n = 4 を一般の n に書き換えても，間違いは生じない（と期待できる）：

n∑
j=1

f(j)g(g) = f(n)G(n)−
n−1∑
j=1

(f(j + 1)− f(j))G(j)

しかし，このような変形で証明を記述する場合には，「例えば n = 4 とすると」で
は答案にならないので，n は n のままで，“· · · ” を多用せざるを得ない。

命題 2 の応用

年金数理で財政方式を比較するときに必要になる不等式を，命題 2 を用いて導い
ておこう。この辺りの数学は，結構難しい（証明を読めば簡単なのだが，自分で考
えると難しいタイプ）。不等式の問題は，少し考えてわからなかったら速やかに放棄
するのが得策と，実感させられる。
最初に，補題を証明しておく。

補題 4. x > 0 ならば，

(1 + x−1 + · · ·+ x−n+1 + x−n)(1 + x+ · · ·+ xn−1 + xn) ≥ n2
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証明

(1 + x−1 + · · ·+ x−n+1 + x−n)(1 + x+ · · ·+ xn−1 + xn)

=
1

xn
(xn + xn−1 + · · ·+ x+ 1)(1 + x+ · · ·+ xn−1 + xn)

=
1

xn
(1 + x+ · · ·+ xn−1 + xn)2

=
1

4xn

{
(1 + xn) + (x+ xn−1) + · · ·+ (xn−1 + x) + (xn + 1)

}2
ここで，各項に相加相乗平均の不等式を用いて

1

4xn

{
(1 + xn) + (x+ xn−1) + · · ·+ (xn−1 + x) + (xn + 1)

}2
≥ 1

4xn

{
2
√
xn + 2

√
xn + · · ·+ 2

√
xn + 2

√
xn
}2

=
1

4xn
(2n

√
xn)2 = n2

命題 3. 0 < x < 1, α0 ≥ α1 ≥ · · ·αn−1,
∑n−1

j=0 αj = 1 ならば，

(1 + x−1 + x−2 + · · ·+ xn−1)(α0 + α1x+ α2x
2 + · · ·+ αn−1x

n−1) > n

証明
βj =

1
n
, j = 0, 1, 2, . . . , n− 1 と置く。1 ≥ x ≥ x2 ≥ · · · ≥ xn−1 なので，命題 2 に

より

α0 + α1x+ α2x
2 + · · ·+ αn−1x

n−1 ≥ 1

n
(1 + x+ x2 + · · ·+ xn−1)

また，補題 4により，

(1 + x−1 + x−2 + · · ·+ xn−1)(1 + x+ x2 + · · ·+ xn−1) > n2

よって，

(1 + x−1 + x−2 + · · ·+ xn−1)(α0 + α1x+ α2x
2 + · · ·+ αn−1x

n−1)

≥ (1 + x−1 + x−2 + · · ·+ xn−1) · 1
n
(1 + x+ x2 + · · ·+ xn−1)

>
1

n
· n2 = n

† 補題で相加相乗平均の不等式を用いているが，x ̸= x−1 なので等号は成立しない。
したがって，“≥” を “>” に変えることができる。
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第8章 年金数理

8.1 極限方程式

8.1.1 前提

収支相等の原則

1. 時間は，t = 0, 1, 2, . . . と離散的なものとして扱う。

2. 企業と，年金基金と，年金受給者の集団という三者を考える。

3. [t, t+ 1] 期の期初での基金の残高を Ft とする。

4. 期初に基金の残高を評価した直後に

(a) 企業から保険料Ct が納付され

(b) 年金受給者の集団に年金Bt を支払う

（すべて総額で考えていることに注意）

5. この時点で，基金の残高は

Ft + Ct −Bt

6. 基金を 1 年間運用した結果，

7. [t+ 1, t+ 2] 期の期初における基金の残高 Ft+1 は

Ft+1 = (1 + i)(Ft + Ct −Bt)

となる。
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こうして，Ft の漸化式

Ft+1 = (1 + i)(Ft + Ct −Bt) (8.1)

を得る。この漸化式が，年金数理における収支相等の原則を意味する。集団に対して
の収支相等であって，各個人についての収支相等までは要求していないことに注意。

制度発足時点

数列Bj, Cj, Fj の添え字となる時間 t の t = 0 は，年金制度の発足時点を意味す
る。この「制度発足時点」というものが，年金数理を難しくしている要因のひとつ
である。主な問題は，制度発足時点での既退職者や，退職年齢に近い社員に対して
年金を支給するか否か，また，支給する場合には全額を支給するのかという問題で
あり，これが，個人単位での収支相等が成立しない可能性に繋がる。
また，保険数学では，同時期に契約した契約者集団を考えることにより，定常的
状態での閉集団を考えるだけで済んだのだが（したがって，契約開始時点を t = 0と
すれば良かったのだが），年金数理では，制度発足時点という「歴史的時間の t = 0」
が関係するために，発足時点からの過渡現象という問題が落ち着くまでは，定常状
態とは異なった問題を解析しなければならない。それには過渡現象をどのようにし
て落ち着かせるか（収束させるか）というも制度設計に含まれ，さらに，予測との
ずれが生じた場合にどのように軌道修正をするか（修正が可能なのか）も，制度設
計に含まれる。この「予測からのずれの修正」という問題まで来ると，もはや年金
数理は数学の枠組みには留まらない（のであまり触れないことにする）。一方，予想
からのずれを想定せずに過渡現象だけを問題にするならば（つまり収束の議論だけ
ならば），数学の枠組みに収まるので，そこまでは扱う。

Remark. 経過時間というよりは歴史的時間（制度発足時点からの経過時間など）
を意識しているときには，時間は t ではなく τ を用いる。例えば，

τ における ℓ′x 人の t 年後の人数は ℓ′x ·
ℓx+t

ℓx

といった使い分けをするが，雰囲気の問題だけなので，気にしなくて良い。

過渡現象の問題に立ち入る前に，過渡現象が終わった後の目標（つまり収束した
先の値）の分類を行う。

まず，「収束した先の値」という意味を明確にしておく必要がある。大前提は，

218



年金制度の財政方式は，Bj, Cj, Fj が一定の値に収束する（と期待でき
る）ように設計されている

ということである。Bj, Cj, Fj と同列に述べたが，実際には，最初に

Bj が一定の値になる

ということが確定している。これから考える財政方式では，制度発足 τ = 0 からあ
る程度の時間（最長でも，制度発足時点での新入社員が退職するまでの時間）が経
過した τ = τ0 以降では

Bτ0 = Bτ0+1 = Bτ0+2 = · · ·

となる。この値をB と置くことにする（B の値の意味については，後で述べる）。

8.1.2 極限方程式

制度発足から十分な時間 τ0 が経過すると Bj = B, j = τ0, τ0 + 1, . . . となるの
で，漸化式 (8.1) は

Fj+1 = (1 + i)(Fj + Cj −B) j = τ0, τ0 + 1, . . . (8.2)

となる。したがって，財政方式により数列 {Cj}，もしくは，数列 {Fj} の一方を決
めると，もう一方は，この漸化式により決まる。

数列 Fj を決める場合

これらの数列が収束するように制度を設計するので，τ1 ≥ τ0 経過後には Fj = F

と一定値になるとしてみよう（F に収束するとしても良い）。このとき

F = (1 + i)(F + Cj −B)

となるので，Cj も一定値Cj = C になり，F,C,B の間に等式

F = (1 + i)(F + C −B)

が成り立つ。
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数列Cj を決める場合

次に，τ2 ≥ τ0 経過後に Cj = C と一定値になるとしてみよう。この場合，漸化
式は

Fj+1 = (1 + i)(Fj + C −B), j = τ2, τ2 + 1, . . .

となる。したがって，Fj については，この漸化式から決まる数列としか言えないの
だが，ここで，

Fτ2+1 ̸= Fτ2

であると仮定してみよう。
このとき，K = (1 + i)(C −B) と置くと

Fj+1 = (1 + i)Fj +K

Fj+2 = (1 + i)Fj+1 +K

なので，差をとると

Fj+2 − Fj+1 = (1 + i)(Fj+1 − Fj)

であり，

Fτ2+n+1 − Fτ2+n = (1 + i)n · (Fτ2+1 − Fτ2)

となる。したがって，

Fτ2+1 < Fτ2 ならば，Fj は−∞ に発散し，年金財政は破綻する。

Fτ2+1 > Fτ2 ならば，Fj は+∞ に発散し，保険料は過剰徴収。

逆に言えば，まともな財政方式ならばCj が一定になった時点でFj も一定になるよ
うに設計されているはずである。

極限方程式

以上により，Cj, Fj はそれぞれ，なんらかの値C, F に収束し，C, F , B は

F = (1 + i)(F + C −B)

を満たす必要がある。この等式，もしくは，これと同値な等式

dF = B − C (8.3)

を極限方程式 と言う。
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8.2 表の計算

8.2.1 前提と記号

基本的な記号（テキストで使用）

（新入社員の）入社年齢を xe, 定年年齢を xT として，社員は全員 xe 歳で入社し
xr 歳で退社するとしている。途中入社は想定しない。また，途中退職に対しての給
付は考えない（退職時点での給付は年金財政から切り離し，将来の給付，例えば退
職年齢に達してからの給付は，ここでは想定しない）。（新入社員の）入社年齢 xe を
加入年齢，定年年齢 xr を退職年齢と言うことにする。

退職後の（普通の生命表としての）生命表を ℓx, x = xr, xr +1, . . . , ω とし, 在職
者の x 歳の人数としての生命表も同じ記号 ℓx, x = xe, xe + 1, . . . , xr − 1 で表す。

Remark. テキストでは在職者についての記号は ℓ(T ) としてるが，ここでは途中
退職への給付や途中入社を考慮していないので，添え字 (T ) は（面倒なので）省略
した。

定常状態という前提

在職者，既退職者を問わず，ℓx の意味は生命表と言うよりは，

τ 時点における x 歳の人数

であり，ものごとが想定通りに進まない場合は（むしろ，実際には想定通りに進ま
ない方が普通），τ 時点における x 歳の人数は ℓ′x となる。それでも，τ 時点におい
て将来の予想を立てる際には，τ + 1 時点での x+ 1 歳の人数は

ℓ′x ·
ℓx+1

ℓx

であると想定することになる。つまり，右辺の ℓx は「想定された人数分布」であり
現実には誤差が生じること覚悟しているのだが，ℓx から計算される生存確率

tpx =
ℓx+1

ℓx

は，依然として将来を予測するための基礎データとして，変更なしに使われる。

Remark. 記号が煩雑に煩雑になることを厭わないならば，

221



1. ℓx は，tpx = ℓx+t

ℓx
として生存確率 tpx を求めるための生命表

2. τ 時点における人数分布は，例えば ℓ(x, τ) のような２変数の記号で表す

3. したがって，ℓ(x, τ) の集団は，t 年後には ℓ(x+ t, τ + t) になる

とすれば良いのだが，面倒（なので採用しない）。しかし，死差益の分析等を考える
段階で混乱しそうなときは，このような面倒くさい記号も悪くないかも知れない。

Remark. 財政方式の分類をするときには，ものごとは想定通りに進むとしてい
る。また，新入社員の人数も毎年一定であり，在職者・既退職者の年齢分布は生命表
としての ℓx と一致する定常状態にあると仮定する（ので，面倒くさい記号は不要）。

時間を離散的に扱っているために，現実の世の中と異なる妙な状況も生じている：

年齢は，一種の「その企業での年齢」であり，τ = 0, 1, 2, . . . の瞬間に，
１歳年をとる。

また，入社の瞬間や退職の瞬間に在職しているのかを決めてしまう必要があるので

1. 退職の瞬間には，既に既退職者となっているとする

2. 入社の瞬間には，既に在職中であるとする。

したがって，xr 歳の集団にもその年度の年金を支給し，また，xe 歳の新入社員も在
職者として保険料納付対象の人数に含められることになる。言い換えると，連続時
間の世界での在職年齢は [xe, xr) という区間ということになる。

8.2.2 給付現価

年齢と時間の表

在職者と既退職者の集団の，時間的推移を追うために，年齢と時間（制度発足時
点からの経過年数 τ，もしくは，西暦）を縦横の軸にとっての人数の表を意識して
おく。現在価値を求めやすいように，横軸を t 進むに従って vt を乗じておく。
ある時間 τ における年齢 x 歳の集団は，1 年後の τ + 1 には x+ 1 歳になるので，
この集団は表を右斜め上に向かって進むことになる。次のページに，加入年齢（こ
こでは新入社員として入社する年齢）と退職年齢の差を 5 年，退職してから ω 歳ま
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表 8.1:

...

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

xe は加入年齢．　 xr は退職年齢．
ここでは，xr = xe + 5 としている．　また，xω = xr + 4 と考えて良い．
ℓ
(T )
x は　 ℓx と表記．
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

での年数を 4 とかなり小さくとってはいるが（だからこそ省略なしに書き込める），
模式的な表を載せておいた。さすがにテキストでは xr = xe + 5 とするわけにはい
かないので連続的な図（つまり境界を線分とする図）が載っているのだが，離散的
なモデルでは常に「境界はどちらの領域に属するのか」が大きな違いとなる。境界
を意識するためには，模式的な図の方がわかりやすいと思う。
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斜め上に向かうベクトル

x 歳の集団は，1 年後には x + 1 になるので，表を右斜めに進む。この集団に対
しての給付現価（退職後に支給される年額 1 の期始払い生命年金）を定めるために，
以下の記号を用意する：

定義 2.

S(x)
def
=


∑
j=0

vj ℓx+j (xr ≤ x)∑
j=xr−x

vj ℓx+j (xe ≤ x ≤ xr − 1)

σ(x)
def
=

S(x)

ℓx
, (xe ≤ x)

† x 歳の在職者 ℓx 人については，xr − x 年後に xr 歳になって初めて支給が開始さ
れるので（そのときの人数は，定常状態という仮定により ℓx ·

ℓx+(xr−x)

ℓx
= ℓxr 人），

現在価値は

S(x) = vxr−x · ℓxr + vxr−x+1 · ℓxr+1 + vxr−x+2 · ℓxr+2 + · · ·

となっている。S(x) は集団に対しての総額であり，σ(x) は１人あたりの現在価値。

†† 在職者の S(x) において総和に含まれない部分

G(x)
def
=

xr−x−1∑
j=0

vj ℓx+j

については，後で人数現価として考察する。

等式（easy）：

S(x) = vxr−x · S(xr) (xe ≤ x ≤ xr − 1)

σ(x) =
Dxr

Dx

· σ(xr) (xe ≤ x ≤ xr − 1)

次の記号は，定年まで j 年の在職者（したがって x = xr − j 歳）についてのS(x)

を j で書き換えたものに過ぎない。なお，j = 0 のときには既に退職者なのだが，こ
の場合も，この記号で書いて良いとしている。
N = xr − xe と置く（表ではN = 5）。
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定義 3.

S[j]xr

def
= S(xr − j) (0 ≤ j ≤ N)

等式（easy）：

S[0]xr = S(xr)

S[N ]xr = S(xe)

S[j]xr = vj · S(xr)

同じく，j 年後に加入すると予定されている人数に対しての，現時点での支給現
在価値を定義する：

定義 4.

S[j]xe

def
= vj · S(xe) j = 0, 1, 2, · · ·

等式（easy）：

S[j]xe = vN+j · S(xr) j = 0, 1, 2, · · ·

以上を踏まえて，j = N + 1, N + 2, · · · の場合も含めて

S[j]xr

def
= vj · S(xr)

と定めることにする。したがって，

S[j]xe = S[N + j]xr j = 0, 1, 2, · · ·

等式（easy）：

S(x) =


∑
y=x

vy−x · ℓy (xr ≤ x)∑
y=xr

vy−x · ℓy (xe ≤ x ≤ xr − 1)

S[j]xr =
∑
y=xr

vy−xr+j · ℓy
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表 8.2: S(xr) = S[0]xr を網掛け表示

... S(xr) ⇓

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

† xe ≤ x ≤ xr − 1 の場合，S(x) において，x は金利に関わる項 vy−x に現れるだ
け。一方，σ(x) においては

σ(x) =
ℓxr

ℓx
·
∑
y=xr

vy−x

(
ℓy
ℓxr

)

なので，生存率 ℓxr
ℓx
と vy−xの項に現れるので，なにかと面倒。
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表 8.3: S[0]xr , S[2]xr , S[N ]xr を網掛け表示

... S[0]xr ⇓ S[2]xr ⇓ S[N ]xr ⇓

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

薄い網掛け部分は総和に含まれない項であり，後で人数現価G(xe + 3), G(xe) とし
て扱う。「斜め上に進む列」は，右側に 3 だけ「平行移動」すると（例えばS[2]xr を
S[N ]xr に変えると），v3 が乗ぜられることに注意。これは薄い網掛け部分について
も同じ。
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平行移動

S[j]xr , j = 0, 1, 2, . . . は，表から分かるように，右側に平行移動しても（つまり，
S[j + 1]xr に変えても）S[j]xr が v · S[r]xr になるだけのことで，簡単。
逆に，左側に平行移動する場合には，S[j]xr は (1+ i) ·S[r]xr になるのだが，はみ
出してしまわないように注意する必要がある。したがって，左側への平行移動する
場合には，j = 0 は除外しておく必要がある：

等式（easy）：

v · S[j]xr = S[j + 1]xr j = 0, 1, 2, . . .

(1 + i) · S[j]xr = S[j − 1]xr j = 1, 2, 3, . . .

「はみ出してしまう部分」を図として捉えるためには，表を左側に拡張しておく
と良い：

表 8.4: はみ出した部分の処理

· · · v−5 ℓxr+4 v−4 ℓxr+4 v−3 ℓxr+4 v−2 ℓxr+4 v−1 ℓxr+4 ℓxr+4 v ℓxr+4 v2 ℓxr+4 v3 ℓxr+4 v4 ℓxr+4 · · ·

· · · v−5 ℓxr+3 v−4 ℓxr+3 v−3 ℓxr+3 v−2 ℓxr+3 v−1 ℓxr+3 ℓxr+3 v ℓxr+3 v2 ℓxr+3 v3 ℓxr+3 v4 ℓxr+3 · · ·

· · · v−5 ℓxr+2 v−4 ℓxr+2 v−3 ℓxr+2 v−2 ℓxr+2 v−1 ℓxr+2 ℓxr+2 v ℓxr+2 v2 ℓxr+2 v3 ℓxr+2 v4 ℓxr+2 · · ·

· · · v−5 ℓxr+1 v−4 ℓxr+1 v−3 ℓxr+1 v−2 ℓxr+1 v−1 ℓxr+1 ℓxr+1 v ℓxr+1 v2 ℓxr+1 v3 ℓxr+1 v4 ℓxr+1 · · ·

· · · v−5 ℓxr v−4 ℓxr v−3 ℓxr v−2 ℓxr v−1 ℓxr ℓxr v ℓxr v2 ℓxr v3 ℓxr v4 ℓxr · · ·

† 上の表で，S(xr) を左に 3 平行移動すると，(1 + i)3S(xr) = v−3S(xr) となるが，
この「斜め上に進む列」は本来の表からはみ出してしまい，

1. S(xr + 3) = ℓxr+3 + v ℓxr+4 と

2. はみ出した部分（薄い網掛け部分）

(1 + i)3ℓxr + (1 + i)2ℓxr+1 + (1 + i)ℓxr+2
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に分解される。x = xr + 3 と置くと

(1 + i)x−xr · S(xr) = S(x) + (1 + i)x−xrℓxr + (1 + i)x−(xr+1)ℓxr+1 + (1 + i)x−(xr+2)ℓxr+2

= S(x) +
x−1∑
y=xr

(1 + i)x−yℓy

命題 4.

(1 + i) · S(xr) = S(xr + 1) + (1 + i)ℓxr

(1 + i)x−xr · S(xr) = S(x) +
x−1∑
y=xr

(1 + i)x−y · ℓy x = xr + 1, xr + 2, · · ·

証明 2番目の等式の証明．　

(1 + i)x−xrS(xr) = (1 + i)x−xr
∑
y=xr

vy−xr · ℓy

=
x−1∑
y=xr

(1 + i)x−y · ℓy +
∑
y=x

vy−x · ℓy

=
x−1∑
x=xr

(1 + i)x−y · ℓy + S(x)

最初の等式は，x = xr + 1の場合。

Remark. 等式

S(x) = (1 + i)x−xrS(xr)−
x−1∑
y=xr

(1 + i)x−y · ℓy

の左辺は将来法による責任準備金に，右辺は（退職時に一時払いで終身年金に加入
したと考えたときの）過去法による責任準備金に対応する。

次の命題は，表を考えれば一目で分かることだが，数式としての証明をしておく：

命題 5.

(1 + i) (S(x)− ℓx) = S(x+ 1) (xr ≤ x)
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証明

(1 + i) (S(x)− ℓx) = (1 + i)

(
ℓx +

∑
j=1

vj · ℓx+j − ℓx

)
= (1 + i) ·

∑
j=0

v · vjℓx+1+j

= S(x+ 1)

命題 6. B =
∑
x=xr

ℓx, Sp =
∑
x=xr

S(x) とおくとき，

(1 + i)(Sp −B) = Sp − S(xr)

証明 等式

(1 + i) (S(x)− ℓx) = S(x+ 1)

の両辺を x = xr, xr + 1, · · · で足しあわせると

左辺 = (1 + i) (Sp −B)

右辺 = Sp − S(xr)

であり，求める等式が得られる。

この命題は，図示すれば簡単：
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表 8.5: Sp −B と Sp − S(xr)

ℓxr+4 v ℓxr+4 v2 ℓxr+4 v3 ℓxr+4 v4 ℓxr+4

ℓxr+3 v ℓxr+3 v2 ℓxr+3 v3 ℓxr+3

ℓxr+2 v ℓxr+2 v2 ℓxr+2

ℓxr+1 v ℓxr+1

ℓxr

ℓxr+4 v ℓxr+4 v2 ℓxr+4 v3 ℓxr+4 v4 ℓxr+4

ℓxr+3 v ℓxr+3 v2 ℓxr+3 v3 ℓxr+3

ℓxr+2 v ℓxr+2 v2 ℓxr+2

ℓxr+1 v ℓxr+1

ℓxr

左の図が Sp − B で，右の図が Sp − S(xr)。共に，三角形の形の全体が Sp で，左
の図での網掛け部分がB。したがって，網掛けされていない部分が Sp −B であり，
これを左に平行移動したものは，右の図（の網掛けされていない部分）と一致する。
もしくは，各項を見比べて

Sp −B = v(Sp − S(xr))

と表しても良い。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

斜めのベクトルの和

定義 5.

B =
∑
x=xr

ℓx

Sp =
∑
x=xr

S(x)

Sa =
xr−1∑
x=xe

S(x)

(
=

N∑
j=1

S[j]xr

)

Sf =
∞∑
j=1

S[j]xe

S = Sp + Sa + Sf
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表 8.6: Sa と Sf

...

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

網掛けした部分が Sa であり，S(xr + 1) から S(xe) までの斜め線により作られる平
行四辺形。S(xe) から下に延びる薄い網掛けは，xe から始まっていることを示すた
めの補助線。
網掛け部分の右側の，右に無限に延びる図形がSf であり，１年後に加入するS(xe+1)

から sS(xr + 2), S(xr + 3), . . . と無限に続く。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

テキスト等での他の表現
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σ(x) (xr ≤ x) äx,
∑
j=0

Dx+j

Dx

,
Nx

Dx

S(xr)
TC

σ(xr)
TP

S(xe)
InC

σ(xe)
InP

σ(x) (xe ≤ x ≤ xr − 1) xr−x| äx,
Dxr

Dx

äxr ,
∑
j=0

Dxr+j

Dx

Nxr

Dx

S(x) (xe ≤ x) Sx 第６章 pp.102

σ(x) (xe ≤ x) Sx 実務編 第２章　 pp.151

Sp
∑
x=xr

ℓxäx

Sa

xr−1∑
x=xe

ℓx
Dxr

Dx

äxr

Remark. B, TC 等は，それぞれ「制度全体での毎年度の給付額」，「退職時年金現
価積立方式の制度全体での保険料」等の意味をもつので，定常状態をみたさない場
合や複雑な給付を行う場合は式と意味がずれてくるので，注意が必要．

8.2.3 表と式による計算

年金数理では，二重級数が頻出する。斜めに進む和を考えればある程度避けるこ
とが出来る問題なのだが，Σ の順序交換についても触れておこう。

Σ の順序の交換

添え字の範囲に依存関係がない２重級数では，総和を取る順序を入れ替えること
ができる：
等式（easy）：

n2∑
i=n1

n2∑
j=n1

aij =

n2∑
j=n1

n2∑
i=n1

aij
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しかし，２重級数のなかでも，内側の総和の添え字の範囲が，外側の総和の添え字
に依存している場合については，準備が必要になる．

命題 7.

n2∑
i=n1

i∑
j=n1

aij =

n2∑
j=n1

n2∑
i=j

aij

証明

φ≤(j, i) =

{
1 n1 ≤ j ≤ i ≤ n2

0 n1 ≤ i < j ≤ n2

として φij を定めると，

n2∑
i=n1

i∑
j=n1

aij =

n2∑
i=n1

n2∑
j=n1

φ≤(j, i) · aij

=

n2∑
j=n1

n2∑
i=n1

φ≤(j, i) · aij

=

n2∑
j=n1

n2∑
i=j

aij

斜めの和を横の和に書き換える

表をみれば，Sp, Sa, Sf , S の横の列が等比級数であることがたちどころに分かる
が，このことを式計算により確かめてみる（末項を表示するのが，煩わしい）。

命題 8.

Sp =
∑
y=xr

(
y−xr∑
j=0

vj

)
ℓy
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証明

Sp =
ω∑

x=xr

S(x)

=
ω∑

x=xr

ω∑
y=x

vy−xℓy · · · · · ·これは命題 7 の右辺

=
ω∑

y=xr

y∑
x=xr

vy−xℓy · · · · · ·これは命題 7 の左辺

=
ω∑

y=xr

y−xr∑
j=0

vjℓy =
ω∑

y=xr

(
y−xr∑
j=0

vj

)
ℓy

Remark. ここでは，確認のために総和の上端 ω（ω − 1でもよい）を明記してお
いたが，以下ではこれまで通り省略する

「三角形の領域」である Sp に比べて，横の列の長さが一定である Sa, Sf は簡単
に計算できる．

等式（easy）：

Sa =
N∑
j=1

S[j]xr =

(
N∑
j=1

vj

)
S[0]xr

=

(
N−1∑
j=0

vj

)
S[1]xr · · · · · ·S[0]xr ではなく S[1]xr であることに注意

Sf =
∞∑
j=1

S[j]xe =

(
∞∑
j=1

vj

)
S[0]xe

=

(
∞∑
j=0

vj

)
S[1]xe

=

(
∞∑

j=N

vj

)
S[1]xr

Sa + Sf =

(
∞∑
j=0

vj

)
S[1]xr
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これらの等式は，いずれも，
∑
y=xr

の形に書き直すことができる。たとえば，Sa +Sf

は次のように変形される。

Sa + Sf =

(
∞∑
j=0

vj

)∑
k=0

vk+1ℓxr+k

=

(
∞∑
j=0

vj

)∑
y=xr

vy−xr+1ℓy

=
∑
y=xr

∞∑
j=0

vj+y−xr+1ℓy

=
∑
y=xr

(
∞∑

j=y−xr+1

vj

)
ℓy

この結果と，

Sp =
∑
y=xr

(
y−xr∑
j=0

vj

)
ℓy

から次の結果が得られる。

等式（easy）：

S =
∑
y=xr

(
∞∑
j=0

vj

)
· ℓy

無限等比級数の和の公式からただちに，以下の結果が得られる。

等式（easy）：

S =
∑
y=xr

1

d
· ℓy =

1

d
·B

Sf =

(
∞∑
j=0

vj

)
S[1]xe =

1

d
· S[1]xe

Sa + Sf =

(
∞∑
j=0

vj

)
S[1]xr =

1

d
· S[1]xr
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表 8.7:

...

xr + 3 ℓxr+3 vℓxr+3 v2ℓxr+3 v3ℓxr+3 v4ℓxr+3 v5ℓxr+3 v6ℓxr+3 v7ℓxr+3 v8ℓxr+3 v9ℓxr+3 · · ·

xr + 2 ℓxr+2 vℓxr+2 v2ℓxr+2 v3ℓxr+2 v4ℓxr+2 v5ℓxr+2 v6ℓxr+2 v7ℓxr+2 v8ℓxr+2 v9ℓxr+2 · · ·

xr + 1 ℓxr+1 vℓxr+1 v2ℓxr+1 v3ℓxr+1 v4ℓxr+1 v5ℓxr+1 v6ℓxr+1 v7ℓxr+1 v8ℓxr+1 v9ℓxr+1 · · ·

xr ℓxr vℓxr v2ℓxr v3ℓxr v4ℓxr v5ℓxr v6ℓxr v7ℓxr v8ℓxr v9ℓxr · · ·

xe + 4 ℓxe+4 vℓxe+4 v2ℓxe+4 v3ℓxe+4 v4ℓxe+4 v5ℓxe+4 v6ℓxe+4 v7ℓxe+4 v8ℓxe+4 v9ℓxe+4 · · ·

xe + 3 ℓxe+3 vℓxe+3 v2ℓxe+3 v3ℓxe+3 v4ℓxe+3 v5ℓxe+3 v6ℓxe+3 v7ℓxe+3 v8ℓxe+3 v9ℓxe+3 · · ·

xe + 2 ℓxe+2 vℓxe+2 v2ℓxe+2 v3ℓxe+2 v4ℓxe+2 v5ℓxe+2 v6ℓxe+2 v7ℓxe+2 v8ℓxe+2 v9ℓxe+2 · · ·

xe + 1 ℓxe+1 vℓxe+1 v2ℓxe+1 v3ℓxe+1 v4ℓxe+1 v5ℓxe+1 v6ℓxe+1 v7ℓxe+1 v8ℓxe+1 v9ℓxe+1 · · ·

xe ℓxe vℓxe v2ℓxe v3ℓxe v4ℓxe v5ℓxe v6ℓxe v7ℓxe v8ℓxe v9ℓxe · · ·

xe − 1

xe − 1

...

×1
d
による対応

基本となる考え方は，表のひとつの項，例えば v3 ℓxr+2 に 1/d を乗じると，等比
級数の和の公式により

v3 ℓxr+2 ·
1

d
= v3 ℓxr+2 + v4 ℓxr+2 + v5 ℓxr+2 + . . .

であり，

v3 ℓxr+2 から始まり右に無限に延びる半直線

での和に等しいということ（表 8.7）。

237



B = (1)

S(xr) (= S[0]xr) = (2)

S[1]xr = (2)’

S(xe) (= S[0]xe) = (3)

S[1]xe = (3)’

とおくと，1
d
をかけることによる対応関係として以下が得られる。

× 1
d=⇒

(1) S = Sp + Sa + Sf

(2)’ Sa + Sf

(3)’ Sf

(1) − (2)’ Sp

(2)’ − (3)’ Sa

(1) − (3)’ Sp + Sa

(2) (2) +Sa + Sf

= (1 + i)
(
Sa + Sf

)
(3) (3) +Sf

= (1 + i)Sf

(1) − (2) Sp− (2)

(2) − (3) (2) +Sa− (3)

= (1 + i)Sa

(1) − (3) Sp + Sa− (3)
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簡単な等式：Sa = Sa
FS + Sa

PS

定義 6.

Sa
FS =

xr−1∑
x=xe

xr − x

N
· S(x)

Sa
PS =

xr−1∑
x=xe

x− xe

N
· S(x)

等式（easy）：

Sa
FS =

1

N

(
N∑
j=1

j · vj
)

· S(xr)

=
1

N
{1 · S[1]xr + 2 · S[2]xr + 3 · S[3]xr + · · ·+N · S[N ]xr}

Sp
PS =

1

N

(
N∑
j=1

(N − j) · vj
)

· S(xr)

Sa = Sa
FS + Sp

PS

次に，Sa の 1
d
倍を調べる。

等比級数として考えるのだが，1 次元の線分（例えばB）ではなく，2 次元的に
拡がった領域，この場合は平行四辺形の領域 Sa に属する vj ℓy について，

それを左端として右に無限に延びる直線

での和を考えるので，重複が問題になる：

以下の記述は添え字を追うのが面倒だが，表を見て自分で納得するのと簡単だと
思う。

1. y を固定し j = y − xr + 1 と置くと，Sa に属する項は左から

vj ℓy, v
j+1 ℓy, v

j+2 ℓy, . . .

（左端の vj ℓy は S[1]xr に属する）

2. それぞれに 1/d をかけて右に延びる半直線にして和をとると，
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(a) vj ℓy は重複なしに１回だけ和に現れる

(b) vj+1 ℓy は，vj ℓy から始まる半直線と vj+1 ℓy 自身から始まる半直線と，重
複して 2 回現れる

(c) 同様に，vj+2 ℓy は 3 回現れ

(d) 一般に，k = 0, 1, . . . , N − 1 について，vj+k ℓy は k + 1 回現れ

(e) k = N + 1, N + 2, . . . について，vj+k ℓy はN 回現れる

3. vj+k ℓy は S[1 + k]xr に属すので，y をすべての xr, xr+1, . . . で和をとると

Sa · 1
d

= 1 · S[1]xr + 2 · S[2]xr + · · ·+N · S[N ]xr +N {S[N + 1]xr + S[N + 2]xr + · · · }

= N ·
(
Sa
FS + Sf

)
以上，次の命題を得たのだが，証明を記述するとなると，やはり面倒。証明は，二
重級数の計算で済ませることにした。

命題 9. Sa の 1
d
倍

Sa × 1

d
= N ·

(
Sa
FS + Sf

)
証明
Sa
FS に対して等差等比級数の和の公式

d ·
N∑
j=1

j · vj−1 =
N−1∑
j=0

vj −N · vN
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を用いると，

d · Sa
FS = d · 1

N

(
N∑
j=1

j · vj
)

· S(xr)

=
1

N
· S(xr) · v · d ·

N∑
j=1

j · vj−1

=
1

N
· S(xr) · v ·

{
N−1∑
j=0

vj −N · vN
}

=
1

N
·

N∑
j=1

vj · S(xr) + vN+1 · S(xr)

=
1

N
·

N∑
j=1

S[j]xr + S[1]xe

=
1

N
· Sa + d · Sf

よって

Sa × 1

d
= N ·

(
Sa
FS + Sf

)

8.2.4 人数現価

人数原価の計算は，給付現価の場合と，ほぼ同様に進めることができる。

定義 7.

G(x)
def
=

xr−1−x∑
j=0

vj · ℓx+j xe ≤ x ≤ xr − 1

G[j]xe

def
= vj ·G(xe) j = 0, 1, 2, · · ·

γ(x)
def
=

G(x)

ℓx
xe ≤ x ≤ xr − 1
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等式（easy）：

G(x) =
xr−1∑
y=x

vy−x · ℓy (xe ≤ x ≤ xr − 1)

G[j]xe =
xr−1∑
y=xe

vy−xe+j · ℓy (0 ≤ j)

等式（easy）：

v ·G[j]xe = G[j + 1]xe j = 0, 1, 2, · · ·
(1 + i) ·G[j]xe = G[j − 1]xe j = 1, 2, 3, · · ·

命題 10.

(1 + i) ·G(xe) = G(xe + 1) + (1 + i)ℓxe

(1 + i)x−xe ·G(xe) = G(x) +
x−1∑
y=xe

(1 + i)x−y · ℓy x = xe + 1, xe + 2, · · · , xr − 1

証明 最初の式は，2番目の式で x = xe + 1とした場合なので，2番目の等式を証明
する。

(1 + i)x−xe ·G(xe) = (1 + i)x−xe ·
xr−1∑
y=xe

vy−xe · ℓy

=
x−1∑
y=xe

(1 + i)x−yℓy +
xr−1∑
y=x

vy−x · ℓy

=
x−1∑
y=xe

(1 + i)x−yℓy +G(x)

等式（easy）：

(1 + i)(G(x)− ℓx) = G(x+ 1) (xe ≤ x ≤ xr − 2)

(1 + i)(G(x)− ℓx) = 0 (x = xr − 1)

命題 11. L =
xr−1∑
x=xe

ℓx, G
a =

xr−1∑
x=xe

G(x) とおくと

(1 + i) (Ga − L) = Ga −G(xe)
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証明 等式

(1 + i)(G(x)− ℓx) = G(x+ 1)

の両辺について，x = xe, xe + 1, · · · , xr − 2 までの総和をとり，さらに，左辺に
(1 + i)(G(xr−1)− ℓxr−1　 (= 0) を加えることにより得られる。

定義 8.

L =
xr−1∑
x=xe

ℓx

Ga =
xr−1∑
x=xe

G(x)

Gf =
∞∑
j=1

G[j]xe

G = Ga +Gf

テキスト等での他の記号

γ(x) äx:xr−x⌉,
xr−1−x∑

j=0

Dx+j

Dx

,
xr−1∑
y=x

Dy

Dx

G(x) ℓx · äx:xr−x⌉,
xr−x−1∑

j=0

ℓx ·
Dx+j

Dx

,
xr−1∑
y=x

ℓx ·
Dy

Dx

Ga

xr−1∑
x=xe

ℓx

(
xr−1∑
y=x

Dy

Dx

)

ここで，

L = · · · · · · (4)
G(xe) (= G[0]xe) = · · · · · · (5)

G[1]xe = · · · · · · (5)’

とおくと，
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× 1
d=⇒

(4) G = Ga +Gf

(5)’ Gf

(4) − (5)’ Ga

(5) (5) +Gf

= (1 + i)Gf

(4) − (5) Ga− (4)

8.3 財政方式の分類
極限方程式を満たすF の水準により，財政方式を第 I類から第VI類に分類する。

第 II類では退職者が，第 V類では新入社員が，個人年金として保険料一時払いで
年金に加入した考えると，個人単位での収支相等が成立していることになる。また，
第 III類，第 IV類も，在職者が個人単位で年金に加入しているとすれば，個人単位で
の収支相等が成立する。しかし，第 I類や第VI類 となると，かなり不自然な解釈を
しない限り，個人単位での収支相等は成立しない。

8.3.1 （第 I類）　賦課方式

(Pay-as-you-go Method)

最も積み立て水準が低く F = 0 となる財政方式。

PC = B, PP = 1
PF = 0

ただし，PP は在職者 L人についてではなく，「既退職者B人について一人あたり」
と考えていることに注意。添え字P でこの財政方式であることを示す（他の財政方
式でも，適当な文字で指定）。
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8.3.2 （第 II類）　退職時年金現価積立方式 (Terminal Funding

Method)

退職時点で将来の年金給付に必要な額を積み立てる。しかし，在職者に対しての
積み立ては全く行われないので，積み立て水準は低い。

TC = S(xr),
TP = σ(xr)

TF = B · 1
d
− TC · 1

d
= Sp − TC

ただし，TP は在職者L人についてではなく，「退職者 ℓxr人について一人あたり」と
考えていることに注意．

TF についての等式は，

B · 1
d

= Sp + Sa + Sf ,

TC · 1
d

= S(xr) ·
1

d
= S(xr) + Sa + Sf

であることから，明らか．

8.3.3 （第 III類）　単位積立方式 (Unit Credit Method)

将来の年金現価を在職年数N 等分したものを，在職中のN 年間にわたって毎年
積み立てる方式。これ以降の財政方式では，退職時点では積み立てが完了している
ことに注意。
単位積み立て方式の１人あたり保険料は，加入時点では（受給までの年数が多い
ので）安く，退職が近づくに従って高くなり，平準ではない。

UPx =
1

N
σ(x), (xe ≤ x ≤ xr − 1)

UCx =
1

N
S(x), (xe ≤ x ≤ xr − 1)

UC =
xr−1∑
x=xe

UCx =
1

N
Sa

UF = B · 1
d
− UC · 1

d
= (Sp + Sa + Sf )− (Sa

FS + Sf )

= Sp + Sa
PS
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8.3.4 （第 IV類）　平準積立方式 (Level Premium Method)

在職時に保険料を平準で積み立てる方式。各個人がそれぞれ，保険料在職時平準の
個人年金保険に加入した場合と同じ積み立て水準になるので，最も自然な財政方式。

LP =
σ(xe)

γ(xe)

(
=

S(xe)

G(xe)
=

(3)

(5)
=

(3)′

(5)′

)
LC = LP · L
LF = B · 1

d
− LC · 1

d
= Sp + Sa −Ga · LP

LF についての等式は，

B · 1
d
− LC · 1

d
= B · 1

d
− L · 1

d
· LP

= (Sp + Sa + Sf )− (Ga +Gf ) · LP
ここで，

Gf · LP = Gf · S(xe)

G(xe)

= Gf ·
S[1]xe · 1

d

G[1]xe · 1
d

= Gf · S
f

Gf

= Sf

なので，
LF = Sp + Sa −Ga · LP

また，

Sa −Ga · LP =
xr−1∑
x=xe

ℓx
(
σ(x)− γ(x) · LP

)
(8.4)

と書き直すと，右辺の括弧の中は将来法による（x 歳のひとりについての）責任準
備金と解釈され，LP は個人単位での平準保険料として定められているので，

将来法による責任準備金　= 過去法による責任準備金
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の等式が成立する。したがって，総和をとった Sa −Ga · LP も，過去法による責任
準備金の総額（現時点での社員についての総額）として表されるはず：
まず，x = xe, xe +1, . . . , xr − 1 に対して，S(xe)−G(xe) · LP = 0（これは LP の
定義）に (1 + i)x−xe をかけた等式

0 = (1 + i)x−xe (S(xe)−G(xe))

= (1 + i)x−xeS(xe)− (1 + i)x−xeG(xe)

の総和をとる。

1. 第１項は「左に x− xe 平行移動」してだけなので S(x) に等しく，

2. 第２項は「はみ出してしまう」パターンであり，命題 10 により

(1 + i)x−xeG(xe) = G(x) +
x−1∑
y=xe

(1 + i)x−yℓy

となるで，x = xe, xe + 1, . . . , xr − 1 に対しての総和をとると

0 =
xr−1∑
x=xe

{
(1 + i)x−xeS(xe)− (1 + i)x−xeG(xe) · LP

}
=

xr−1∑
x=xe

S(x)−
xr−1∑
x=xe

G(x) · LP −
xr−1∑
x=xe

x−1∑
y=xe

(1 + i)x−yℓy · LP

= Sa −Ga · LP −
xr−1∑
x=xe

x−1∑
y=xe

(1 + i)x−y ℓy · LP

以上により，等式

Sa −Ga · LP =
xr−1∑
x=xe

x−1∑
y=xe

ℓy · LP · (1 + i)x−y

を得る。右辺は x = xe, . . . , xr − 1 歳の社員が

前年度までに支払った保険料 LP（個人で退職後の生命年金を平準払いす
る場合と等しい）の現在価値

の総額と解釈される（つまり，過去法による責任準備金総額）。これに，既退職者に
対しての責任準備金 Sp を加えたものが，FL となる。
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8.3.5 （第 V類）　加入時積立方式 (Initial Funding Method)

新入社員が xe 歳で加入した時点で，将来年金給付現価を一時払いで積み立ててし
まう方式。積み立て水準は平準方式より高い。

InP = σ(xe)
InC = ℓxe · InP = S(xe) (= (3))

InF = B · 1
d
− InC

= (Sp + Sa + Sf )−
(
InC + Sf

)
= Sp + Sa − InC

ただし，InP は在職者 L人についてではなく，「新規加入者 ℓxe 人について一人あた
り」と考えていることに注意。

8.3.6 （第 VI類）　完全積立方式 (Complete Funding Method)

年金制度開始時点で将来永遠に至るまでの（と言っても v < 1 の等比級数として
の効果で収束するのだが）年金支給現価を一時払いで積み立ててしまう方式。おそ
らく，理論的な意味しか持たない（有り難すぎる）財政方式。

CoC = 0
CoF = B · 1

d
= Sp + Sa + Sf

8.3.7 第 III類と第 IV類の比較

第 I類から第 VI類まで，積み立て水準の大小により分類しているのだが，不等式

PF < TF < UF

LF < InF < CoF

の証明が簡単なことと対照的に，

UF < LF

を証明することは，意外に難しい。
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命題 12. UF < LF

証明
極限方程式をみたしB は共通なので，UC > LC を示せば良い。

LC = L · LP =

(
N−1∑
j=0

ℓxe+j

)
· S(xe)∑N−1

j=0 vj ℓxe+j

UC =
Sa

N
=

(
(1 + i)N−1 + (1 + i)N−2 + · · ·+ (1 + i) + 1

)
S(xe)

N

なので，
N−1∑
j=0

(1 + i)j ·
N−1∑
j=0

vj
ℓxe+j∑N−1
k=0 ℓk

> N

を示せば良い。

αj =
ℓxe+j∑N−1

k=0 ℓxe+j

と置くと，

α0 ≥ α1 ≥ · · · ≥ αN−1

N−1∑
j=0

αj = 1

であり，x = v と置くと 0 < x < 1 なので（v = 1 の場合の証明は簡単），命題 3 に
より (

N−1∑
j=0

x−j

)(
N−1∑
j=0

αjx
j

)
> N

8.4 制度開始時点からの「過渡現象」

8.4.1 過去勤務債務

Fn を基金の残高，Vnを責任準備金総額として，

Un = Vn − Fn
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を過去勤務債務という。ここでの責任準備金は，将来法による考え方で計算した責
任準備金であり，一方，Fn は過去法による責任準備金と同じく「その時点までの，
収入総額 － 支出総額」なので，両者は一致するはずである。しかし，年金数理で
は，制度発足時点からの「ゴタゴタの処理」が絡むために，必ずしも両者は一致せ
ず，差額として「過去勤務債務」が活性する。
企業から基金に納付する全額を保険料とするならば，発足時点での「ゴタゴタの
処理」の途上であっても，問題はないはずなのだが，実際には，

保険料を，標準保険料と特別保険料に分けて考える場合がある。

そして，責任準備金を計算する際には，

将来支出総額の現在価値 から 将来収入総額を引く（控除する）ときに
は，標準保険料のみを控除する

と考えるので，特別保険料の分だけ責任準備金は過大評価されることになり，基金
の残高よりも過大になる。
ここでは，第 IV類についてのみ考えることにし，

Bn = B, n = 1, 2, 3, · · ·
Cn −→ LC, (n → ∞)

Fn −→ LF, (n → ∞)

となることを要請する。

8.4.2 第 IV類の各種財政方式

加入年齢方式 (Entry Age Normal Cost Method)

標準保険料 EC = EP · L は，n = 1, 2, 3, · · · で LC と等しいとし，制度発足時点で
の過去勤務債務は，別途に特別保険料を設けて償却する．

個人平準保険料方式 (Individual Level Premium Method)

特別保険料は設定せず，制度発足時点での既退職者の過去勤務債務Spは初年度保
険料に加算して一括償却，制度発足時点で在職者 xe ≤ x ≤ xr − 1 の保険料は，個
人単位での平準保険料

IPx =
σ(x)

γ(x)

(
=

S(x)

G(x)

)
250



を基に定める。制度発足時点での在職者と将来加入者については，この保険料で個
人単位での収支相当が成り立つ．既退職者への過去勤務債務は初年度保険料で一括
償却する。制度発足時点で xe +1歳以上の在職者が全員退職年齢 xrを迎えた時点で
ICn = EC が成立し，極限方程式を満たすようになる。

EP と IPx

命題 13. 各 xe ≤ x ≤ xr − 1 に対して，等式

G(x)
(
IPx − EP

)
= EP ·

x−1∑
y=xe

(1 + i)x−y · ℓy

が成立する。

証明

G(x) · IPx = S(x) = (1 + i)x−xe · S(xe)

G(xe) · EP = S(xe)

G(x) · EP =

{
(1 + i)x−xe ·G(xe)−

x−1∑
y=xe

(1 + i)x−y · ℓy

}
· EP

= (1 + i)x−xeS(xe)− EP ·
x−1∑
y=xe

(1 + i)x−y · ℓy

であることから明らか。

命題 14.

EV = Sp + Sa − EP ·Ga

= Sp +
xr−1∑
x=xe

(IPx − EP ) ·G(x)

証明 最初の等式は将来法による責任準備金総額の定義式（特別保険料は控除しない
ことに注意）であり，次式は

Sa − EP ·Ga =
xr−1∑
x=xe

(
S(x)− EP ·G(x)

)
=

xr−1∑
x=xe

(
IPx − EP

)
·G(x)

であることから明らか。
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総合保険料方式

初年度保険料 CC1 =
CP1 ·Lは制度発足時点での既退職者と在職者の成す閉集団に

おいて収支相当

Sp + Sa = CP1 ·Ga

が成立するように設定する。なお，CF1 = 0 なので，

CC1 =
Sp + Sa − CF1

Ga
· L

次年度以降は，新たに加入した在職者を含めた閉集団を新規に設定して収支相当と
なるように保険料を設定し直す。

CCn =
Sp + Sa − CFn

Ga

· L
CFn+1 = (CFn +

CCn −B)(1 + i)

Cnを消去すると，

CFn+1 =

(
1− L

Ga

)
(1 + i) · CFn +

(
(Sp + Sa)

L

Ga

−B

)
· (1 + i)

一般に，漸化式

xn+1 = c1xn + c2

で定められる数列 {xn}は，|c1| < 1 ならば，初期値 x1に依存せずに

c2
1− c1

に収束する。

c1 =
(Ga − L)(1 + i)

Ga

=
Ga − (5)

Ga
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なので，0 < c1 < 1 であり，CFnは

c2
1− c1

=
((Sp + Sa)L−B ·Ga) (1 + i)

(5)

=

(
(Sp + Sa)L · 1

d
−B · 1

d
·Ga

)
(1 + i)

(5) · 1
d

=

(
(Sp + Sa)(Ga +Gf )− (Sp + Sa + Sf ) ·Ga

)
(1 + i)

(1 + i)Gf

=
(Sp + Sa)Gf − Sf ·Ga

Gf

= Sp + Sa − (3)

(5)
·Ga

= Sp + Sa − EP ·Ga

= EF

に収束する。

到達年齢方式 (Attained Age Normal Cost Method)

制度発足時点での既退職者の過去勤務債務 Sp，制度発足時点での在職者の過去勤
務債務 Sa

PSの合計を初年度の過去勤務債務
AU1とし，これを償却するための特別保

険料 AC ′
nと標準保険料

AP1 =
Sa
FS

Ga
, AC1 =

AP1 · L

APn =
Sp + Sa − (AFn +

AUn)

Ga
, ACn = APn · L

を設定する。

8.5 開放型総合保険料方式と開放基金方式

8.5.1 開放型総合保険料方式

保険料に，標準保険料と特別保険料の区別を置かず，将来加入者まで考慮して収
支相当が成立するように保険料を設定する。
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制度発足時点での給付対象者の設定により，各種の保険料が決まる。

Sp + Sa + Sf

Ga +Gf
=

B

L
Sa + Sf

Ga +Gf
=

v · TC
L

Sa
FS + Sf

Ga +Gf
=

UC

L
Sf

Ga +Gf
=

v · InC
L

8.5.2 開放基金方式

制度発足時点での Sp+Sa
PS を過去勤務と考え，特別保険料で償却．標準保険料は

OANP =
Sa
FS + Sf

Ga +Gf
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